Sandsynlighedsbaserede metoder

Størrelse: px
Starte visningen fra side:

Download "Sandsynlighedsbaserede metoder"

Transkript

1 Metodeartikel 29 Sandsynlighedsbaserede metoder Monte Carlo-metoden Daniel Kjær I sidste udgave af Famøs kunne læseren finde første halvdel af en todelt artikelserie om sandsynlighedsbaserede metoder under afsnittet med titlen»sandsynlighedsbaserede metoder«med undertitlen»pseudotilfældige tal«. I denne artikel præsenterede forfatteren flere fundamentale begreber for pseudotilfældige tal-generatorer fra et ergodeteoretisk synspunkt. Den foreliggende artikel er den anden halvdel i serien og denne artikel omhandler den egentlige Monte Carlo-metode. De problemer vi i det følgende vil betragte er kendetegnet ved, at de er meget enkle og fremstillingen af emnet kræver kun et indledende kendskab til målteori. Monte Carlo-metodens generelle idé og oprindelse Inspiration til numeriske metoder kan springe fra alle mulige uforventede kilder. Simuleret udglødning har taget sit navn fra metallurgien (læren om metallers fremstilling, egenskaber og bearbejdning) og splines blev først taget i anvendelse af tekniske skitsetegnere. På en tilsvarende façon er Monte Carlo-metoden rodfæstet i hazardspillet. Og hvem føler ikke en slags fjernt ekko af noget glamourøst ved navnet Monte Carlo-metoden? Selve navnet er afledt af byen Monte Carlo i fyrstendømmet Monaco. Byen er berømt verden over for sit grand casino,»casino de Monte-Carlo«, et ikon for industrien for hazardspil. Det korte af det lange er, at Monte Carlo-metoden ikke kan hjælpe én med at vinde i roulette; metoden er end ikke et forsøg på det. 23. årgang, nr. 2

2 30 Sandsynlighedsbaserede metoder Monte Carlo-metoden er en numerisk metode til løsningen af matematiske problemer ved hjælp af simulation. Monte Carlo-metodens teoretiske fundament, i særdeleshed de store tals lov, har længe været kendt. Men siden simulation af stokastiske variable per håndkraft er en svært møjsommelig proces, har Monte Carlo-metoder været praktisk umulige at udføre uden hjælp fra en computer. Det er derfor ikke overraskende, at Monte Carlo-metoden som universelt anvendt numerisk teknik er snævert forbundet med udbredelsen af computeren. Monte Carlo-metodens alment accepterede oprindelsesdag er 949, hvor en artikel under overskriften»the Monte Carlo Method«dukkede op. De amerikanske matematikere Jersey Neyman og Stanislaw Ulam betragtes som værende ophavsmændene til denne artikel. I Sovjetunionen publiceredes de første artikler om Monte Carlo-metoden i 955 og 956 af V. V. Chavchanidze, Yu. A. Schreider og V. S. Vladimirov. For hver ny generation af computere finder Monte Carlo-metoden nye anvendelsesområder. Differentia specifica og et simpelt eksempel Vores udgave af Monte Carlo-metoden er kendetegnet ved, for det første, den beregningsmæssige enkle struktur af algoritmen. Algoritmen består i almindelighed af en proces til produktionen af en tilfældig hændelse. Processen gentages n N gange, med hvert forsøg uafhængigt af de forrige og resultaterne bruges til dannelsen af et gennemsnit. Et andet særkende ved metoden er, som hovedregel, at fejlen fra udregningen er proportional med /n, hvor n er antallet af forsøg. For at opnå høj præcision må man altså have et stort antal gentagelser (for at at formindske fejlen med en faktor 0 er det Famøs november 203

3 Daniel Kjær 3 nødvendigt at øge n med en faktor 00). Lad os illustrere metoden med et simpelt eksempel. Eksempel (Hit-or-Miss Integration) Forestil dig, at vi har brug for at udregne arealet, A, af en figur i planen begrænset af enhedskvadratet. Det skal principielt være en kompliceret figur, før det kommer til sin ret at sætte Monte Carlo-metoden i anvendelse, men af hensyn til bekvemmelighed lader vi figuren være en cirkel som vist i figur. y  = 0.25 y  = 0.32 A A 0 x 0 x Figur Approksimation af arealet A = Vælg tilfældigt n punkter i kvadratet og betegn ved n antallet af punkterne, der falder indenfor cirklen. Det er fra figuren klart, at cirklens areal approksimativt er lig med n /n. Jo større n, desto bedre approksimation. I skemaet til venstre ser vi, at af 4 punkter er faldet indenfor cirklen, så vores estimat for cirklens areal er n /n = /4 = I skemaet til højre er 28 af 400 punkter faldet indenfor cirklen, så vores estimat for cirklens areal er n /n = 28/400 = Cirklens faktiske areal er lig med A = årgang, nr. 2

4 32 Sandsynlighedsbaserede metoder Observér, at metoden til estimation af arealet A kun er gyldig, når de tilfældige punkter ikke blot er tilfældige punkter i enhedskvadratet, men faktisk er ligeligt fordelt på hele enhedskvadratet. For at kunne replikere eksemplet kræves altså en metode til produktionen af ligefordelte stokastiske variable i enhedskvadratet. Dette skridt består i virkeligheden i at kalde en subrutine i et computerprogram, en s.k. pseudotilfældig tal-generator, som udfører den bestemte opgave at producere visse følger af tal, der til ethvert praktisk formål er uskelnelige fra udfald af ligefordelte stokastiske variable. Denne frembringelsesproces blev beskrevet i detaljer i sidste udgave af Famøs i artiklen»pseudotilfældige tal«. Simple sandsynlighedsbaserede modeller Fraktiltransformation metoden Vi beskriver i dette afsnit en simpel model til frembringelsen af værdier af en stokastisk variabel med en given sandsynlighedsfordeling. Definition 2 Lad (Ω, F, P ) være et sandsynlighedsfelt. Lad X være en reel stokastisk variabel på Ω og lad P X være fordelingen af X på (R, B R ). Ved p-fraktilerne hørende til P X for et p (0, ) forstås mængden { } x R: lim P X ((, y]) p P X ((, x]). y x Et element i mængden kaldes en p-fraktil for P X. Ved en fraktilfunktion hørende til P X mener vi en funktion q på (0, ) ind i R således at for alle p (0, ), så er q(p) en p-fraktil for P X. Famøs november 203

5 Daniel Kjær 33 Vigtigheden af følgende sætning er ikke til at tage fejl af. Sætningen understreger den centrale rolle, som ligefordelingen spiller i simulationsmodellering. Sætning 3 Lad (Ω, F, P ) være et sandsynlighedsfelt. Lad X være en reel stokastisk variabel på Ω, lad P X være fordelingen af X på (R, B R ) og lad q være en fraktilfunktion hørende til P X. Betragt sandsynlighedsfeltet ((0, ), B (0,), m L ), hvor m L er Lebesgue målet på Borel σ-algebraen B (0,) af delmængder af (0, ), og lad U være en stokastisk variabel på Ω ind i (0, ) med fordeling m L. Da gælder, at P X = (q U)(P ). Bevis. Se [3]. Lad X være en reel stokastisk variabel på et bagvedliggende sandsynlighedsfelt (Ω, F, P ) og lad q være en fraktilfunktion hørende til fordelingen P X. Frembringelsesprocessen af stokastiske variable med denne fordeling er sammensat som en serieforbindelse af to delprocesser, som i figur 2. m L P X Figur 2 Frembringelse af stokastiske variable. Den første delproces i udarbejdelsen af input til en simulation består i, at frembringe en ligefordelt stokastisk variabel U på det ovennævnte sandsynlighedsfelt. Dernæst fokuseres på at lade den ligefordelte stokastiske variabel undergå metamorfosen til q U. 23. årgang, nr. 2

6 34 Sandsynlighedsbaserede metoder Sætningen klargør, at denne produktionsproces faktisk giver et udfald af en stokastisk variabel med den ønskede fordeling P X. Lad os illustrere metoden med et simpelt eksempel. Eksempel 4 Lad (Ω, F, P ) være et sandsynlighedsfelt. Lad X være positiv reel stokastisk variabel og lad for et λ > 0, exp(λ) være fordelingen af X på (R +, B R+ ). Fraktilfunktionen q hørende til P X er givet ved log( p) q(p) =, p (0, ). λ. Lad U være en ligefordelt stokastisk variabel defineret på (Ω, F, P ). 2. Den stokastiske variabel log( U)/λ på (Ω, F, P ) er fordelt exp(λ) på (R +, B R+ ). Der findes situationer, hvor man gerne vil simulere stokastiske variable med en fordeling, hvor fordelingen er så kompliceret, at det ikke er helt enkelt at gå direkte til fraktilfunktionen. Eksempel 5 Lad (Ω, F, P ) være et sandsynlighedsfelt. Lad X være en reel stokastisk variabel og lad N(0, ) være fordelingen af X på (R, B R ). Genkald, at fordelingsfunktionen hørende til P X, betegnet ved Φ, er givet ved Φ(y) = (,y] 2π exp { x2 2 } m L (dx), y R. Da det er klart, at Φ C (R) med positiv differentialkvotient, så er funktionen strengt voksende på R og en fraktilfunktion q hørende til P X eksisterer entydigt, som den inverse af Φ. For så vidt som fordelingsfunktionen Φ ikke kan gives et analytisk udtryk (uden brug af specielle funktioner), så kan fraktiltransformationsmetoden ikke direkte anvendes. Famøs november 203

7 Daniel Kjær 35 Eksemplet klargør, at alternative metoder til frembringelse af normalfordelte variable må tages i brug. Vi nævner i flæng: Numerisk approksimation af q, Box-Muller, Acceptance-Rejection, etc. Sætning 6 (Den centrale grænseværdisætning) Lad {X n : n N} være en familie af reelle stokastiske variable på et sandsynlighedsfelt (Ω, F, P ). Antag, at følgende tre betingelser er opfyldt.. Familien {X n : n N} er et uafhængigt system af stokastiske variable på (Ω, F, P ). 2. Der findes et sandsynlighedsmål Q på (R, B R ) således at Q er fordelingen af X n på (R, B R ) for ethvert n N. 3. Følgende integraler eksisterer og er endelige: µ E(X n ), σ 2 E[(X n µ) 2 ] > 0, n N. Lad {Z n : n N} være systemet af stokastiske variable på (Ω, F, P ) defineret ved nk= X k nµ Z n = σ. n Da gælder, for alle a, b R hvor a < b, at lim P Z n n ((a, b]) = Φ(b) Φ(a), hvor Φ er fordelingsfunktionen hørende til fordelingen N(0, ). Bevis. Se []. Eksempel 7 Lad (Ω, F, P ) være et sandsynlighedsfelt. Lad X være en reel stokastisk variabel og lad N(0, ) være fordelingen af X på (R, B R ). Fraktilfunktionen q hørende til P X eksisterer ikke på eksplicit form. 23. årgang, nr. 2

8 36 Sandsynlighedsbaserede metoder. Lad {U n : n =,..., 2} være et uafhængigt system af ligefordelte stokastiske variable defineret på (Ω, F, P ). Observér, at µ E(U n ) = /2, σ = E[(U n µ) 2 ] /2 = / Den stokastiske variabel 2 k= U k 6 på (Ω, F, P ) er fordelt approksimativt N(0, ). Monte Carlo-integration Monte Carlo-integration er en numerisk metode til approksimation af integraler ved hjælp af sandsynlighedsbaserede metoder og næsten enhver Monte Carlo udregning kan betragtes som et forsøg på at approksimere integralet f dm L, D for et f L (R, B R, m L ) og D B R, hvor m L er Lebesgue målet på Borel σ-algebraen B R af delmængder af R. Vi ser, at integralet kan repræsenteres som en middelværdi af en stokastisk variabel. Sætning 8 (Monte Carlo-integration) Lad f M(R, B R ) og lad D B R. Lad (Ω, F, P ) være et sandsynlighedsfelt og lad X være en stokastisk variabel på Ω ind i D og lad P X være fordelingen af X på (D, B D ). Antag, at P X er absolut kontinuert med hensyn til m L og lad p dp X dm L være den Radon-Nikodym afledede af P X med hensyn til m L.. Der gælder, at [ ] f(x) E = f dm L, p(x) D i den forstand, at eksistensen af den ene side medfører eksistensen af den anden og lighedstegnet. Famøs november 203

9 Daniel Kjær Dersom integralerne i. eksisterer og dersom {X n : n N} er et uafhængigt system af stokastiske variable på Ω ind i D med fælles fordeling P X af X n for ethvert n N, så findes en nulmængde Λ i (Ω, F, P ) således, at lim n n n k= f(x k )(ω) p(x k )(ω) D = f dm L, ω Λ c. Bevis.. er oplagt og 2. følger af Store tals stærke lov. Eksempel 9 (Simpel Monte Carlo-integration) Lad {U n : n N} være et uafhængigt system af stokastiske variable på et sandsynlighedsfelt (Ω, F, P ) ind i (a, b) for a, b R med a < b. Lad ligefordelingen på (a, b) være fordelingen af U n for ethvert n N. Lad f L (R, B R, m L ).. Der gælder, at (b a)e [f(u )] = f dm L, n N. (a,b) 2. Der findes en nulmængde Λ i (Ω, F, P ) således, at (b a) lim n n n f(u k )(ω) = f dm L, ω Λ c. k= (a,b) Det er klart, at den ovenstående procedure for Monte Carlointegration let lader sig generalisere til flere dimensioner. Dette generalisationsproblem overlades til læseren. Monte Carlo-optimering Simulation af stokastiske variable i numerisk optimering er en anden stærk og meget populær anvendelse af Monte Carlo-metoden. 23. årgang, nr. 2

10 38 Sandsynlighedsbaserede metoder Problemet er at minimere (eller maksimere) funktioner, som ofte har et stort antal dimensioner. Lad W(R d ), for et d N, betegne samlingen af alle kontinuerte funktioner w på R d ind i R. Vores ambition i dette afsnit er at beskrive metoder til løsning af (evt. multiekstremale) optimeringsproblemer: { min x D w(x), w W(Rd ), D kompakt, D R d. Mange teoretiske og praktiske problemstillinger kan modelleres indenfor denne generelle ramme. Lemma 0 (Borel-Cantelli) Lad (Ω, F, P ) være et sandsynlighedsfelt og lad F n F for n N. Hvis P (F n ) <, så er Bevis. Se [4] n N P ( n N k=n F k ) = 0. Sætning (Simpel Monte Carlo-optimering) Lad w W(R d ), for et d N, være en kontinuert funktion på R d ind i R og lad D være en kompakt delmængde af R d. Antag, at der findes et entydigt punkt x i R d således, at x = arg min w(x). x D Lad (Ω, F, P ) være et sandsynlighedsfelt og lad {X n : n Z + } være et uafhængigt system af d-dimensionale stokastiske variable på Ω Famøs november 203

11 Daniel Kjær 39 ind i D med fælles fordeling P X af X n på (D, B D ) for ethvert n Z + og antag at {x } er en nulmængde i (D, B D, P X ). Lad {Y n : n Z + } være et system af reelle stokastiske variable på (Ω, F, P ) givet ved Y n = w(x n ), n Z +. Hvis der for ethvert δ > 0 gælder, at P Yn ((w(x ), w(x ) + δ]) > 0, så findes en nulmængde Λ i (Ω, F, P ) således, at lim min{y,..., Y n }(ω) = w(x ), ω Λ c. n Bevis. Siden {x } er en nulmængde i (D, B D, P X ), så er (X n ) ({x }) en nulmængde i (Ω, F, P ) for ethvert n Z +. Men (X n ) ({x }) = (Y n ) ((, w(x )]). Således har vi etableret, at P Yn ((, w(x )]) = 0. () Lad δ > 0 være givet. Jævnfør vor antagelse har vi, at P Yn ((, w(x ) + δ]) = P Yn ((w(x ), w(x ) + δ]) > 0, hvor lighedstegnet følger af (). Fra dette og fra uafhængigheden af systemet {Y n : n Z + } har vi, at P min{y,...,y n}((w(x ) + δ, )) = { P Yn ((w(x ), w(x ) + δ])} n hvilket giver anledning til følgende geometriske række: n N P min{y,...,y n}((w(x ) + δ, )) = P Y n ((w(x ), w(x ) + δ]) P Yn ((w(x ), w(x. ) + δ]) 23. årgang, nr. 2

12 40 Sandsynlighedsbaserede metoder Den højre side af lighedstegnet er oplagt endelig. Fra Lemma 0 (Borel- Cantelli) har vi for ethvert δ > 0, at P ( n N k=n {min{y,..., Y k } w(x ) + δ}) = 0, eller ækvivalent hermed: for ethvert δ > 0, så er P ( n N k=n {min{y,..., Y k } < w(x ) + δ}) =. Heraf sluttes det ønskede resultat. Litteratur [] Billingsley, P., Convergence of Probability Measures, John Wiley & Sons, Inc., 968. [2] Hammersley, J. M., & Handscomb, D. C., Monte Carlo Methods, Methuen s Monographs on Applied Probability and Statistics, London, 964. [3] Hansen, E., Measure Theory, Institut for Matematiske Fag, Københavns Universitet, 4. udgave, [4] Jacobsen, M., Videregående Sandsynlighedsregning, Institut for Matematiske Fag, Københavns Universitet, 3. udgave, [5] Metropolis, N. & Ulam, S., The Monte Carlo method, J. Am. Stat. Assoc., 44, N 247, , 949 [6] Sobol, I. M., A Primer for the Monte Carlo Method, Boca Raton: CRC Press, Inc., 994 Famøs november 203

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393.

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Broer, skak og netværk Side 1 af 6 Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Eksempler på praktiske anvendelser af matematik og nogle uløste problemer Indledning Figur

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Tallet π er irrationalt Jens Siegstad

Tallet π er irrationalt Jens Siegstad 32 Tallet π er irrationalt Jens Siegstad At tallet π er irrationalt har været kendt i pænt lang tid Aristoteles postulerede det da han påstod at diameteren og radius i en cirkel er inkommensurable størrelser

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Jeg ønsker at aflægge prøve på nedenstående eksaminationsgrundlag. Jeg har foretaget ændringer i vejlederens fortrykte forslag: nej ja Dato: Underskrift HUSK at

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Meditation over Midterbinomialkoefficienten

Meditation over Midterbinomialkoefficienten 18 Juleeventyr Meditation over Midterbinomialkoefficienten En rusrejse fra en fjern juletid Frederik Ravn Klausen, Peter Michael Reichstein Rasmussen Ved juletid for ikke så længe siden faldt tre russer

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

En statistikstuderendes bekendelser Søren Wengel Mogensen

En statistikstuderendes bekendelser Søren Wengel Mogensen Oplysning 23 En statistikstuderendes bekendelser Søren Wengel Mogensen Om at skrive BSc-opgave i anvendt statistik. Der findes matematikere (i hvert fald matematikstuderende), der mener, at den rene matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2013-forår 2014 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e)

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Normalfordelingen. Erik Vestergaard

Normalfordelingen. Erik Vestergaard Normalfordelingen Erik Vestergaard Erik Vestergaard www.matematiksider.dk Erik Vestergaard, 008. Billeder: Forside: jakobkramer.dk/jakob Kramer Side 7: istock.com/elenathewise Side 8: istock.com/jaroon

Læs mere

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b 3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Afsluttende: Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Favrskov Gymnasium Stx Matematik

Læs mere

Differentialligninger af første orden

Differentialligninger af første orden Differentialligninger af første orden Preben Alsholm Februar 2006 Basale begreber. Eksistens og entydighed. En differentialligning af første orden er en ligning, der sammenknytter differentialkvotienten

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hfe Mat A Viktor Kristensen

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 15 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold stx Matematik A Jan Houmann

Læs mere

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33 Indhold Bind 1 del I: Eksperimenterende geometri og måling 1 Eksperimentel geometri 3 Hvorfor eksperimenterende undersøgelse? 4 Eksperimentel undersøgelse: På opdagelse med sømbrættet 6 Geometriske konstruktioner

Læs mere

Matematiske emner SPIL. Sandsynligheder og Strategier

Matematiske emner SPIL. Sandsynligheder og Strategier Matematiske emner SPIL Sandsynligheder og Strategier Ole Witt-Hansen Køge Gymnasium 2006 INDHOLD Kap. Sandsynligheder ved spil.... Lotto... øvelser...2 2. Poker...3 3. Ruinsandsynligheder ved Roulette

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

En Introduktion til Sandsynlighedsregning

En Introduktion til Sandsynlighedsregning En Introduktion til Sandsynlighedsregning 4. Udgave Michael Sørensen 26. juni 2003 0 Forord Til 2. udgave Disse forelæsningsnoter trækker i betydelig grad på noter udarbejdet af en række kolleger. Det

Læs mere

Matematisk Formelsamling

Matematisk Formelsamling Duborg-Skolen Duborg-Skolen Duborg-Skolen Duborg-Skolen Matematisk Formelsamling Indholdsfortegnelse Emne side Vektorer i planen... 1 og 2 Linje... 3 Cirkel, ellipse, hyperbel og parabel... 4 Trekant...

Læs mere

Kapitel 1. Planintegraler

Kapitel 1. Planintegraler Kapitel Planintegraler Denne tekst er en omarbejdet version af kapitel 7 i Gunnar Mohrs noter til faget DiploMat 2, og opgaverne er et lille udpluk af opgaver fra Mogens Oddershede Larsens bog Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 15 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold stx Matematik niveau A Knud Søgaard

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Simuleringsmodel for livsforløb

Simuleringsmodel for livsforløb Simuleringsmodel for livsforløb Implementering af indkomststokastik i modellen 9. november 2009 Sune Sabiers sep@dreammodel.dk Indledning I forbindelse med EPRN projektet Livsforløbsanalyse for karakteristiske

Læs mere

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 9. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 OPSAMLING EKSAKTE MODELLER Fordele: Praktiske til initierende analyser/dimensionering

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Trine Eliasen

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2012-2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold Stx Matematik A MT 3.a Matematik Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Rentesregning: Lektion A2. Intern rente, Flere rentetilskrivninger, Excel. Introduktion. Peter Ove Christensen. Forår 2012

Rentesregning: Lektion A2. Intern rente, Flere rentetilskrivninger, Excel. Introduktion. Peter Ove Christensen. Forår 2012 Rentesregning: Lektion A2, Flere rentetilskrivninger, Excel Peter Ove Christensen Forår 2012 1 / 26 Definition Hvilken rentesats giver vores betalingsrække en ønsket værdi? Denne rentesats kaldes for den

Læs mere

Oversigt over gennemførte undervisningsforløb

Oversigt over gennemførte undervisningsforløb Undervisningsbeskrivelse Termin Maj/juni 2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer(e) Hold stx Matematik B Janne Skjøth Winde 2.s mab Oversigt over gennemførte undervisningsforløb

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling Om brugen af matematiske tegn og objekter i en god matematisk fremstilling af Petur Birgir Petersen Et særpræg ved matematik som videnskab er den udstrakte brug af symboler. Det er vigtigt at symbolerne

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold HFe Mat C-B Henrik Jessen

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11.

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010/11 Institution Uddannelse Fag og niveau Lærer(e) Hold Zealand Business College Hhx Matematik

Læs mere

Hvad bør en option koste?

Hvad bør en option koste? Det Naturvidenskabelige Fakultet Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag 19. marts 2015 Dias 1/22 Reklame først: Matematik-økonomi-uddannelsen Økonomi på et solidt matematisk/statistisk

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005 Hierarkiske generaliserede lineære modeller Lee og Nelder, Biometrika (21) 88, pp 987-16 Dagens program: Mandag den 2. maj Hierarkiske generaliserede lineære modeller - Afslutning Hierarkisk generaliseret

Læs mere

GPS stiller meget præcise krav til valg af målemetode

GPS stiller meget præcise krav til valg af målemetode GPS stiller meget præcise krav til valg af målemetode 1 Måleteknisk er vi på flere måder i en ny og ændret situation. Det er forhold, som påvirker betydningen af valget af målemetoder. - Der er en stadig

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Introduktion: Vi vil nu se på et konkret eksempel på hvordan man i praksis fordeler mandaterne i et repræsentativt demokrati,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

MM01 (Mat A) Ugeseddel 1

MM01 (Mat A) Ugeseddel 1 Institut for Matematik og Datalogi 2. august 200 Syddansk Universitet, Odense HJM/LL MM0 (Mat A) Ugeseddel Velkommen til kurset MM0 (Matematik A). Forelæsninger: afholdes i to ugentlige timer, onsdag kl.

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Opgave nr. 28. Prisfastsættelse af asiatiske optioner på aktier - ved Monte Carlo-simulering foretaget i Excel

Opgave nr. 28. Prisfastsættelse af asiatiske optioner på aktier - ved Monte Carlo-simulering foretaget i Excel H.D.-studiet i Finansiering Hovedopgave forår 004 Opgaveløser: Vejleder: Carsten Holdum Peter Toftager Ejlersen Opgave nr. 8 Prisfastsættelse af asiatiske optioner på aktier - ved Monte Carlo-simulering

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN.

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN. MODUL 8 Differensligninger Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN Modulet er baseret på noter af Peter BEELEN. 26. august 2014 2 Indhold 1 Introduktion 5 1.1 Rekursioner og differensligninger.........................

Læs mere

Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931

Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Kommentar til 1 Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Denne afhandling af den 24-årige Kurt Gödel er blevet en klassiker. Det er vist den eneste

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere