anhattan roject tombomben n n Erik Vestergaard

Størrelse: px
Starte visningen fra side:

Download "anhattan roject tombomben n n Erik Vestergaard"

Transkript

1 T M A P anhattan he & roject tombomben U Sr n U* n n Xe Erik Vestergaard

2 2

3 Indholdsfortegnelse 1. Indledning Facts om kernen i atomet Gammastråling og energiniveauer i kernen Betastråling Alfastråling Brug af kernekort Henfaldsloven en terningemodel Absorption af radioaktiv stråling Absorptionsloven for gammastråling Baggrundsstråling Dosimetri Forholdsregler mod bestråling Fission Masse og energi to sider af samme sag Kædereaktioner Opgaver

4 4

5 1. Indledning Mens atomfysik overvejende handlede om elektronerne i banerne udenfor kernen, så handler kernefysik om, hvad der foregår i atomets kerne. Herunder kan nævnes fænomener som radioaktiv stråling og fission. Sidstnævnte proces kaldes også for kernespaltning. Det er kernefysikken, som skal sætte os i stand til at forstå forskellige aspekter af fysikken i forbindelse med emnet The Manhattan Project og atombomben. 2. Facts om kernen i atomet Kernen består af protoner, som har en positiv ladning af samme numeriske størrelse som elektronens, samt neutroner, som er elektrisk neutrale. Antallet af neutroner kalder vi N og antallet af protoner kalder vi Z. Z kaldes udover protontallet også for ladningstallet, eftersom det angiver, hvor mange positive ladninger, der er i kernen. Dette tal angiver også atomnummeret i det periodiske system. Hvis atomet ikke er ioniseret vil der endvidere være Z elektroner, som kredser i baner udenfor kernen. Protoner og neutroner kaldes under ét for nukleoner. Antallet af nukleoner, nukleontallet, betegnes A og opfylder altså formlen A = Z + N. Dette tal kaldes også for massetallet, da det omtrent angiver atomets masse, udtrykt i units (u). Når vi omtaler et stof, sætter vi ofte massetallet øverst og ladningstallet nederst, som for eksempel i U. Imellem atomerne i kernen virker der elektriske kræfter, idet protonerne vil søge at frastøde hinanden. Heldigvis er der også en kraft, som søger at holde sammen på kernens partikler, nemlig kernekræfterne, som er meget kraftige og i modsætning til de elektriske kræfter kun virker over meget kort afstand. Nu viser det sig, at der fint kan eksistere atomer med det samme antal protoner, men med et forskelligt antal neutroner. Disse kaldes isotoper af det samme grundstof. På næste side har jeg afbildet et såkaldt kernekort. Det egentlige formål med dette kort vil vi komme ind på lidt senere. Lige nu kan vi imidlertid benytte det til at konstatere hvor mange isotoper der findes af et bestemt grundstof. Isotoper af samme grundstof har i øvrigt de samme kemiske egenskaber. Eksempel 1 Grundstoffet bly har atomnummeret 82, altså Z = 82. På kernekortet på næste side eller på den forstørrede udgave bag i noten, kan du se, at bly kan indeholde fra 98 til 132 neutroner. Lad os for eksempel antage, at neutrontallet er 126 i en bly-isotop. Så ser vi, at er massetallet er A = Z + N = = 28. Vi kalder denne isotop for Pb-28. Der er tale om en af de få stabile isotoper af bly. 5

6 6

7 Kernekortet kan altså bruges til at se, hvilke isotoper, der kan eksistere. På kortet på forrige side er indtegnet en linje med vinklen 45 grader, svarende til, at isotoper langs denne linje vil have lige mange neutroner som protoner. Vi ser dog, at langt de fleste stoffer har flere neutroner end protoner og at denne tendens er særligt udtalt for grundstoffer med højt atomnummer. Dette kan forklares ved, at de stærke kernekræfter ikke virker over hele kernen i store kerner, hvorfor der må være relativt flere neutroner til at forhindre at de elektriske kræfter får overtaget. 3. Gammastråling og energiniveauer i kernen En atomkerne kan befinde sig i forskellige energiniveauer. Når kernen er i laveste energiniveau, så siges kernen at befinde sig i grundtilstanden. Hvis kernen er i et højere liggende energiniveau, så siges kernen af være exciteret eller at befinde sig i en exciteret tilstand. Kernen kan godt lide at befinde sig grundtilstanden, så hvis den er i en exciteret tilstand, så vil den hurtigt falde tilbage til grundtilstanden, eventuelt i flere trin. Når en kerne falder tilbage til et lavere liggende energiniveau, så udsender den energi i form af en foton. Det er elektromagnetisk stråling. I tilfældet med en kerne er energierne så store, at der er tale om den del af det elektromagnetiske spektrum, som kaldes gammastråling. Energien af gammafotonen er netop lig med forskellen mellem energierne af de to energiniveauer: Efoton = E = E2 E1. Fotonens frekvens f kan findes af formlen 34 Efoton = h f, hvor h = 6,631 J s er den såkaldte Plancks konstant. Jo højere fotonens energi er, jo højere er dens frekvens, som det fremgår. Gammastråling skriver vi også ofte ved brug af det græske bogstav gamma: γ -stråling. Energimæssigt ligger gammastråling langt over den del af det elektromagnetiske spektrum, som er synligt lys. Som vi senere skal se er strålingen meget farlig, hvis man bliver udsat for meget af den, da den kan ionisere atomerne i de menneskelige celler. Nedenfor ses et energidiagram for Barium-137. I kernefysikken sætter man grundtilstandens energi til. Stjernen over barium hentyder til, at kernen er exciteret. Vi ser, at når barium falder tilbage til grundtilstanden, så udsendes en gammafoton med energien,66 MeV. MeV skal læses som mega elektron volt, dvs. millioner elektron volt. Enheden elektron volt er en hensigtsmæssig enhed, da man arbejder med meget små tal: 1eV = 1,621 J, hvilket betyder, at,66mev =,661 1,621 J = 1,57 1 J. 7

8 4. Betastråling Der findes andre typer radioaktiv stråling end gammastråling. Hvis kernen for eksempel har for mange neutroner, så vil der ske et såkaldt betahenfald. Herved skydes der en elektron udfra kernen samt en særlig partikel, kaldet en antineutrino. Elektronen kommer, i modsætning til, hvad man skulle tro, ikke fra banerne udenfor kernen. Derimod dannes elektronen i kernen ved følgende proces: (1) n p + e + ν En neutron i kernen omdannes altså til en proton, en elektron og en antineutrino. Sidstnævnte partikel er uhyre svær at detektere, da den ingen ladning har og en masse, som er forsvindende lille. Det betyder, at den har svært ved at vekselvirke med andre partikler. Faktisk kan en antineutrino godt passere igennem jordkloden uden at vekselvirke. Historisk var det derfor også en partikel, som blev opdaget meget sent, ja faktisk forudsagde man dens eksistens før man detekterede den: Den var nødvendig for at få energiregnskabet til at gå op! Et eksempel på en betaproces er følgende: (2) Co 28Ni + 1e + ν + γ 1 + γ 2 Bemærk, at de sidstnævnte to led er medtaget, fordi det viser sig, at β-processen efterfølges af udsendelse af to gammakvanter. Den egentlige betaproces består derimod kun i, at Cobalt-kernen omdannes til Nikkel under udsendelse af en elektron og en antineutrino. 8

9 5. Alfastråling Det kan også forekomme, at en isotop er ustabil og skiller sig af med en heliumkerne, dvs. to protoner og to neutroner. Strålingen kaldes alfastråling eller α-stråling. Et eksempel på en sådan proces er (3) Ra Rn He Der er herved sket en omdannelse af grundstoffet Radium til ædelgassen Radon. Netop Radon vil vi vende tilbage til i forbindelse med baggrundsstråling. 6. Brug af kernekort Når man har et kernekort og et periodisk system til rådighed, så kan man nemt finde ud af hvordan en bestemt kerne henfalder. Man kan derefter fortsætte med at undersøge datterkernen. Nogle kerner vil resultere i en hel serie af henfald, kaskadehenfald. Man taler om radioaktive familier. Bag i denne note kan du finde et kernekort, bredt ud over to sider. Vi får brug for et par bevarelseslove: Bevarelse af massetal Det samlede nukleontal (= massetal) før og efter en kernereaktion er det samme. Bevarelse af ladningstal Den samlede ladning før og efter en kernereaktion er den samme. Prøv selv at kontrollere, at det samlede ladningstal og massetal er uændret i reaktionerne (2) og (3) ovenfor. Kernekortet benyttes på følgende måde: Find først antallet af neutroner under anvendelse af formlen N = A Z. Find kernen i kernekortet og aflæs udfra symbolet, hvilken type stråling, der er tale om. Derefter skal vi finde datterkernen. Lad mig kort beskrive hvordan i tilfældet med alfa- og betastråling. De øvrige processer overlades til læseren: α-stråling Da der udsendes en alfapartikel, giver bevarelseslovene os, at datterkernen må have to færre protoner og neutroner. Ladningstallet er altså reduceret med 2, mens massetallet er reduceret med 4. Navnet på det nye grundstof finder man altså ved at bevæge sig to skridt tilbage i det periodiske system. I kernekortet bevæger man sig altså to til venstre og to ned! 9

10 β-stråling Da der ifølge (1) er blevet omdannet en neutron til en proton og en antineutrino sidstnævnte med både massetal og ladningstal lig med må datterkernens ladningstal være 1 større end moderkernens. Derudover må massetallet være uændret. For at finde navnet på det nye grundstof, skal vi bevæge os et skridt frem i det periodiske system. I kernekortet bevæger man sig altså en til venstre og en op, da der er en proton mere og en neutron mindre! Bemærk, at det ikke i alle tilfælde er entydigt, hvad der sker. Nogle steder i kernekortet kan der nemlig foregå flere processer! Eksempel 2 Givet Thorium-isotopen 234 9Th. Moderkernens massetal og ladningstal er henholdsvis 234 og 9. Antallet af neutroner er dermed N = A Z = = 144. Vi går ind i kernekortet under Z = 9 og N = 144. Vi finder her en åben bolle, som symboliserer et betahenfald. Dermed må datterkernen have samme massetal og ladningstal en højere. Datterkernen ses i det periodiske system at være grundstoffet Protactinium: (4) Th Pa + e + ν På figuren herunder kan du et udsnit af kernekortet. Pilen peger på Thorium-234. Figuren viser endvidere, at datterkernen også er betaradioaktiv og at der herefter foregår tre alfahenfald. Jeg vil overlade det til læseren at opskrive reaktionerne. 1

11 α-stråling β-stråling γ-stråling 7. Henfaldsloven en terningemodel I dette afsnit skal vi se på i hvilket tempo strålingen foregår fra en radioaktiv kilde, altså en klump stof bestående af nogle radioaktive kerner. Da gælder følgende: Henfaldsloven Når et radioaktivt præparat kun indeholder én type radioaktive kerner, så aftager strålingen eksponentielt med tiden. I det følgende skal vi give et godt argument for, at henfaldsloven er rigtig. Argumentet bygger på nogle fundamentale egenskaber for radioaktive henfald: Det er vigtigt at forstå, at radioaktive henfald har noget med sandsynligheder at gøre. Man kan ikke forudsige, hvornår en given kerne henfalder. Derimod kan man tildele en radioaktiv kerne en vis sandsynlighed for, at den henfalder i et givet tidsrum. Denne sandsynlighed afhænger ikke af tidspunktet, men kun af tidsrummets størrelse. Man kunne tro, at det vil betyde, at man ikke kan sige noget som helst om radioaktive henfald at det hele er tilfældigt. Da der imidlertid under normale 11

12 omstændigheder er et meget stort antal radioaktive kerner tilstede i ens radioaktive kilde, så vil tilfældighederne så at sige udjævne sig på grund af De store tals lov. Man kan sammenligne situationen med terningekast. Hvis antallet af terninger er lille, fx. 6, så vil det ikke være usandsynligt, at man får uregelmæssigt mange seksere, fx 3 seksere. Hvis antallet af terninger er stort, fx 6, så vil antallet af 1 ere, 2 ere,..., 6 ere med meget stor sandsynlighed være tæt på 1. Lad os blive i analogien med terninger for at give et argument for henfaldsloven. Lad hver terning svare til en radioaktiv kerne. Man slår med alle terninger hvert sekund. De terninger, der viser 6 øjne vil vi lade svare til henfaldne kerner. De fjernes fra spillet. Lad os betegne antallet af kerner, som endnu ikke er henfaldet efter t sekunder, med N() t. Det svarer til de terninger, som endnu ikke har vist 6 øjne. N () er altså antallet af terninger fra start. Efter 1 sekund, dvs. efter første kast, vil der forventeligt være 1/6 af terningerne, som har vist 6 øjne, mens 5/6 af terningerne har vist noget andet. Det svarer til, at der efter 1 sekund forventeligt er 5 5 N() ikke henfaldne kerner, dvs. N(1) = N() 6 6. Vi slår nu med de tilbageværende N (1) terninger. Her vil forventeligt 1/6 vise 6 øjne, mens 5/6 vil vise noget andet. Det svarer til, at der efter 2 sekunder forventeligt vil være 5 N(2) = N(1) ikke henfaldne kerner. Vi gentager processen og efter 3 sekunder vil der 6 5 forventeligt være N(3) = N(2) ikke henfaldne kerner, osv. Forventeligt har vi: 6 (5) N() N(1) = N() ( ) 2 ( ) (( ) ) ( ) N(2) = N(1) = N() = N() N(3) = N(2) = N() = N() N() t = N() 6 t Efter hvert sekund (kast) fremskrives (ganges) antal ikke henfaldne kerner altså med 5/6. Vi har altså at gøre med en aftagende eksponentiel udvikling. Det er netop hvad henfaldsloven siger: at antallet af ikke henfaldne kerner aftager eksponentielt. I matematik x vil man sige, at man har en funktion f( x) = b a, hvor x svarer til t, f( x ) svarer til N(), t b til N () og a til 5/6. I fysik foretrækker man af forskellige grunde ofte at skrive den eksponentielle udvikling på en af følgende former: (6) N() t = N e kt 1 (7) N() t = N ( ) T12 hvor k er den såkaldte henfaldskonstant, N er antal ikke henfaldne kerner til tiden t = og T 12 er halveringstiden. Man kan udlede følgende formel for halveringstiden: T12 = ln(2) k. 2 t 12

13 I øvrigt vil det være en god idé at gennemføre et terningeeksperiment i klassen, men husk at benytte mange terninger fra start, helst ikke under ca. 2. Man vil selvfølgelig ikke fuldstændigt få en udvikling som den forventede under (5), da der er tale om tilfældigheder, men hvis man benytter tilstrækkeligt mange terninger fra start og afbilder N() t som funktion af t (antag 1 kast svarer til 1 sek), så skulle det gerne resultere i en tilnærmelsesvis eksponentielt aftagende sammenhæng. Ovenfor har vi argumenteret for, at antallet af ikke-henfaldne kerner til tiden t, dvs. N(), t aftager eksponentielt med tiden. Men hvad med den hastighed, hvormed kernerne henfalder til et givet tidspunkt? Aftager det tal også eksponentielt med tiden? Svaret er ja, for antallet af kerner, som henfalder pr. sekund til et givet tidspunkt er proportional med antallet af ikke-henfaldne kerner til dette tidspunkt. I terningemodellen er det også ret logisk: Hvis der fx er dobbelt så mange kerner (terninger) tilbage, så vil der i gennemsnit også blive slået dobbelt så mange seksere. Generelt kaldes proportionalitetskonstanten for k, dvs. A() t = k N() t, og konstanten betegnes henfaldskonstanten. Det giver umiddelbart følgende to formler for aktiviteten, svarende til (6) og (7): (8) A() t = A e kt 1 (9) A() t = A ( ) T12 hvor A er aktiviteten til tiden t =. Aktivitet er altså øjeblikshastigheden, hvormed antallet af kerner henfalder. Enheden er 1/s, hvilket i denne sammenhæng kaldes Bq for Becquerel. 2 t Eksempel 3 I 1 kubikmeter luft i en kælder måles en aktivitet fra radon på 24 Bq. Vi forestiller os nu, at luften fjernes fra kælderen, så der ikke tilføres ny radon fra betonen i væggen. Halveringstiden for radon-222 er 3,82 dage. a) Hvad vil aktiviteten være efter 3,82 dage? b) Hvad vil aktiviteten være efter 1 dage? Løsninger: a) Da tiden netop er lig med halveringstiden, kan vi straks besvare opgaven. Så vil der nemlig være halvt så stor en aktivitet, altså 12 Bq. b) Da vi kender halveringstiden, så kan vi slippe udenom at skulle bestemme henfaldskonstanten, ved at benytte formel (9): t 1 dage 1 ( ) T 1 ½ ( ) 3,82 dage 2 2 A(1 dage) = A = 24 Bq = 24 Bq,1629 = 39,1 Bq 13

14 8. Absorption af radioaktiv stråling Når radioaktiv stråling rammer et stof, vil strålingen eller dele af den blive absorberet i stoffet. Den afsatte energi vil resultere i, at nogle atomer i stoffet vil ioniseres, dvs. der vil blive slået elektroner løs. Hvad der nærmere bestemt sker afhænger blandt andet af, hvilken stråling der er tale om, idet strålingstyperne α-, β- og γ-stråling jo er vidt forskellige af natur. Førstnævnte er som bekendt heliumkerner, som er meget store partikler i sammenligning med betastrålingens elektroner. Igen er γ-strålingen vidt forskellig fra de to andre typer, idet der her er tale om elektromagnetisk stråling, dvs. består af fotoner med meget høj energi, og det bevæger sig med lysets hastighed, men har masse. I næste afsnit skal vi specielt fokusere på absorption af gammastråling. Absorption i biologisk væv Ved radioaktive udslip kan legemet blive udsat for radioaktiv stråling. Herved vil der foregå en ionisering af nogle af organismens molekyler. Der kan ske følgende: stråling H O hvorefter der kan foregå følgende: H O + e H O + H O HO + HO H O + e OH + Hi 2 Der er blevet dannet et frit radikal, dvs. en molekylestump med en fri binding. Disse frie radikaler har meget stor tendens til at lave reaktioner, og som følge heraf kan der ske forandringer i cellerne, herunder cellernes DNA-molekyler. De forskellige typer celler i legemet har forskellig følsomhed overfor ioniserende stråling. Nerve- og muskelceller har lav følsomhed, mens bloddannende celler i kønskirtlerne er meget sårbare. Strålingens skadelige virkning afhænger i høj grad også af strålingens type og dens energi. Ioniserende stråling på hospitaler Radioaktiv stråling kan også bruges til noget positivt, nemlig indenfor hospitalsverdenen til diagnostik og til behandling. Ved sygdom i skjoldbruskkirtlen kan man for eksempel indsprøjte en forbindelse af Jod-isotopen I-131 i blodkredsløbet. I-131 udsender både β- og γ-stråling. Joden vil hurtigt blive optaget i skjoldbruskkirtlen. Kirtelvævet absorberer β-strålingen, mens γ-strålingen kan måles udenfor organismen, eftersom sidstnævnte har en stor rækkevidde. Med en såkaldt scintillationsdetektor kan man få et nøje billede af skjoldbruskkirtlen og herved bestemme dens størrelse og eventuelt finde syge områder. Er kirtlen forstørret kan man eventuelt uden operation fjerne en del af den ved at indsprøjte store doser I-131. β-strålingen har her kun en rækkevidde på ca. 1mm og kan derfor effektivt bruges til at destruere sygt eller overskydende væv. På grund af den korte halveringstid på 8 dage, vil radioaktiviteten hurtigt aftage, så patienten ikke udsættes for en for stor dosis. 14

15 9. Absorptionsloven for gammastråling Det viser sig, at der ved absorption af gammastråling i et materiale med god tilnærmelse gælder følgende princip: For en γ foton med en given energi er der en bestemt sandsynlighed for, at fotonen slipper igennem 1 mm af det givne materiale. Det betyder, at intensiteten af gammastråling aftager eksponentielt med tykkelsen af det absorberende lag. Man kan argumentere for denne påstand ved at bruge ovenstående princip samt lidt rentesregning. Lad os se på et tænkt eksempel: Antag, at intensisteten af den indkommende gammastråling er I og at en plade på 1 mm af et det givne stof absorberer 2% af strålingen. Så vil der være 8% tilbage på den anden side. Altså vil intensiteten være I,8 her. Tilføjes endnu en plade på 1 mm, vil den allerede reducerede stråling blive reduceret til yderligere 2 8%, dvs. til ( I,8),8 = I,8. Vi ser når argumentet fortsættes at x mm stof vil reducere intensiteten til I,8x. Vi har altså at gøre med en eksponentielt aftagende 15

16 sammenhæng, hvor b-leddet svarer til I og fremskrivningsfaktoren (for 1 mm stof) er lig med,8. I fysik angiver man formlerne på en af følgende former: (1) I( x) = I e µ x I( x) = I 1 x (11) ( ) 12 2 x hvor µ er den såkaldte lineære absorptionskoefficient, og 1 2 x er halveringstykkelsen. Sidstnævnte angiver, som navnet antyder, den tykkelse af stoffet, som skal til, for at strålingen halveres. Halveringstykkelsen afhænger af det pågældende materiale og af energien af gammastrålingen. Bly er et af de stoffer, som bedst absorberer gammastrålingen. Derfor er halveringstykkelsen for bly ret lille, afhængig af gammaenergien. Halveringstykkelsen for forskellige stoffer (luft, vand, beton og bly) kan aflæses på nedenstående figur. 1. aksen indeholder gamma-fotonens energi. 16

17 Eksempel 4 En radioaktiv kilde indeholder den radioaktive isotop Cs-137, og kilden udsender γ-stråling med energien,66 MeV. Hvor meget reduceres strålingen med, hvis man befinder sig bag en 25 cm tyk betonmur? Løsning: Vi kender ikke startintensiteten, men vi behøver den heller ikke til at besvare dette spørgsmål. Vi kalder blot startintensiteten for 1%. På figuren på side 16 finder man på 1. aksen gammaenergien,66mev = 66keV, går op til kurven for beton og aflæser på højre akse en halveringstykkelse på ca. 4 mm, altså 4 cm. Dette giver: x 25cm 1 x12 1 4cm ( 2 ) ( 2 ) I( x) = I I(25cm) = 1% = 1,3% Strålingen er reduceret til 1,3%, og dermed reduceret med 1% 1,3% = 98, 7%. Bemærkning Det bør lige bemærkes, at det kun er gammastråling, der med stor nøjagtighed kan siges at aftage eksponentielt med tykkelsen af det absorberende lag. Betastråling aftager i nogen grad eksponentielt, mens alfastråling opfører sig helt anderledes: Alfapartikler med en bestemt energi trænger alle omtrent lige langt ind i stoffet! 1. Baggrundsstråling Mennesket udsættes dagligt for stråling fra omgivelserne. Det er stråling, vi for det mestes vedkommende ikke kan undgå, og den betegnes baggrundsstrålingen. På næste side har jeg opdelt strålingen i seks forskellige kategorier. Den menneskeskabte stråling er den fra medicin, og derudover er der stråling efter atomuheld og atomprøvesprængninger. Sidstnævnte er talt med under andet, som heldigvis er en lille post! Den naturlige stråling er den øvrige stråling, som skyldes radioaktive isotoper, der stammer fra stjerneprocesser i en fjern fortid. Isotoperne blev brugt som byggesten ved jordens skabelse for 4-5 milliarder år siden, eller også er de døtre af sådanne isotoper. En meget stor del af den radioaktivitet kan henføres til enten U-238 eller Th-232-familierne, som begge har et stort antal familiemedlemmer. 17

18 Radon Fødevarer Radon er tilstede som en del af den atmosfæriske luft, vi indånder. I indendørsluft er koncentrationen særlig stor, ca. 1 gange så stor som udenfor. Mest udsat er kælderrum med revner i gulvet, hvor radon kan sive op. Udluftning er meget vigtig. I middel er den specifikke aktivitet 5 Bq/m 3 i danske boliger. I sig selv er Radon α-radioaktiv, og har derfor en kort rækkevidde. Når Radon kommer ned i lungerne, vil α-strålingen påvirke lungeslimhinderne. Derudover henfalder Radon til forskellige datterkerner, som selv er radioaktive. Disse faste datterprodukter kan bindes til støvpartikler og små vanddråber. Når sådanne partikler kommer ned i lungerne, kan de sætte sig fast og forårsage længerevarende bestråling. Den væsentligste kilde til stråling fra fødevarer er K-4.,118% af alt Kalium er af denne radioaktive isotop. Halveringstiden er 1,27 mia. år. K-4 findes naturligt i fødevarer. Henfaldet kan ske således: K Ca + e + ν (89%) K + e Ar + ν + røntgenstråling (11%) Terrestrisk Dette hentyder til gammastråling fra undergrund, byggematerialer etc. Kosmisk Medicin Stråling fra verdensrummet, især fra solen. Strålingen bliver heldigvis reduceret meget på vej ned igennem atmosfæren. Anvendelsen af stråling på hospitaler bidrager overraskende med omtrent en fjerdedel af al den stråling, et menneske gennemsnitligt modtager. Strålingsbelastningen stammer først og fremmest fra røntgenundersøgelser. 18

19 11. Dosimetri Begrebet dosimetri dækker over teorien for, hvordan man beregner størrelsen af den radioaktive dosis for eksempel et menneske modtager. Det kan blandt andet være relevant i forskellige medicinske behandlinger, hvor der benyttes ioniserende stråling, eller ved atomuheld eller atombomber, hvor mennesket udsættes for særlig stor stråling. Absorberet dosis Den absorberede dosis eller bare dosis betegnes med bogstavet D og hentyder til den absorberede strålingsenergi i kroppen pr. masseenhed. Eabs (12) D = m Enheden er derfor J/kg. I denne sammenhæng kalder man også enheden for gray (Gy), altså 1 Gy = 1 J/kg. Dosisækvivalent Det viser sig, at den absorberede dosis ikke siger alt om skadevirkningen. Strålingstyperne har nemlig vidt forskellig biologisk virkning, selv om de har samme energi. α-stråling medfører i gennemsnit 2 gange så mange celleskader end røntgen-, β- og γ-stråling, ved samme absorberede dosis. Dette skyldes α-partiklernes store størrelse og ladning, som resulterer i mange flere ioniseringer. Man indfører derfor lidt makabert betegnelsen kvalitetsfaktor for stråling: Strålingens art Kvalitetsfaktor Q α 2 neutron 1 β, γ, røntgen 1 Herefter defineres den såkaldte dosisækvivalent H ved: (13) H = Q D Enheden for dosisækvivalent er derfor også J/kg, men da H udtrykker noget helt andet end D, har man valgt at give enheden for H en særlig betegnelse, nemlig Sievert (Sv), dvs. 1 Sv = 1 J/kg. 19

20 Beregninger af absorberede doser og dosisækvivalenter er i princippet blot købmandsregning, selv om det undertiden kan være ganske involveret. Man kan stille sig følgende spørgsmål: a) Hvor mange radioaktive kerner er der? b) Hvor mange radioaktive kerner henfalder i bestrålingstidsrummet? c) Hvor stor en del af de udsendte partikler/kvanter rammer personen? d) Hvor stor en del af de partikler/kvanter, der rammer, bliver absorberet i personen? e) Hvor meget energi repræsenterer hver partikel/kvant? f) Hvor meget vejer personen eller det organ, som udsættes for stråling? g) Hvad er kvalitetsfaktoren for strålingen? Spørgsmål b): Her handler det ofte om, hvor lang tid, man har været udsat for strålingen. Henfaldsloven kan altså komme i spil. Spørgsmål c): Afhænger blandt andet af, hvor tæt man befinder sig på kilden. Og af, om man er beskyttet af en form for afskærmning. Spørgsmål d): Hvis det er γ-stråling, kan afsnit 9 benyttes. Spørgsmål e): Kan findes ved tabelopslag for den aktuelle radioaktive isotop. Når c)-e) er besvaret, kan den totale absorberede energi i Joule bestemmes. Efter f) er besvaret, kan den absorberede dosis bestemmes, og efter g) er besvaret, kan dosisækvivalenten beregnes. Lad os se på et eksempel. Eksempel 5 En Cs-137 kilde har en aktivitet på A = 8,51 Bq. Katrine, som vejer 6 kg, befinder sig tæt på denne kilde i 2 timer. Så tæt, at hun bliver ramt af 5% af strålingen. Antag, at 75% af den stråling, der rammer hende, bliver absorberet. Hvor stor en absorberet dosis modtager Katrine? Hvor stor er dosisækvivalent? Løsning: Antal γ-kvanter udsendt: Da 2 timer er et meget lille tidsrum i sammenligning med Cs-137 s halveringstid på 3 år, så behøver vi ikke tage henfaldsloven og afsnit 7 i 7 brug. Vi kan antage, at kildens aktivitet konstant er lig med 8,51 Bq i de to timer. 7 Dette fortæller os, at kilden konstant udsender 8,51 γ-kvanter hvert sekund. Da der 7 11 går 36 sekunder på en time, udsendes dermed 72sek 8,51 Bq = 6,11 gammakvanter. 11 1,5 6,11 = 3,11 gam- Antal γ-kvanter, som rammer: 5% rammer, så svaret er makvanter. 7 Antal γ-kvanter, der rammer og absorberes: 75% af de kvanter, som rammer, absorberes, 1 1 så vi får:,75 3,11 = 2,31 gammakvanter. Energi af hvert γ-kvant: Ved vi allerede fra eksempel 4 er lig med,66 MeV, hvilket omregnet til enheden Joule er,66mev =,661 1,621 J = 1,57 1 J. 2

21 Energi af alle γ-kvanter, som absorberes: Vi ganger blot antallet af absorberede kvanter 1 13 med energien af 1 kvant: 2,31 1,57 1 J =,24J. Da Katrine vejer 6 kg, fås følgende absorberede dosis: D E m,24 J 6 kg abs = = = =,4Gy,4mGy Da kvalitetsfaktoren for gammastråling er 1, fås dosisækvivalent: H = Q D = 1,4mGy =,4mSv Dette er ikke nogen speciel stor dosis. Afstandskvadratloven Hvis en radioaktiv kilde kan betragtes som punktformig, så aftager strålingsintensiteten med kvadratet på afstanden fra kilden. Det betyder for eksempel, at hvis man bevæger sig ud i den dobbelte afstand, så reduceres strålingen til 1/4 af det oprindelige. 21

22 12. Forholdsregler mod bestråling Den internationale organisation, ICRP, har opstillet en række regler for arbejde med radioaktiv stråling. Organisationen anbefaler, at den årlige ækvivalentdosis for enkeltpersoner ikke overstiger 5 msv. For folk, som arbejder med radioaktivitet, for eksempel atomfysikere, sættes grænsen dog ved 5 msv pr. år. I omgangen med radioaktiv stråling kan nævnes tre kodeord: Afstand Tid Hold afstand til radioaktive kilder. Se blandt andet afstandskvadratloven ovenfor. Hvis aktiviteten er konstant, så er den modtagne dosis proportional med tiden, man er udsat for strålingen. Begræns derfor tiden! Afskærmning Afskærmning kan kraftigt reducere den modtagne stråling, jvf. afsnit 9. Man bør være særlig påpasselig med ikke spise eller på anden måde indtage radioaktive stoffer, da det er sværere at gardere sig mod indre stråling. Her kan man være nødsaget til at vente på en biologisk udskillelse eller vente på, at alle de radioaktive kerner er henfaldet. α-stråling kan gøre særlig stor skade ved indtagelse! Langtidsvirkninger ved lavere doser Ved lave strålingsdoser mærker personen ikke noget. Risikoen for at få kræft på et senere tidspunkt er dog øget. Det er imidlertid meget svært at forudsige, hvor meget sandsynligheden for cancer er forøget. Akutte strålingsskader Akut strålesyge opstår ved en kortvarig og stor ækvivalentdosis på 1 Sv = 1 msv. Det er især de bloddannende organer og tarmenes slimhinder, som skades. Efter få timer bliver den ramte dårlig med kvalme og opkastninger. Dagen efter føler han sig rask igen, men bliver syg igen efter 2-3 uger. Antallet af blodlegemer er faldet stærkt og kroppens modstandskraft mod infektioner er nedsat. Personen bliver dog normalt rask igen efter nogen tid. Ved 3 Sv dør halvdelen efter yderligere et par uger. Ved 5 Sv dør næsten alle. 22

23 13. Fission Det har vist sig, at kerner af visse tunge grundstoffer kan spaltes i mindre dele, hvorved der frigøres energi. En sådan kernespaltning kaldes fission. Dette fænomen blev først opdaget i 1939 af de to fysikere Hahn og Strassman. De bombarderede uran med neutroner, og efter omhyggelige kemiske analyser kom de frem til, at der var blevet skabt en radioaktiv isotop af barium. Senere opdagede man også krypton. Fysikerne Meitner og Frisch tolkede resultaterne korrekt: Uran-235 var blevet spaltet i to massive dele, kaldet spaltningsfragmenter. Siden dengang har man gjort mange flere erfaringer. Blandt andet viser det sig, at nogle kerner godt kan undergå spontan fission, men dette er en sjælden begivenhed. Normalt skal kernerne først bombarderes med neutroner. Det har vist sig, at U-238 skal rammes af hurtige neutroner for at en fission kan foregå, mens U-235 skal have langsomme neutroner. For U-235 s vedkommende, så kan for eksempel følgende spaltninger foregå: (14) U + 1 n 236 * 92 U Ba Kr n (15) U + 1 n 236 * 92 U Xe Sr n men også andre fragmenter kan tænkes. Den sidstnævnte proces har jeg illustreret nedenfor: En neutron skydes ind imod urankernen. Neutronen optages, og en der opstår en såkaldt compound-kerne: U*-136. Den er i en meget energirig og ustabil tilstand, og kernen spaltes i to ca. lige store dele næsten øjeblikkeligt. Samtidigt skabes der 2 nye neutroner. Fissionsfragmenterne fra fissionsprocesser vil altid have for mange neutroner i forhold til protoner. De vil derfor skille sig af med nogle af neutronerne gennem en serie af β-henfald, indtil en stabil kerne er opnået. Overskuddet af neutroner forklarer i øvrigt også, hvorfor 2 eller 3 neutroner frigives under selve fissionsprocessen. Niels Bohr sammenlignede kernen med en væskedråbe, hvor overfladespændingen er et billede på kernekræfterne, der forsøger at holde sammen på kernens bestanddele. I den ustabile fase med compoundkernen er dråben i voldsom bevægelse og på et tidspunkt deles dråben i to, da overfladespændingen ikke længere kan holde sammen på dråben U n Ba U* n Kr n

24 14. Masse og energi to sider af samme sag En af de største fysikere igennem tiderne var den tyske fysiker Albert Einstein ( ). Han viste ud fra meget generelle overvejelser, at masse og energi er nært forbundne. Enhver masse m svarer nemlig til en energi E, efter følgende formel: E = m c2 (16) hvor c er lysets hastighed. Det viser sig, at summen af masserne af de protoner og neutroner, som udgør kernen, er større end massen af selve kernen. Forskellen i masse betegnes massedefekten. Man kan forklare den forøgede masse ved at sige, at energi er blevet til masse. Det koster energi at løsrive kernens bestanddele fra hinanden, nemlig kernens såkaldte bindingsenergi. Til gengæld har man fået mere masse ud af det. På tilsvarende måde får man energi foræret, når de enkelte protoner og neutroner samles til en kerne. For at beregne den energi, som udvikles ved en fissionsproces, kan man, som illusteret på figuren på næste side, forestille sig indskudt et tænkt mellemstadium, hvor alle nukleonerne er skilt ad. Det samlede energiregnskab fremgår af nedenstående regning. Der frigives altså 185 MeV ved denne kernespaltning! Energi frigjort ved fissionsproces (15) Det kan vi gøre direkte ved hjælp af bindingsenergierne, som kan slås op i en databog: Energitab ved at spalte U-235: Energigevinst ved at samle Sr-94: Energigevinst ved at samle Xe-14: Samlet energigevinst ved fission: MeV + 88 MeV MeV MeV U Sr Xe 1 n n +88 MeV MeV MeV 24 1 n

25 15. Kædereaktioner Ved hver spaltning af en urankerne frigøres der 2-3 neutroner. De kan bruges til at bombardere andre urankerner med. Det viser sig, at ikke alle de frigivne neutroner skaber fission, selv om de rammer en anden urankerne. Der kan nemlig ske tre ting: a) Neutronen spredes på urankernen, dvs. neutronen fortsætter efter mødet, dog ofte med reduceret energi. b) Neutronen absorberes i urankernen, men bliver der (kaldes indfangning), hvorefter kernen efterhånden vil henfalde under udsendelse af gamma-og betastråling. c) Neutronen absorberes og forårsager fission. Afgørende for at en kædereaktion kan foregå er, at der for det første er tilstrækkelig med uran tilstede: man skal have nået den kritiske masse, som for U-235 er ca. 5 kg. Men tilfælde c) ovenfor skal også ske ofte nok. Det viser sig imidlertid, at neutronens energi, og dermed hastighed, har kraftig indflydelse på sandsynlighederne for de tre processer ovenfor. Hvilken isotop, U-238 eller U-235, man har med at gøre er også væsentligt. For at gøre en lang forklaring kort, så viser det sig, at man kan sætte en kædereaktion i gang, hvis man anvender en moderator i forbindelse med naturligt uran (til atomreaktor) eller hvis man beriger uranen, dvs. forøger den procentvise andel af U-235, der forekommer i naturligt forekommende uran (til atombombe). En moderator er et stof, som er i stand til at sænke neutronernes hastighed. 25

26 26

27 27

28 Opgaver I denne opgavesektion har jeg nummereret opgaverne, så det afsnit, de hører til, står foran kommaet. Opgave 6.3 er altså opgave 3 til afsnit 6. Opgave 6.1 Opskriv henfaldet for nedenstående radioaktive kerner. Angiv om datterkernen er stabil. Hvis datterkernen ikke er stabil, skal du ikke udregne de efterfølgende henfald. a) 9 39 Y b) Cs c) 86Rn d) 92U e) 84 Po f) 14 6 C Opgave 6.2 Opskriv henfaldet for nedenstående radioaktive kerner. Angiv om datterkernen er stabil. Hvis datterkernen ikke er stabil, skal du ikke udregne de efterfølgende henfald. a) Am b) Bi c) 94Pu d) 9 Th Opgave 6.3 Isotopen Ra giver anledning til kaskadehenfald, dvs. en række af henfald. Opskriv samtlige henfald i kæden. Gå ud fra, at Ra ikke giver spontan fission! Hvad er det stabile slutprodukt? Opgave 6.4 Der er også mulighed for andre typer henfald end dem, der er nævnt i hovedteksten. Der + er noget, der hedder β -henfald. Her udsendes elektronens antipartikel, den såkaldte positron. Den har ladning +1 og vi vil betegne den 1e. I stedet for en antineutrino, som i tilfældet med et almindelig β -henfald, udsendes her en neutrino. Her er et eksempel på en β -proces: P Si + e + ν a) Hvad tror du, at der sker inden i kernen ved β -proces?(analogt til (1) side 8). b) Opskriv henfaldet for Na. Opgave 6.5 Opskriv de første 4 reaktioner i henfaldskæden for plutonium-isotopen Pu. 28

29 Opgave 7.1 Halveringstiden for Cs-137 er 3 år. Hvor stor en procentdel af de radioaktive kerner vil der være tilbage i kilden efter a) 3 år? b) 6 år? c) 155 år? Hjælp: Til de to første spørgsmål: Tænk logisk! Til c): Benyt formel (9) side 13 (henfaldsloven), idet du sætter A til 1%. Opgave 7.2 Halveringstiden for Cs-137 er 3 år. Hvor lang tid går der, før aktiviteten af en Cs-137 kilde er nede på 2% af dens aktivitet ved start? Opgave 7.3 Aktiviteten for et radioaktivt stof aftager med 9% på 15,95 minutter. Hvad er stoffets halveringstid? Opgave 7.4 Sr-9 er beta-radioaktiv med en halveringstid på 29 år. Benyt henfaldsloven (9) side 13 til at løse følgende spørgsmål, idet du sætter A til 1%. a) En kilde har ligget i 5 år. Hvad er dens styrke reduceret til, målt i procent? b) Samme spørgsmål, når der er gået 1 år. Opgave 7.5 Grunden til, at der stadig er naturlige forekomster af uran-isotoperne U og 92 U tilbage på Jorden er, at de har meget lange halveringstider. Førstnævnte har en halveringstid 8 9 på 7,41 år og sidstnævnte 4,4681 år. Jorden antages i det følgende at være at 9 være ca. 4,51 år gammel. Beregn hvor mange procent forekomsten af de to isotoper er reduceret med i løbet af de 9 4,51 år. Der var altså mere af de to uran-isotoper ved Jordens skabelse! Opgave 7.6 Isotopen 14 6C (kulstof-14) er en radioaktiv kulstof-isotop. Den benyttes til at datere arkæologiske fund med. Sagen er nemlig, at levende organismer indeholder kulstof. Det meste er af isotopen 12 6C, som ikke er radioaktivt. En ganske lille fast del af den naturligt forekommende kulstof er imidlertid kulstof-14, og den har en halveringstid på 573 år. Når en levende organisme dør, stopper det med at optage kulstof fra omgivelserne, dvs. den lille del 14 6 C, som allerede er i organismen, henfalder. Hvor stor en procentdel af 14 6 C er henfaldet efter 1 år? Hjælp: Benyt formel (9) side 13 (henfaldsloven). 29

30 Opgave 8.1 a) Hvorfor er radioaktiv bestråling farligt for mennesker og dyr? Hjælp: Se side 14. b) Hvilke organer er mest udsatte for radioaktiv stråling. Søg eventuelt på Internettet. c) Nævn nogle sammenhænge, hvor radioaktivitet kan udnyttes positivt. Opgave 9.1 Halveringstykkelsen for gammastråling med energien 5 kev er 4 mm i bly. Hvor stor en brøkdel af gammakvanterne slipper igennem en blyafskærmning på 2 cm? Opgave 9.2 Isotopen Cs udsender gammastråling med energi,66 MeV. a) Benyt kurven på side 16 til at aflæse halveringstykkelsen for gammastrålingen i vand. b) Hvor mange procent vil strålingen blive reduceret til, hvis der afskærmes med et vandlag på,5 meters tykkelse? Hjælp: Benyt formel (11) side 16 med I = 1%. Opgave 9.3 Ifølge databogen udsender den radioaktive isotop thorium-232 gammakvanter med en energi på,59 MeV. a) Bestem udfra figuren på side 16 i noten halveringstykkelsen for ovenstående γ-stråling i henholdsvis bly og atmosfærisk luft. b) Hvor stor en del af strålingen vil passere igennem en blyafskærmning på 2 cm? Hjælp: Benyt formel (11) side 16 med I = 1%. Opgave 9.4 Den radioaktive isotop Ra-226 udsender γ-stråling med energien,187 MeV. b) Aflæs halveringstykkelsen for gammastrålingen i vand på side 16 i noten. c) Hvor stor en procentdel slipper igennem et vandlag på 1 cm? Opgave 9.5 En patient gennemlyses med 1 kev røntgenstråling. Patienten er 2 cm tyk, og vi antager, at den pågældende består af vand. a) Find halveringstykkelsen ved at bruge figuren på side 16 i noten (røntgenstråling er elektromagnetisk stråling ligesom gammastråling!). b) Hvor mange procent af strålingens intensitet kommer ud på den anden side af patienten? 3

31 Opgave 1.1 a) Hvad er baggrundsstråling for noget, og hvorfra stammer det? b) Hvad er de vigtigste bidragsydere til baggrundsstrålingen? Opgave 1.2 På hvilken måde kan radon være skadeligt? Benyt eventuelt Internettet! Opgave 11.1 Det farligste stof, som dannes ved en atombombesprængning er 9 38Sr. Denne isotop af strontium falder ned over markerne og optages af køerne, når de spiser græs. Derefter fås vi stoffet i os, når vi drikker mælk. Dets farlighed skyldes, at det kemisk ligner calcium, hvilket betyder, at strontium-atomerne kan gå ind og erstatte calcium-atomerne i knoglerne. Her kan det gøre stor skade, idet det kan ødelægge knoglemarven. Hermed hindres dannelsen af de røde blodlegemer, og man kan få kræft (leukæmi). a) Opskriv henfaldet for 9 38Sr ved brug af kernekortet. Som du (forhåbentligt) opdagede, er isotopen beta-radioaktiv, og hver beta-partikel har en energi på,55 MeV. Lad os sige, at en person har indtaget strontium med en aktivitet 5 5 på 6,21 Bq, dvs. hver sekund udsender det radioaktive materiale 6,21 beta-partikler. Isotopens halveringstid er 29 år, og da den er meget større end 1 år, så vil kildens styrke stort set ikke aftage i løbet af en bestrålingstid på 1 år. Det betyder, at vi kan antage, 5 at kilden bliver ved med at udsende 6,21 beta-partikler i sekundet i denne periode. b) Hvor mange beta-partikler udsendes i løbet af 1 år? c) Hvor stor en energi har alle disse beta-partikler fra spørgsmål b)? Hjælp: Husk, at 1 13 betapartikel har energien,55 MeV og at 1MeV = 1,621 J. Med spørgsmål c) haves energien af alle de partikler, som udsendes i løbet af 1 år. Da det radioaktive stof er optaget i kroppen, antager vi, at 1% af de udsendte beta-partikler rammer personen. Vi antager desuden at 1% absorberes. Personen oplyses at veje 7 kg. d) Bestem den absorberede dosis på 1 år. e) Bestem dosisækvivalent. f) Hvor mange procent vil aktiviteten være aftaget til efter 1 år? Hjælp: Her skal du bruge formel (9) side 13 (henfaldsloven). Sæt A til 1%. 31

32 Opgave 11.2 Radium er et af de første radioaktive stoffer, som blev fundet i øvrigt af ægteparret Marie og Pierre Curie! I bare et gram af isotopen Ra henfalder hvert sekund 37 milliarder kerner. Radium er et blødt sølvhvidt metal. Hvis man får radium ind i sig, så ender det til sidst i knoglerne, hvor det optages i stedet for calcium. I knoglerne ødelægger den kraftige stråling produktionen af røde blodlegemer, så man får leukæmi. Lad os sige, at en person har fået 1 µg Ra. Da 1 µg er en milliontedel af et gram, får vi af ovenstående oplysning, at det har en aktivitet på 37Bq, dvs. at der udsendes 37 radioaktive partikler pr. sekund. a) Vis, at isotopen er α-radioaktiv og opskriv henfaldet. Det oplyses, at energien af α-partiklen er 4,78 MeV. Isotopens halveringstid er 162 år, og da den er meget større end 1 år, så vil kildens styrke stort set ikke aftage i løbet af en bestrålingstid på 1 år. Det betyder, at vi kan antage, at kilden bliver ved med at udsende 37 α-partikler i sekundet i denne periode. b) Hvor mange partikler udsendes i løbet af 1 år? c) Bestem hvor meget energi, der udsendes i løbet af et år. Hjælp: Hver partikel udsender en energi på 4,78 MeV og 1MeV = 1,621 J. 13 Det antages, at 1% af de udsendte α-partikler rammer og 1% absorberes. Desuden oplyses det, at personen vejer 9 kg. d) Bestem den absorberede dosis. e) Bestem dosisækvivalent. f) Er det en betydelig årlig dosis? (se afsnit 12). Bemærkning: Lige efter 1. verdenskrig opdagede man, hvor farligt radium er. På en fabrik havde nogle kvinder malet selvlysende radiummaling på urvisere, og efter 1-15 år døde mange af kvinderne af knoglekræft og blodmangel. Kvinderne havde ofte spidset penslerne med læberne, hvorved de havde fået radium i kroppen! Opgave 11.3 En svulst på,5 kg bestråles med gammastråling i 5 sekunder. Kilden er en Co-enhed, 12 der bestråler svulsten med 3,1 kvanter (fotoner) pr. sekund. Gennemsnitsenergien af kvanterne er 1,25 MeV. Antag, at 1/4 af den udsendte energi absorberes i svulsten. a) Hvor stor er den absorberede dosis i svulsten? b) Hvor stor er dosisækvivalent? 32

33 Opgave 11.4 En kvinde skal have bestrålet livmoderhalsen med en radiumkilde, som indeholder 4 mg 1 Ra gram Ra-226 har aktiviteten 3,71 Bq. Bestrålingen varer i fire dage. Vi antager, at 1 af den afgivne stråling afsættes i det syge væv, som vejer 12 g. 4 b) Hvor stor er den absorberede dosis? c) Hvor stor er dosisækvivalent? Opgave 11.5 En 7 kg tung person bliver udsat for en helkrops dosis α-stråling med energien 4,78 12 MeV. I alt 2,31 partikler bliver absorberet. a) Hvor stor er den absorberede dosis? b) Hvor stor er dosisækvivalenten? Kommentar 11.6 Et andet af de farlige radioaktive isotoper ved atomuheld eller ved atombombesprængninger er Cs. Rent kemisk ligner cæsium kalium så meget, at kroppen ikke kan skelne de to stoffer fra hinanden. Begge stoffer optages i kroppens muskler. Ved Tjernobyl-ulykken spredtes radioaktivt materiale med vinden. En del endte i Skandinavien. Rensdyr her fik cæsium i kroppen via den lav, de spiste. Derfor opstillede man grænser for hvor meget stråling rensdyrkødet måtte afgive pr. kg. Heldigvis udskiller kroppen en ret stor del af det radioaktive cæsium, før det når at henfalde. Alligevel kan det være en betydelig kilde til radioaktiv bestråling! Opgave 13.1 En mulighed for en fissionsproces er, at en Ukerne rammes af 1 neutron og splittes i to større dele, hvor det ene er 88 35Br, under udsendelse af 4 neutroner. Hvad er det andet spaltningsprodukt? Opgave 14.1 Hvor meget energi er der i 1 kg vand ifølge Einsteins formel (16) side 23? Danmarks 18 totale energiforbrug på 1 år ligger på lidt under 11 J. Hvor mange kg vand skulle benyttes, hvis al energien kunne udnyttes? Opgave 14.2 Bestem den energi, der frigives i fissionsproces (14) side 23. Bindingsenergierne for U, 56Ba og 36Kr er henholdsvis 1784 MeV, 119 MeV og 767 MeV. 33

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen Strålingsintensitet Skal det fx afgøres hvor skadelig en given radioaktiv stråling er, er det ikke i sig selv relevant at kende aktiviteten af kilden til strålingen. Kilden kan være langt væk eller indkapslet,

Læs mere

Kernereaktioner. 1 Energi og masse

Kernereaktioner. 1 Energi og masse Kernereaktioner 7 1 Energi og masse Ifølge relativitetsteorien gælder det, at når der tilføres energi til et system, vil systemets masse altid vokse. Sammenhængen mellem energitilvæksten og massetilvækstener

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Indholdsfortegnelse Kernefysik... 5 1. Facts om kernen i atomet... 5 2. Gammastråling og energiniveauer

Læs mere

Partikler med fart på Ny Prisma Fysik og kemi 9 Skole: Navn: Klasse:

Partikler med fart på Ny Prisma Fysik og kemi 9 Skole: Navn: Klasse: Partikler med fart på Ny Prisma Fysik og kemi 9 Skole: Navn: Klasse: Opgave 1 Et atom har oftest to slags partikler i atomkernen. Hvad hedder partiklerne? Der er 6 linjer. Sæt et kryds ud for hver linje.

Læs mere

Afleveringsopgaver i fysik

Afleveringsopgaver i fysik Afleveringsopgaver i fysik Opgavesættet skal regnes i grupper på 2-3 personer, helst i par. Hver gruppe afleverer et sæt. Du kan finde noget af stoffet i Orbit C side 165-175. Opgave 1 Tegn atomerne af

Læs mere

Marie og Pierre Curie

Marie og Pierre Curie N Kernefysik 1. Radioaktivitet Marie og Pierre Curie Atomer består af en kerne med en elektronsky udenom. Kernen er ganske lille i forhold til elektronskyen. Kernens størrelse i sammenligning med hele

Læs mere

Kernefysik og dannelse af grundstoffer. Fysik A - Note. Kerneprocesser. Gunnar Gunnarsson, april 2012 Side 1 af 14

Kernefysik og dannelse af grundstoffer. Fysik A - Note. Kerneprocesser. Gunnar Gunnarsson, april 2012 Side 1 af 14 Kerneprocesser Side 1 af 14 1. Kerneprocesser Radioaktivitet Fission Kerneproces Fusion Kollisioner Radioaktivitet: Spontant henfald ( af en ustabil kerne. Fission: Sønderdeling af en meget tung kerne.

Læs mere

Marie og Pierre Curie

Marie og Pierre Curie N Kernefysik 1. Radioaktivitet Marie og Pierre Curie Atomer består af en kerne med en elektronsky udenom. Kernen er ganske lille i forhold til elektronskyen. Kernens størrelse i sammenligning med hele

Læs mere

Opgaver til udvalgte kapitler FOR ALLE. Niels Bohrs atomteori 1913 2013. Matematik. Geniet. modig, stærk og fordomsfri. Matematik

Opgaver til udvalgte kapitler FOR ALLE. Niels Bohrs atomteori 1913 2013. Matematik. Geniet. modig, stærk og fordomsfri. Matematik Opgaver til udvalgte kapitler Niels Bohrs atomteori 1913 2013 B A K S N E D I V NATUR FOR ALLE Geniet modig, stærk og fordomsfri 1 1 1. Fysikken før 1913 status og indhold Opgave 1.1 Har du læst teksten?

Læs mere

Nr. 6-2007 Grundstoffernes historie Fag: Fysik A/B/C Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, november 2008

Nr. 6-2007 Grundstoffernes historie Fag: Fysik A/B/C Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, november 2008 Nr. 6-007 Grundstoffernes historie Fag: Fysik A/B/C Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, november 008 Spørgsmål til artiklen. Hvilket grundstof, mente Hans Bethe, var det

Læs mere

Atom og kernefysik Radioaktive atomkerner. Hvor stort er et atom? Niels Bohr. Elementarpartikler. Opdagelsen af de radioaktive atomkerner

Atom og kernefysik Radioaktive atomkerner. Hvor stort er et atom? Niels Bohr. Elementarpartikler. Opdagelsen af de radioaktive atomkerner Atom og kernefysik Radioaktive atomkerner Opdagelsen af de radioaktive atomkerner På jorden har de radioaktive stoffer altid eksisteret. Først opdagende Wilhelm Conrad Röntgen (845-923) røntgenstrålerne

Læs mere

Hvor mange neutroner og protoner er der i plutonium-isotopen

Hvor mange neutroner og protoner er der i plutonium-isotopen Atomet Tjek din viden om atomet. 3.1 4.1 Atommasse måles i Skriv navnene på partiklerne i atomet. Hvad angiver tallene i den kernefysiske skrivemåde? 4 2 He 13 6 Tegn atomkernen til kulstof-isotopen C.

Læs mere

Fysikforløb nr. 6. Atomfysik

Fysikforløb nr. 6. Atomfysik Fysikforløb nr. 6. Atomfysik I uge 8 begynder vi på atomfysik. Derfor får du dette kompendie, så du i god tid, kan begynde, at forberede dig på emnet. Ideen med dette kompendie er også, at du her får en

Læs mere

Henrik Loft Nielsen og Helge Knudsen HELSEFYSIK

Henrik Loft Nielsen og Helge Knudsen HELSEFYSIK Henrik Loft Nielsen og Helge Knudsen HELSEFYSIK Institut for Fysik og Astronomi Aarhus Universitet 2002 2 Helsefysik INDHOLD: side 1. Indledning... 3 2. Strålingskilder... 5 2.1 Stråling fra radioaktive

Læs mere

Opdagelsen af radioaktivitet

Opdagelsen af radioaktivitet Opdagelsen af radioaktivitet I 1896 opdagede franskmanden Henri Becquerel, at mineraler bestående af Uransalte udsendte en usynlig stråling, der kunne påvirke de lysfølsomme plader, der anvendtes til fotografering,

Læs mere

Opgaver til: 9. Radioaktivitet

Opgaver til: 9. Radioaktivitet Opgaver til: 9. Radioaktivitet 1. Opskriv henfaldskemaet for α-henfaldet af: 229 90 Th 92 U 86 Rn 2. Opskriv henfaldskemaet for β - -henfaldet af: 209 82 Pb 10 4 Be 79 Au 3. Opskriv henfaldskemaet for

Læs mere

TEORETISKE MÅL FOR EMNET:

TEORETISKE MÅL FOR EMNET: TEORETISKE MÅL FOR EMNET: Kende forskel på grundstof, ion og isotop samt kunne redegøre for, hvori forskellene består Kende de forskellige strålingstyper (α, β, γ og evt. ε) samt kunne redegøre for, hvori

Læs mere

Strålingsbeskyttelse ved accelerationsanlæg

Strålingsbeskyttelse ved accelerationsanlæg Medicinsk fysik p.1/21 Medicinsk fysik Strålingsbeskyttelse ved accelerationsanlæg Søren Weber Friis-Nielsen 3. maj 2005 weber@phys.au.dk Indhold Medicinsk fysik p.2/21 Overblik over strålingstyper Doser

Læs mere

A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi

A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi ATTENUATION AF RØNTGENSTRÅLING Erik Andersen, ansvarlig fysiker CIMT Medico, Herlev, Gentofte, Glostrup Hospital Attenuation af røntgenstråling

Læs mere

Eksempler på differentialligningsmodeller

Eksempler på differentialligningsmodeller 1 Indledning Matematisk modellering er et redskab, som finder anvendelse i et utal af både videnskabelige og samfundsmæssige sammenhænge. En matematisk model søger at knytte en sammenhæng mellem et ikke-matematisk

Læs mere

Til at beregne varmelegemets resistans. Kan ohms lov bruges. Hvor R er modstanden/resistansen, U er spændingsfaldet og I er strømstyrken.

Til at beregne varmelegemets resistans. Kan ohms lov bruges. Hvor R er modstanden/resistansen, U er spændingsfaldet og I er strømstyrken. I alle opgaver er der afrundet til det antal betydende cifre, som oplysningen med mindst mulige cifre i opgaven har. Opgave 1 Færdig Spændingsfaldet over varmelegemet er 3.2 V, og varmelegemet omsætter

Læs mere

Grundlæggende om radioaktivitet, dosis og lovgivning. Thomas Levin Klausen Rigshospitalet 27 oktober 2005 og Oprindeligt: Søren Holm

Grundlæggende om radioaktivitet, dosis og lovgivning. Thomas Levin Klausen Rigshospitalet 27 oktober 2005 og Oprindeligt: Søren Holm Grundlæggende om radioaktivitet, dosis og lovgivning. Thomas Levin Klausen Rigshospitalet 27 oktober 2005 og Oprindeligt: Søren Holm To slags stråling: Partikler Fotoner (hvor kommer fotonerne fra?) Hvor

Læs mere

SDU og DR. Sådan virker en atombombe... men hvorfor er den så kraftig? + + Atom-model: - -

SDU og DR. Sådan virker en atombombe... men hvorfor er den så kraftig? + + Atom-model: - - SDU og DR Sådan virker en atombombe... men hvorfor er den så kraftig? Atom-model: - - - + + - + + + + + - - - Hvad er et atom? Alt omkring dig er bygget op af atomer. Alligevel kan du ikke se et enkelt

Læs mere

Rækkevidde, halveringstykkelse og afstandskvadratloven

Rækkevidde, halveringstykkelse og afstandskvadratloven Rækkevidde, halveringstykkelse og afstandskvadratloven Eval Rud Møller Bioanalytikeruddannelsen VIA University College Marts 008 Program Indledende kommentarer. Rækkevidde for partikelstråling Opbremsning

Læs mere

Atomer er betegnelsen for de kemisk mindste dele af grundstofferne.

Atomer er betegnelsen for de kemisk mindste dele af grundstofferne. Atomets opbygning Atomer er betegnelsen for de kemisk mindste dele af grundstofferne. Guldatomet (kemiske betegnelse: Au) er f.eks. det mindst stykke metal, der stadig bærer navnet guld, det kan ikke yderlige

Læs mere

Grundlæggende helsefysiske begreber og principper

Grundlæggende helsefysiske begreber og principper Risø-R-646(DA) Grundlæggende helsefysiske begreber og principper Per Hedemann Jensen Forskningscenter Risø, Roskilde December 1992 Risø-R-646(DA) Grundlæggende helsefysiske begreber og principper Per Hedemann

Læs mere

Kvantefysik. Objektivitetens sammenbrud efter 1900

Kvantefysik. Objektivitetens sammenbrud efter 1900 Kvantefysik Objektivitetens sammenbrud efter 1900 Indhold 1. Formål med foredraget 2. Den klassiske fysik og determinismen 3. Hvad er lys? 4. Resultater fra atomfysikken 5. Kvantefysikken og dens konsekvenser

Læs mere

HVAD ER RADIOAKTIV STRÅLING

HVAD ER RADIOAKTIV STRÅLING 16. Radioaktiv stråling kaldes i videnskabelige kredse Joniserende stråling Stråling som påvirker alt stof ved at danne joner, som er elektrisk ladede atomer eller molekyler. Joniserende stråling skader

Læs mere

Leverandørbrugsanvisning. for. Risø Demonstrationskilder

Leverandørbrugsanvisning. for. Risø Demonstrationskilder Leverandørbrugsanvisning for Risø Demonstrationskilder Forskningscenter Risø Hevesy Laboratoriet Frederiksborgvej 399 DK-4000 Roskilde 1. Introduktion Denne brugsanvisning gælder for alfa-, beta- og gammademonstrationskilder,

Læs mere

NATURLIG STRALING I BYGNINGER.

NATURLIG STRALING I BYGNINGER. NATURLIG STRALING I BYGNINGER. Overalt i vores omgivelser findes radioaktive stoffer, som udsender ioniserende stråling. Vores egen krop indeholder også radioaktive stoffer, og fra solen og verdensrummet

Læs mere

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Modtaget dato: (forbeholdt instruktor) Godkendt: Dato: Underskrift: Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Kristian Jerslev, Kristian Mads Egeris Nielsen, Mathias

Læs mere

Forløbet består 4 fagtekster, 19 opgaver og 10 aktiviteter. Derudover er der Videnstjek.

Forløbet består 4 fagtekster, 19 opgaver og 10 aktiviteter. Derudover er der Videnstjek. Radioaktivitet Niveau: 9. klasse Varighed: 11 lektioner Præsentation: I forløbet Radioaktivitet arbejdes der med den naturlige og den menneskeskabte stråling. Der arbejdes endvidere med radioaktive stoffers

Læs mere

Form bølgelængde ( frekvens (hertz = bølger/sekund)

Form bølgelængde ( frekvens (hertz = bølger/sekund) Ti fundamentale punkter 9. klasse elever skal lære om stråling Stråling er et af de emner som bedst viser sammenhængen mellem den fysiske og den kemiske del af faget fysik/kemi, såvel som den teoretiske

Læs mere

Protoner med magnetfelter i alle mulige retninger.

Protoner med magnetfelter i alle mulige retninger. Magnetisk resonansspektroskopi Protoners magnetfelt I 1820 lavede HC Ørsted et eksperiment, der senere skulle gå over i historiebøgerne. Han placerede en magnet i nærheden af en ledning og så, at når der

Læs mere

Strålings indvirkning på levende organismers levevilkår

Strålings indvirkning på levende organismers levevilkår Strålings indvirkning på levende organismers levevilkår Niveau: 7.-9. klasse Varighed: 8 lektioner Præsentation: I forløbet Strålingens indvirkning på levende organismer arbejdes der med, hvad bestråling

Læs mere

Dopplereffekt. Rødforskydning. Erik Vestergaard

Dopplereffekt. Rødforskydning. Erik Vestergaard Dopplereffekt Rødforskydning Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard 2012 Erik Vestergaard www.matematikfysik.dk 3 Dopplereffekt Fænomenet Dopplereffekt, som vi skal

Læs mere

Naturfag - naturligvis. 3. Vækstmodeller

Naturfag - naturligvis. 3. Vækstmodeller Naturfag - naturligvis af Kenneth Hansen 3. Vækstmodeller Verdens befolkning 14 12 10 8 6 4 2 0 0 10 20 30 40 50 År 1984-2034 I 1984 var verdensbefolkningen 4,7 mia. og voksede med 1,8% om året Hvornår

Læs mere

Syrer, baser og salte:

Syrer, baser og salte: Syrer, baser og salte: Salte: Salte er en stor gruppe af kemiske stoffer med en række fælles egenskaber I tør, fast form er de krystaller. Opløst i vand danner de frie ioner som giver vandet elektrisk

Læs mere

HALSE WÜRTZ SPEKTRUM FYSIK C

HALSE WÜRTZ SPEKTRUM FYSIK C HALSE WÜRTZ SPEKTRUM FYSIK C Atomkerner Atomkernen side 2 Radioaktive stråler side 3 Grundstofomdannelse ved α, β og γ stråling side 7 Radioaktivt henfald side 14 Fusion side 17 Anvendelse af radioaktiv

Læs mere

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning 49 6 Plasmadiagnostik Plasmadiagnostik er en fællesbetegnelse for de forskellige typer måleudstyr, der benyttes til måling af plasmaers parametre og egenskaber. I fusionseksperimenter er der behov for

Læs mere

Fysik øvelse 2. Radioaktivitet. Øvelsens pædagogiske rammer

Fysik øvelse 2. Radioaktivitet. Øvelsens pædagogiske rammer B.2.1 Radioaktivitet Øvelsens pædagogiske rammer Sammenhæng Denne øvelse knytter sig til fysikundervisningen på modul 6 ved Bioanalytikeruddannelsen. Fysikundervisningen i dette modul har fokus på nuklearmedicin

Læs mere

Big Bang Modellen. Varmestråling, rødforskydning, skalafaktor og stofsammensætning.

Big Bang Modellen. Varmestråling, rødforskydning, skalafaktor og stofsammensætning. Big Bang Modellen Varmestråling, rødforskydning, skalafaktor og stofsammensætning. Jacob Nielsen 1 Varmestråling spiller en central rolle i forståelsen af universets stofsammensætning og udvikling. Derfor

Læs mere

Hvad gør radon ved mennesker? Radon i danske bygningers indeluft. Lars Gunnarsen Statens Byggeforskningsinstitut

Hvad gør radon ved mennesker? Radon i danske bygningers indeluft. Lars Gunnarsen Statens Byggeforskningsinstitut Hvad gør radon ved mennesker? Radon i danske bygningers indeluft Lars Gunnarsen Statens Byggeforskningsinstitut Fra Sundhedsstyrelsens hjemmeside http://www.sst.dk/sundhed%20og%20forebyggelse/straalebeskyttelse

Læs mere

Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald

Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald Der findes mange situationer, hvor en bestemt størrelse ændres som følge af vekselvirkninger med

Læs mere

Hvordan blev Universet og solsystemet skabt? STEEN HANNESTAD INSTITUT FOR FYSIK OG ASTRONOMI

Hvordan blev Universet og solsystemet skabt? STEEN HANNESTAD INSTITUT FOR FYSIK OG ASTRONOMI Hvordan blev Universet og solsystemet skabt? STEEN HANNESTAD INSTITUT FOR FYSIK OG ASTRONOMI HVAD BESTÅR JORDEN AF? HVILKE BYGGESTEN SKAL DER TIL FOR AT LIV KAN OPSTÅ? FOREKOMSTEN AF FORSKELLIGE GRUNDSTOFFER

Læs mere

Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter.

Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter. Atomer, molekyler og tilstande 3 Side 1 af 7 Sidste gang: Elektronkonfiguration og båndstruktur. I dag: Bindinger mellem atomer og molekyler, idet vi starter med at se på de fire naturkræfter, som ligger

Læs mere

Atomfysik ATOMER OG ANDRE SMÅTING RADIOAKTIVITET RADIOAKTIVITET I BRUG ENERGI FRA KERNEN CAFE KOSMOS: RADIOAKTIVITET OG DIN KROP

Atomfysik ATOMER OG ANDRE SMÅTING RADIOAKTIVITET RADIOAKTIVITET I BRUG ENERGI FRA KERNEN CAFE KOSMOS: RADIOAKTIVITET OG DIN KROP KAPITEL 1 Atomfysik ATOMER OG ANDRE SMÅTING RADIOAKTIVITET RADIOAKTIVITET I BRUG ENERGI FRA KERNEN CAFE KOSMOS: RADIOAKTIVITET OG DIN KROP To vandrere fandt i 1991 et lig, der var dukket op under en smeltet

Læs mere

Vikar-Guide. Den elektriske ladning af en elektron er -1 elementarladning, og den elektriske ladning af protonen er +1 elementarladning.

Vikar-Guide. Den elektriske ladning af en elektron er -1 elementarladning, og den elektriske ladning af protonen er +1 elementarladning. Vikar-Guide Fag: Klasse: OpgaveSæt: Fysik/Kemi 9. klasse Atomernes opbygning 1. Fælles gennemgang: Eleverne skal løse opgaverne i små grupper på 2-3 personer. De skal bruge deres grundbog, og alternativt

Læs mere

Atomets bestanddele. Indledning. Atomer. Atomets bestanddele

Atomets bestanddele. Indledning. Atomer. Atomets bestanddele Atomets bestanddele Indledning Mennesket har i tusinder af år interesseret sig for, hvordan forskellige stoffer er sammensat I oldtiden mente man, at alle stoffer kunne deles i blot fire elementer eller

Læs mere

Brush-up Strålehygiejne Radiokemi og cyklotron 23/11/2015

Brush-up Strålehygiejne Radiokemi og cyklotron 23/11/2015 Brush-up Strålehygiejne Radiokemi og cyklotron 23/11/2015 Dagens program 12 15-12 45 Frokost 12 45-13 30 Introduktion. Lynkursus. Diverse observationer, anbefalinger 13 30-14 10 Gruppearbejder 14 10-15

Læs mere

Dosis og dosisberegninger

Dosis og dosisberegninger Dosis og dosisberegninger Forskellige dosisbegreber Røntgenstråling er ioniserende elektromagnetisk stråling. Når røntgenstråling propagerer gennem et materiale, vil vekselvirkningen mellem strålingen

Læs mere

Forløbet består af 5 fagtekster, 19 opgaver og 4 aktiviteter. Derudover er der Videnstjek.

Forløbet består af 5 fagtekster, 19 opgaver og 4 aktiviteter. Derudover er der Videnstjek. Atommodeller Niveau: 9. klasse Varighed: 8 lektioner Præsentation: I forløbet Atommodeller arbejdes der med udviklingen af atommodeller fra Daltons atomteori fra begyndesen af det 1800-tallet over Niels

Læs mere

Sæt GM-tællererne til at tælle impulser i 10 sekunder. Sørg for at alle kendte radioaktive kilder er placeret langt væk fra målerøret.

Sæt GM-tællererne til at tælle impulser i 10 sekunder. Sørg for at alle kendte radioaktive kilder er placeret langt væk fra målerøret. Forsøge med stråling fra radioaktive stoffer Stråling fra radioaktive stoffer. Den stråling, der kommer fra radioaktive stoffer, kaldes for ioniserende stråling. Den kan måles med en Geiger-Müler-rør koblet

Læs mere

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer Dansk Fysikolympiade 2007 Landsprøve Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar Prøvetid: 3 timer Opgavesættet består af 6 opgaver med tilsammen 17 spørgsmål. Svarene på de stillede

Læs mere

Folkeskolens afgangsprøve Maj-juni 2006 Fysik / kemi - Facitliste

Folkeskolens afgangsprøve Maj-juni 2006 Fysik / kemi - Facitliste Folkeskolens afgangsprøve Maj-juni 2006 1/25 Fk5 Opgave 1 / 20 (Opgaven tæller 5 %) I den atommodel, vi anvender i skolen, er et atom normalt opbygget af 3 forskellige partikler: elektroner, neutroner

Læs mere

Undersøgelse af lyskilder

Undersøgelse af lyskilder Felix Nicolai Raben- Levetzau Fag: Fysik 2014-03- 21 1.d Lærer: Eva Spliid- Hansen Undersøgelse af lyskilder bølgelængde mellem 380 nm til ca. 740 nm (nm: nanometer = milliardnedel af en meter), samt at

Læs mere

Eksponentiel regression med TI-Nspire ved transformation af data

Eksponentiel regression med TI-Nspire ved transformation af data Eksponentiel regression med TI-Nspire ved transformation af data En vigtig metode til at få overblik over data er at tranformere dem, således at der fremkommer en lineær sammenhæng. Ordet transformation

Læs mere

Nr. 4-2002 Den lille neutron Fag: Fysik A/B Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, juli 2007

Nr. 4-2002 Den lille neutron Fag: Fysik A/B Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, juli 2007 Nr. 4-2002 Den lille neutron Fag: Fysik A/B Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, juli 2007 Spørgsmål til artiklen 1. Hvad var de historiske argumenter for forudsigelsen af

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

Fysik A. Studentereksamen

Fysik A. Studentereksamen Fysik A Studentereksamen 2stx131-FYS/A-03062013 Mandag den 3. juni 2013 kl. 9.00-14.00 Side 1 af 10 Side 1 af 10 sider Billedhenvisninger Opgave 1 http://www.flickr.com/photos/39338509 @N00/3105456059/sizes/o/in/photostream/

Læs mere

Manhattan Projektet. 1. Grundlæggende kernefysik. Atombomben 1945. 1. Grundlæggende kernefysik. 1. Grundlæggende kernefysik. AT1 i 1z, marts 2011

Manhattan Projektet. 1. Grundlæggende kernefysik. Atombomben 1945. 1. Grundlæggende kernefysik. 1. Grundlæggende kernefysik. AT1 i 1z, marts 2011 Manhattan Projektet AT1 i 1z, marts 2011 Manhattan Projektet Foregik under 2. verdenskrig Projektet mål var at opfinde og fremstille atombomben Skulle være før tyskerne! Fysikere, som var flygtet fra nazisterne

Læs mere

Opgaver i atomer. c) Aflæs atommassen for Mg i det periodiske system eller på de udskrevne ark, og skriv det ned.

Opgaver i atomer. c) Aflæs atommassen for Mg i det periodiske system eller på de udskrevne ark, og skriv det ned. Opgaver i atomer Opgave 1 Tegn atomerne af nedenstående grundstoffer på samme måde, som det er vist for andre atomer i timen. Angiv protoner med plusser. Vedrørende elektroner: Husk, at der maksimalt kan

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

KOSMOS GRUNDBOG C ERIK BOTH HENNING HENRIKSEN

KOSMOS GRUNDBOG C ERIK BOTH HENNING HENRIKSEN KOSMOS GRUNDBOG C ERIK BOTH HENNING HENRIKSEN Indhold KAPITEL 1 Atomfysik 6 Atomer og andre småting 8 Radioaktivitet 13 Radioaktivitet i brug 18 Energi fra kernen 20 Cafe Kosmos: Radioaktivitet og din

Læs mere

Standardmodellen. Allan Finnich Bachelor of Science. 4. april 2013

Standardmodellen. Allan Finnich Bachelor of Science. 4. april 2013 Standardmodellen Allan Finnich Bachelor of Science 4. april 2013 Email: Website: alfin@alfin.dk www.alfin.dk Dette foredrag Vejen til Standardmodellen Hvad er Standardmodellen? Basale begreber og enheder

Læs mere

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet Projekt om medicindosering Fra http://www.ruc.dk/imfufa/matematik/deltidsudd_mat/sidefagssupplering_mat/rap_medicinering.pdf/ Lav mindst side 1-4 t.o.m. Med 7 Ar b ejd ssed d el 0 Salt 1 Forestil Jer at

Læs mere

Røntgenstråling. Baggrund. Atomers struktur og Røntgenstråling

Røntgenstråling. Baggrund. Atomers struktur og Røntgenstråling Røntgenstråling Baggrund Bølgelængden af synligt lys ligger i området 400-750 nm. Ting med en mindre rumlig udstrækning kan vi ikke se med vores blotte øje. Det betyder, at hvis vi vil se på hvilke atomer

Læs mere

Fysik A. Studentereksamen

Fysik A. Studentereksamen Fysik A Studentereksamen stx132-fys/a-15082013 Torsdag den 15. august 2013 kl. 9.00-14.00 Side 1 af 9 sider Side 1 af 9 Billedhenvisninger Opgave 1 U.S. Fish and wildlife Service Opgave 2 http://stardust.jpl.nasa.gov

Læs mere

Tillæg til partikelfysik (foreløbig)

Tillæg til partikelfysik (foreløbig) Tillæg til partikelfysik (foreløbig) Vekselvirkninger Hvordan afgør man, hvilken vekselvirkning, som gør sig gældende i en given reaktion? Gravitationsvekselvirkningen ser vi bort fra. Reaktionen Der skabes

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

Lysets kilde Ny Prisma Fysik og kemi 9 - kapitel 8 Skole: Navn: Klasse:

Lysets kilde Ny Prisma Fysik og kemi 9 - kapitel 8 Skole: Navn: Klasse: Lysets kilde Ny Prisma Fysik og kemi 9 - kapitel 8 Skole: Navn: Klasse: Opgave 1 Der findes en række forskellige elektromagnetiske bølger. Hvilke bølger er elektromagnetiske bølger? Der er 7 svarmuligheder.

Læs mere

Uran i Universet og i Jorden

Uran i Universet og i Jorden Uran i Universet og i Jorden Leif Thorning; uddannet i England og Danmark som geofysiker, forhenværende statsgeolog, fra GEUS (De Nationale Geologiske Undersøgelser for Danmark og Grønland) Har i 40 år,

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Indhold... 1 Måling af stråling med Datastudio... 2 Måling af baggrundsstrålingens variation... 3 Måling af halveringstid... 4 Nuklidkort. (teoriopgave)... 5 Fyldning af beholdere... 6 Sådan fungerer

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Fysik A. Studentereksamen

Fysik A. Studentereksamen Fysik A Studentereksamen 1stx131-FYS/A-27052013 Mandag den 27. maj 2013 kl. 9.00-14.00 Side 1 af 10 sider Side 1 af 10 Billedhenvisninger Opgave 1 http://www.allsolarfountain.com/ftnkit56 Opgave 2 http://www1.appstate.edu/~goodmanj/elemscience/

Læs mere

Er der flere farver i sort?

Er der flere farver i sort? Er der flere farver i sort? Hvad er kromatografi? Kromatografi benyttes inden for mange forskellige felter og forskningsområder og er en anvendelig og meget benyttet analytisk teknik. Kromatografi bruges

Læs mere

Universets opståen og udvikling

Universets opståen og udvikling Universets opståen og udvikling 1 Universets opståen og udvikling Grundtræk af kosmologien Universets opståen og udvikling 2 Albert Einstein Omkring 1915 fremsatte Albert Einstein sin generelle relativitetsteori.

Læs mere

I Indledning. I Indledning Side 1. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

I Indledning. I Indledning Side 1. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Side 1 0101 Beregn uden hjælpemidler: a) 2 9 4 6+5 3 b) 24:6+4 7 2 13 c) 5 12:4+39:13 d) (1+4 32) 2 55:5 0102 Beregn uden hjælpemidler: a) 3 6+11 2+2½ 10 b) 49:7+8 11 3 12 c) 4 7:2+51:17 d) (5+3 2) 3 120:4

Læs mere

Opdagelsen af radioaktiviteten

Opdagelsen af radioaktiviteten 1 Opdagelsen af radioaktiviteten Af Louis Nielsen, cand.scient. Lektor ved Herlufsholm I de sidste årtier af 1800-årene blev der gjort mange yderst grundlæggende opdagelser ved forsøg med katodestrålerør.

Læs mere

er den radioaktive kildes aktivitet til tidspunktet t= 0, A( t ) er aktiviteten til tidspunktet t og k er henfaldskonstanten.

er den radioaktive kildes aktivitet til tidspunktet t= 0, A( t ) er aktiviteten til tidspunktet t og k er henfaldskonstanten. Fysikøvelse Erik Vestergaard www.matematikfysik.dk Radioaktive henfald Formål Formålet i denne øvelse er at eftervise henfaldsloven A( t) = A0 e kt, hvor A 0 er den radioaktive kildes aktivitet til tidspunktet

Læs mere

Energiform. Opgave 1: Energi og energi-former

Energiform. Opgave 1: Energi og energi-former Energiformer Opgave 1: Energi og energi-former a) Gå sammen i grupper og diskutér hvad I forstår ved begrebet energi? Hvilket symbol bruger man for energi, og hvilke enheder (SI-enhed) måler man energi

Læs mere

Mundlige eksamensspørgsma l. Hold 3g Fy V2 2013 - godkendt af censor

Mundlige eksamensspørgsma l. Hold 3g Fy V2 2013 - godkendt af censor 1 Mundlige eksamensspørgsma l Hold 3g Fy V2 2013 - godkendt af censor 2 Teoretiske spørgsmål... 3 1) Elektricitet... 3 2) Elektricitet... 4 3) El-lære og spændingskilder... 5 4) Elektromagnetisk stråling

Læs mere

Deltager information

Deltager information READ, Bilag 10 Fortroligt Side 1 af 7 Deltager information Protokol DBCG 07-READ, dateret 15. oktober 2009. Et videnskabeligt forsøg med to forskellige kombinationer af kemoterapi til patienter med brystkræft.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December-januar 2015-2016 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold GSK-hold

Læs mere

LYS I FOTONISKE KRYSTALLER 2006/1 29

LYS I FOTONISKE KRYSTALLER 2006/1 29 LYS I FOTONISKE KRYSTALLER OG OPTISKE NANOBOKSE Af Peter Lodahl Hvordan opstår lys? Dette fundamentale spørgsmål har beskæftiget fysikere gennem generationer. Med udviklingen af kvantemekanikken i begyndelsen

Læs mere

Hvordan ioniserende stråling påvirker menneskers sundhed

Hvordan ioniserende stråling påvirker menneskers sundhed Hvordan ioniserende stråling påvirker menneskers sundhed Af studerer fysik på Københavns Universitet. Han skrev bachelorprojekt i efteråret 2006 med titlen Gennemgang af kendte effekter af ioniserende

Læs mere

Guldbog Kemi C Copyright 2016 af Mira Backes og Christian Bøgelund.

Guldbog Kemi C Copyright 2016 af Mira Backes og Christian Bøgelund. Guldbog Kemi C Copyright 2016 af Mira Backes og Christian Bøgelund. Alle rettigheder forbeholdes. Mekanisk, fotografisk eller elektronisk gengivelse af denne bog eller dele heraf er uden forfatternes skriftlige

Læs mere

Talrækker. Aktivitet Emne Klassetrin Side

Talrækker. Aktivitet Emne Klassetrin Side VisiRegn ideer 3 Talrækker Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Talrækker 2-4 Elevaktiviteter til Talrækker 3.1 Talrækker (1) M-Æ 5-9 3.2 Hanoi-spillet

Læs mere

Teknologi & kommunikation

Teknologi & kommunikation Grundlæggende Side af NV Elektrotekniske grundbegreber Version.0 Spænding, strøm og modstand Elektricitet: dannet af det græske ord elektron, hvilket betyder rav, idet man tidligere iagttog gnidningselektricitet

Læs mere

Begge bølgetyper er transport af energi.

Begge bølgetyper er transport af energi. I 1. modul skal I lære noget omkring elektromagnetisk stråling(em-stråling). Herunder synligt lys, IR-stråling, Uv-stråling, radiobølger samt gamma og røntgen stråling. I skal stifte bekendtskab med EM-strålings

Læs mere

Øvelse i kvantemekanik Kvantiseret konduktivitet

Øvelse i kvantemekanik Kvantiseret konduktivitet 29 Øvelse i kvantemekanik Kvantiseret konduktivitet 5.1 Indledning Denne øvelse omhandler et fænomen som blandt andet optræder i en ganske dagligdags situation hvor et mekanisk relæ afbrydes. Overraskende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016. Institution KØBENHAVN SYD HF & VUC Uddannelse Fag og niveau Lærer(e) Hold GSK-hold Fysik B

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

VEJLEDNING OM RADIOAKTIVE STOFFER I SKROT

VEJLEDNING OM RADIOAKTIVE STOFFER I SKROT VEJLEDNING OM RADIOAKTIVE STOFFER I SKROT 2002 Indholdsfortegnelse Side 1. Indledning 1 2. Baggrundsoplysninger 1 2.1. Anvendelse af radioaktive kilder i Danmark 1 2.2. Kontrol med radioaktive kilder i

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

DET PERIODISKE SYSTEM

DET PERIODISKE SYSTEM DET PERIODISKE SYSTEM Tilpasset efter Chemistry It s Elemental! Præsentation fra the American Chemical Society, Aug. 2009 http://portal.acs.org/portal/publicwebsite/education/outreach/ncw/studentseducators/cnbp_023211

Læs mere

Kulstof-14 datering. Første del: Metoden. Isotoper af kulstof

Kulstof-14 datering. Første del: Metoden. Isotoper af kulstof Kulstof-14 datering Første del: Metoden I slutningen af 1940'erne finder et team på University of Chicago under ledelse af Willard Libby ud af, at man kan bruge det radioaktive stof kulstof 14 ( 14 C),

Læs mere

Energizere bruges til at: Ryste folk sammen Få os til at grine Hæve energiniveauet Skærpe koncentrationen Få dialogen sat i gang

Energizere bruges til at: Ryste folk sammen Få os til at grine Hæve energiniveauet Skærpe koncentrationen Få dialogen sat i gang FORSKELLIGE ENERGIZERS ENERGIZER Energizere er korte lege eller øvelser, som tager mellem to og ti minutter. De fungerer som små pauser i undervisningen, hvor både hjernen og kroppen aktiveres. Selv om

Læs mere

En lille verden Ny Prisma Fysik og kemi 8. Skole: Navn: Klasse:

En lille verden Ny Prisma Fysik og kemi 8. Skole: Navn: Klasse: En lille verden Ny Prisma Fysik og kemi 8 Skole: Navn: Klasse: For at løse nogle af opgaverne skal du benytte Nuklidtabel A og B på kopiark 6.4 og 6.5 i Kopimappe B, Ny Prisma 8. Opgave 1 Et atom består

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere