Volatilitets Dynamik og Risikostyring

Størrelse: px
Starte visningen fra side:

Download "Volatilitets Dynamik og Risikostyring"

Transkript

1 Volatilitets Dynamik og Risikostyring David Skovmand Jan Kloppenborg (DTU), Peter Nystrup (DTU), Sinan Gabel (RiskButler), Jonas Hal og Johan Gade, Saxo Bank Copenhagen Fintech Innovation and Research (CFIR) 1 / 17

2 Introduktion CFIR Mini-Projekt - Samarbejde mellem to akademiske institutioner (DTU + KU) og to private virksomheder (RiskButler + Saxo) Funding : Virksomheder levererer tid/data. Akademikernes tid nansieres af CFIR Mål : at udvikle ideer der har både akademisk og kommerciel relevans 2 / 18

3 Ideen Standardmodellen for nansiel usikkerhed( Random Walk(Diskret tid), Black-Scholes(kontinuert tid)) er for simpel. Den har konstant 'volatilitet', og forudsiger for få ekstreme hændelser. Meeen, simplicitet er også en fordel : estimation er nem, modellen kan nemt 'skaleres op', mange tusinder af aktiver/risikofaktorer kan nemt modelleres og beregninger kan laves i 'realtid'. Bedre modeller ndes. Estimation, prisfastsættelse risikostyring og porteføljevalg bliver ofte meget sværere og kræver skræddersyede og problemspecikke løsninger. Vores ide har været at udvikle et model 'framework' som giver: bedre beskrivelse af virkeligheden, ikke er uoverkommelig beregningsmæssigt 3 / 18

4 Agenda En kort beskrivelse af volatilitet Denition, data mm. Oversigt over modeller Modeller i diskret tid, GARCH mm. Modeller i kontinuert tid, Stokastisk Volatilitet mm. Modeller i ere dimensioner Risikostyring og backtesting Fra model til nøgletal Eksempel på beregning 4 / 18

5 At måle volatilitet Volatilitet forstås normalt som synonym for variabilitet det har dog en en præcis denition Standard denition: Et annualiseret mål for log-afkastests standardarvigelse. Jo mere data (højere frekvens) jo bedre og mere nøjagtigt bliver dit mål - i teorien. Daglige log-afkast r 1,..., r T ˆσ = T T (r i ˆr) 2 Implicit volatilitet. Har du prisen C 0 på en call option C T = max(s T K, 0): i=1 C 0 = BS(S 0, K, T, P(0, T ), σ) Løs for σ i ovenstående formel (skal ndes numerisk). Denne kan tolkes som markedets bedste gæt for hvad volatiliteten skal være henover perioden [0, T ] Hvad σ er afhænger dog både af hvad strike prisen K er samt tid til udløb T - ikke helt konsistent med Black-Scholes modellen men det er heller ikke meningen. VIX er et index som kondenserer information fra alle handledede optioner med S& P 500 som underliggende og med omkring 30 dage til udløb. Dvs mange strikes. Det er et mere nøjagtigt (og modeluafhængigt) gæt på hvad markedets bud på standardafvigelsen. Toneangivende mål for det overordnede risiko på (det amerikanske) marked 5 / 18

6 At måle volatilitet Volatilitet forstås normalt som synonym for variabilitet det har dog en en præcis denition Standard denition: Et annualiseret mål for log-afkastests standardarvigelse. Jo mere data (højere frekvens) jo bedre og mere nøjagtigt bliver dit mål - i teorien. Daglige log-afkast r 1,..., r T ˆσ = T T (r i ˆr) 2 Implicit volatilitet. Har du prisen C 0 på en call option C T = max(s T K, 0): i=1 C 0 = BS(S 0, K, T, P(0, T ), σ) Løs for σ i ovenstående formel (skal ndes numerisk). Denne kan tolkes som markedets bedste gæt for hvad volatiliteten skal være henover perioden [0, T ] Hvad σ er afhænger dog både af hvad strike prisen K er samt tid til udløb T - ikke helt konsistent med Black-Scholes modellen men det er heller ikke meningen. VIX er et index som kondenserer information fra alle handledede optioner med S& P 500 som underliggende og med omkring 30 dage til udløb. Dvs mange strikes. Det er et mere nøjagtigt (og modeluafhængigt) gæt på hvad markedets bud på standardafvigelsen. Toneangivende mål for det overordnede risiko på (det amerikanske) marked 5 / 18

7 At måle volatilitet Volatilitet forstås normalt som synonym for variabilitet det har dog en en præcis denition Standard denition: Et annualiseret mål for log-afkastests standardarvigelse. Jo mere data (højere frekvens) jo bedre og mere nøjagtigt bliver dit mål - i teorien. Daglige log-afkast r 1,..., r T ˆσ = T T (r i ˆr) 2 Implicit volatilitet. Har du prisen C 0 på en call option C T = max(s T K, 0): i=1 C 0 = BS(S 0, K, T, P(0, T ), σ) Løs for σ i ovenstående formel (skal ndes numerisk). Denne kan tolkes som markedets bedste gæt for hvad volatiliteten skal være henover perioden [0, T ] Hvad σ er afhænger dog både af hvad strike prisen K er samt tid til udløb T - ikke helt konsistent med Black-Scholes modellen men det er heller ikke meningen. VIX er et index som kondenserer information fra alle handledede optioner med S& P 500 som underliggende og med omkring 30 dage til udløb. Dvs mange strikes. Det er et mere nøjagtigt (og modeluafhængigt) gæt på hvad markedets bud på standardafvigelsen. Toneangivende mål for det overordnede risiko på (det amerikanske) marked 5 / 18

8 'Stylized Facts' om Volatilitet 1 Ændrer sig over tid(stiger i recessioner, falder i opsving(sådan da) ) 2 Volatilitet er persistent. Store bevægelser, følger store bevægelser i det underliggende aktiv. Medfører vol. har stor autokorrelation. 3 Volatilitet og afkast har ofte negativ korrelation 4 Store opadgående bevægelser i vol er ofte efterfulgt af lignende hurtige nedadgående bevægelser Du kan nemt udvide standardmodellen til at kunne fange (1)+(2) (GARCH(1,1)), (3) lidt sværere, (4) ret svært. Lad os se på data 6 / 18

9 'Stylized Facts' om Volatilitet 1 Ændrer sig over tid(stiger i recessioner, falder i opsving(sådan da) ) 2 Volatilitet er persistent. Store bevægelser, følger store bevægelser i det underliggende aktiv. Medfører vol. har stor autokorrelation. 3 Volatilitet og afkast har ofte negativ korrelation 4 Store opadgående bevægelser i vol er ofte efterfulgt af lignende hurtige nedadgående bevægelser Du kan nemt udvide standardmodellen til at kunne fange (1)+(2) (GARCH(1,1)), (3) lidt sværere, (4) ret svært. Lad os se på data 6 / 18

10 Empiri Daglig afkast fra for en værdi-vægtet portefølje af alle (oentligt handlede) amerikanske aktier Store bevægelser følger hinanden Ovenstående scenarie kunne umuligt være genereret af random walk/black scholes med konstant vol. 7 / 18

11 Empiri, VIX Vol har tydeligvis autokorrelation, (ligner lidt AR(1) type) med store outliers, som ligner spring men er det ikke - 'spikes' som er et lidt anderledes. Hurtige opadgående bevægelser efterfulgt af nedadgående. 8 / 18

12 Modellering Random walk/diskret tids Black-Scholes r t+1 = µ + ɛ t+1, ɛ t IIDN(0, σ 2 ) (1) Vi kan erstatte den konstante σ med en tidsvarierende process. Den mest populære metode (G)ARCH, udviklet af Robert Engle og Tim Bollerslev. Den fungerer i sin simpleste form på følgende måde Denne type konstruktion har mange fordele r t+1 =µ + η t+1, η t+1 N(0, σ 2 t ) (2) σ 2 t =ω + ασ 2 t 1 + βη 2 t (3) Den betingede fordeling af r t fra t til t + 1 er normalfordelt - nemt at udregne VaR og Expected shortfall Betinget fordeling fra t til t + s er IKKE normalfordelt for s > 1. Variation i vol er genereret alene udfra tidligere afkast da η t = r t µ Erstat uden problemer varians ligningen og normalfordelingsantagelsen med noget andet - Extreme value fordeling, EGARCH, tidsvarierende µ osv. Estimation er (relativt) ligetil. 9 / 18

13 Modellering Random walk/diskret tids Black-Scholes r t+1 = µ + ɛ t+1, ɛ t IIDN(0, σ 2 ) (1) Vi kan erstatte den konstante σ med en tidsvarierende process. Den mest populære metode (G)ARCH, udviklet af Robert Engle og Tim Bollerslev. Den fungerer i sin simpleste form på følgende måde Denne type konstruktion har mange fordele r t+1 =µ + η t+1, η t+1 N(0, σ 2 t ) (2) σ 2 t =ω + ασ 2 t 1 + βη 2 t (3) Den betingede fordeling af r t fra t til t + 1 er normalfordelt - nemt at udregne VaR og Expected shortfall Betinget fordeling fra t til t + s er IKKE normalfordelt for s > 1. Variation i vol er genereret alene udfra tidligere afkast da η t = r t µ Erstat uden problemer varians ligningen og normalfordelingsantagelsen med noget andet - Extreme value fordeling, EGARCH, tidsvarierende µ osv. Estimation er (relativt) ligetil. 9 / 18

14 Modellering Random walk/diskret tids Black-Scholes r t+1 = µ + ɛ t+1, ɛ t IIDN(0, σ 2 ) (1) Vi kan erstatte den konstante σ med en tidsvarierende process. Den mest populære metode (G)ARCH, udviklet af Robert Engle og Tim Bollerslev. Den fungerer i sin simpleste form på følgende måde Denne type konstruktion har mange fordele r t+1 =µ + η t+1, η t+1 N(0, σ 2 t ) (2) σ 2 t =ω + ασ 2 t 1 + βη 2 t (3) Den betingede fordeling af r t fra t til t + 1 er normalfordelt - nemt at udregne VaR og Expected shortfall Betinget fordeling fra t til t + s er IKKE normalfordelt for s > 1. Variation i vol er genereret alene udfra tidligere afkast da η t = r t µ Erstat uden problemer varians ligningen og normalfordelingsantagelsen med noget andet - Extreme value fordeling, EGARCH, tidsvarierende µ osv. Estimation er (relativt) ligetil. 9 / 18

15 SDE Modeller -Kontinuert tid, Stokastisk Volatilitet Ulemper ved diskret tid Diskret tid. Modellen er naturligt bygget på et ækvidistant tidsgitter - typisk handelsdage- hvad med weekender? og hvis man ønsker at set på afkast fordelingen ere dage frem i tid? Intradag data er især et problem Der ndes løsninger (quick-xes) men de er ikke elegante Hvis man istedet formulerer sin model i kontinuert tid er det noget nemmere. Kontinuert tidsmodeller er generelt beskrevet ved en ved følgende SDE(Stochastic Dierential Equation) T T ds t = µ ts tdt + S tσ tdw t, S T = S 0 + µ ts tdt + σ tdw t (4) 0 0 Dvs en modellens fordeling og dynamik er beskrevet henover et vilkårligt tidsinterval [0, T ]. Sættes µ, σ konstant fås Black-Scholes modellen (Geometrisk Brownsk Bevægels). ds t = µs tdt + S tσdw t, S T = S 0 exp((µ 1 2 σ2 )T + σw T ) 10 / 18

16 SDE Modeller -Kontinuert tid, Stokastisk Volatilitet Ulemper ved diskret tid Diskret tid. Modellen er naturligt bygget på et ækvidistant tidsgitter - typisk handelsdage- hvad med weekender? og hvis man ønsker at set på afkast fordelingen ere dage frem i tid? Intradag data er især et problem Der ndes løsninger (quick-xes) men de er ikke elegante Hvis man istedet formulerer sin model i kontinuert tid er det noget nemmere. Kontinuert tidsmodeller er generelt beskrevet ved en ved følgende SDE(Stochastic Dierential Equation) T T ds t = µ ts tdt + S tσ tdw t, S T = S 0 + µ ts tdt + σ tdw t (4) 0 0 Dvs en modellens fordeling og dynamik er beskrevet henover et vilkårligt tidsinterval [0, T ]. Sættes µ, σ konstant fås Black-Scholes modellen (Geometrisk Brownsk Bevægels). ds t = µs tdt + S tσdw t, S T = S 0 exp((µ 1 2 σ2 )T + σw T ) 10 / 18

17 Stokastisk Volatilitet Standard modellen for Stokastisk Vol. i kontinuert tid er Heston modellen. Her er modellen for aktiekursen ds t = µs t dt + S t σ t dw t (5) dσt 2 = κ(θ σt 2 )dt + η σt 2 dw t (6) Denne model lider dog ofte at variationen i σt 2 'nemt' ændres til ikke bliver stor nok. Det kan dσ 2 t = κσ 2 t (θ σ 2 t )dt + ησ 2α t dw t (7) Her har vi nu kvadratisk drift og power scaling i diusionsleddet. Det kan generere de hurtige spring lignende bevægelser vi så i data. Primær udfordring: Estimation 11 / 18

18 Stokastisk Volatilitet Standard modellen for Stokastisk Vol. i kontinuert tid er Heston modellen. Her er modellen for aktiekursen ds t = µs t dt + S t σ t dw t (5) dσt 2 = κ(θ σt 2 )dt + η σt 2 dw t (6) Denne model lider dog ofte at variationen i σt 2 'nemt' ændres til ikke bliver stor nok. Det kan dσ 2 t = κσ 2 t (θ σ 2 t )dt + ησ 2α t dw t (7) Her har vi nu kvadratisk drift og power scaling i diusionsleddet. Det kan generere de hurtige spring lignende bevægelser vi så i data. Primær udfordring: Estimation 11 / 18

19 Stokastisk Volatilitet Standard modellen for Stokastisk Vol. i kontinuert tid er Heston modellen. Her er modellen for aktiekursen ds t = µs t dt + S t σ t dw t (5) dσt 2 = κ(θ σt 2 )dt + η σt 2 dw t (6) Denne model lider dog ofte at variationen i σt 2 'nemt' ændres til ikke bliver stor nok. Det kan dσ 2 t = κσ 2 t (θ σ 2 t )dt + ησ 2α t dw t (7) Her har vi nu kvadratisk drift og power scaling i diusionsleddet. Det kan generere de hurtige spring lignende bevægelser vi så i data. Primær udfordring: Estimation 11 / 18

20 Mange Aktiver Modellerne er indtil videre beskrevet kun i een dimension. Hvis deres afhængighedstruktur skal beskrives er der mange muligheder at skabe afhængihedstrukturen strukturelt som Multivariate GARCH (Tidsvarierende Kovariansmatricer), Wishart Stokastisk Volatilets modeller, osv. Disse strukturelle tilgange fungerer nt for 2-3 aktiver men de skalerer dårligt op til de tusindvis af mulige aktiver - Hvis hver afhængighed mellem to aktiver beskrives af een parameter fås (n 2 n)/2 parametre for n aktiver. n = parametre! Hvis de kan estimeres uafhængigt af hinanden er det ikke det store problem men hvis ikke bliver du nød til at reducere dimensionen af afhængighedsstrukturen. Men selv hvis du kan det er det en meget stor fordel at kunne dekoble afhængighedstrukturen fra de marginale modeller således du kan bryde estimations problemet op i en serie uafhængige estimationsproblemer. 12 / 18

21 Pragmatisk tilgang, til multidimensionsproblemet Index modeller, hvert aktiv beskrives ud fra dets afhængighed med et mindre antal k systematisk faktorer (CAPM, APT) r i,t = α i + β i F 1,t + + β k F k,t + ɛ i,t Denne type model er ofte for reduceret og den lineære afhængighed bliver for upræcis for det enkelt aktiv. Desuden er specikationen af de systematiske faktorerer (S& P 500, VIX etc) heller ikke ligetil. Alternativt kan man koble sine enkelte modeller sammen med en copula-funktion Generelt er det bedst med en struktur som tillader en to-trins estimation 1) Estimer een model per aktiv/risikofaktor 2) Estimer afhængighedsstrukturen 1)+2) skal helst foretages uafhængigt af hinanden. Vi har i dette projekt beskæftiget os med 1 trin (mini-projekt) 13 / 18

22 Fra model til portefølje Antag du har estimeret en model med n aktiver. Dette giver dig prisdynamikken for en stokastisk vektor S t = [S t,1,..., S t,n], som hvis du kender din portefølje w = [w 1,..., w n]. Prisprocessen er derfor givet som en lineær funktion af dit model output som S p,t = w S t Dette er dog en forsimplet tilfælde. Ofte modelleres ikke kun priser, men renter, volatiliteter og nøgletal som alle er med til at bestemme porteføljens pris - men på en ikke-lineær facon. Antag istedet vi laver en model for n, risikofaktorer Z t = [Z 1,t,..., Z n,t]. Vi lader porteføljens pris være bestemt gennem en ikke-lineær funktion f : R + R n R. S p,t = f (t, Z t) f er så en generel funktion der udover at ligge vores positioner sammen transformerer volatileter, renter etc, om til priser 14 / 18

23 Fra model til portefølje Antag du har estimeret en model med n aktiver. Dette giver dig prisdynamikken for en stokastisk vektor S t = [S t,1,..., S t,n], som hvis du kender din portefølje w = [w 1,..., w n]. Prisprocessen er derfor givet som en lineær funktion af dit model output som S p,t = w S t Dette er dog en forsimplet tilfælde. Ofte modelleres ikke kun priser, men renter, volatiliteter og nøgletal som alle er med til at bestemme porteføljens pris - men på en ikke-lineær facon. Antag istedet vi laver en model for n, risikofaktorer Z t = [Z 1,t,..., Z n,t]. Vi lader porteføljens pris være bestemt gennem en ikke-lineær funktion f : R + R n R. S p,t = f (t, Z t) f er så en generel funktion der udover at ligge vores positioner sammen transformerer volatileter, renter etc, om til priser 14 / 18

24 Risikostyring Med en model for Z t har vi en model for alle relevante porteføljer S p,t = f (t, Z t) Med modellen kan vi beregne alle vores relevante risikotal. Eksempelvis hvis vi denerer P&L-fordelingen: P&L t+1 = (S p,t+1 S p,t) Value-at-risk 1 periode frem : P(P&L t+1 < VaR α Z t) = α VaR α = F 1 P&L t+1 (α) Expected Shortfall 1 periode frem : VaR I() a ES α = E[P&L t+1 P&L t+1 < VaR α, Z t) Disse tal mm kan direkte oversættes til kapitalkrav i en nansiel institition. 15 / 18

25 ES α vs VaR α ES α er som risikomål bedre end VaR α VaR α er mindre følsom overfor ekstreme tab. I altså α procent af tilfældende er dit tab jo større end VaR α. Hvor store? Det siger VaR ikke noget om. VaRα er ikke subaddivt. Dvs VaR er ikke nødvendigvis konsistent med at der er diversikations gevinst i.e VaR α (w 1 S 1 + w 2 S 2 ) w 1 VaR α (S 1 ) + w 2 VaR α (S 2 ) ES α er subaddivt og siger jo netop noget om hele halen af fordelingen. Det er dog lidt sværere at backteste. Dog ES α > VaR α. Højere kapitalkrav? Ikke nødvendigvis. Benyt en anden fraktil for ES (2.5% i stedet for 1%) for at sænke det lidt 16 / 18

26 Eksempler på beregning i GARCH Lad os sige vi har 1 pris på en portefølje, enkelt aktiv etc. S t+1 = S t + µ + η t+1, η t+1 N(0, σ 2 t ) Kigger vi kun t + 1 fra tidspunkt t frem kender vi σ t P&L t+1 = (S t+1 S t) N(µ, σ 2 t ) (8) VaR α = µ + σ tφ 1 (α), ES α = µ σ tφ(φ 1 (α))/α (9) Hvor Φ 1 og φ er hhv fraktifunktionen og tæthedsfunktionen for en std. normalfordeling. Fine udtryk der (relativt) nemt generaliseres hvis man ønsker at erstatte normalfordelingen med noget mere realistisk. Dette er en stor fordel ved GARCH frameworket Bemærk : formler duer ikke hvis du er interesseret i tabet over længere end 1 dag! (10 dage ig Basel reguleringen) Så er du oftest nød til at beregne VaR og ES med simulation. GARCH risikofaktoer medfører kun GARCH portefølje priser i det lineære tilfælde. Dvs ingen optioner, obligationer etc. I kontinuert tid kan du kun i ganske få tilfælde få noget lignende. Du kan lave en normal approksimation, eller løse problemet med simulation. 17 / 18

27 Eksempler på beregning i GARCH Lad os sige vi har 1 pris på en portefølje, enkelt aktiv etc. S t+1 = S t + µ + η t+1, η t+1 N(0, σ 2 t ) Kigger vi kun t + 1 fra tidspunkt t frem kender vi σ t P&L t+1 = (S t+1 S t) N(µ, σ 2 t ) (8) VaR α = µ + σ tφ 1 (α), ES α = µ σ tφ(φ 1 (α))/α (9) Hvor Φ 1 og φ er hhv fraktifunktionen og tæthedsfunktionen for en std. normalfordeling. Fine udtryk der (relativt) nemt generaliseres hvis man ønsker at erstatte normalfordelingen med noget mere realistisk. Dette er en stor fordel ved GARCH frameworket Bemærk : formler duer ikke hvis du er interesseret i tabet over længere end 1 dag! (10 dage ig Basel reguleringen) Så er du oftest nød til at beregne VaR og ES med simulation. GARCH risikofaktoer medfører kun GARCH portefølje priser i det lineære tilfælde. Dvs ingen optioner, obligationer etc. I kontinuert tid kan du kun i ganske få tilfælde få noget lignende. Du kan lave en normal approksimation, eller løse problemet med simulation. 17 / 18

28 Opsummering Standard Black-Scholes/Random Walk modellen kan slet ikke matche data Hvordan skal vi udvide den? GARCH er nem at estimere og lave betingede beregninger fra t til t men Kan oftest ikke ikke matche 'spikes' i Vol. Diskret tid - knap så eksibelt Mange relevante beregninger skal alligevel beregnes med Simulation SDE modeller har fuld eksibiliet i ifht til data input med forskellige frekvens og skiftende tidhorisonter. Mere eksibiliet til at at matche vol spikes. Alle relevante risikomål skal oftest beregnes med simulation Lidt mere 'tricky' at estimere 18 / 18

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI. 4 timers skriftlig eksamen, 9-13 torsdag 6/

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI. 4 timers skriftlig eksamen, 9-13 torsdag 6/ NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI 4 timers skriftlig eksamen, 9-13 torsdag 6/6 2002 VEJLEDENDE BESVARELSE OG KOMMENTARER Opgave 1 Spg 1a

Læs mere

Planen idag. Fin1 (mandag 16/2 2009) 1

Planen idag. Fin1 (mandag 16/2 2009) 1 Planen idag Porteføljeteori; kapitel 9 Noterne Moralen: Diversificer! Algebra: Portefølje- og lineær. Nogenlunde konsistens med forventet nyttemaksimering Middelværdi/varians-analyse Fin1 (mandag 16/2

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

22. maj Investering og finansiering Ugeseddel nr. 15. Nogle eksamensopgaver:

22. maj Investering og finansiering Ugeseddel nr. 15. Nogle eksamensopgaver: 22. maj 2006 Investering og finansiering Ugeseddel nr. 15 Nogle eksamensopgaver: 1 NATURVIDENSKABELIG KANDIDATEKSAMEN INVESTERING OG FINANSIERING Antal sider i opgavesættet (incl. forsiden): 6 4 timers

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Hvad bør en option koste?

Hvad bør en option koste? Det Naturvidenskabelige Fakultet Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag 9. oktober 2012 Dias 1/19 Reklame først: Matematik-økonomi-uddannelsen Økonomi på et solidt matematisk/statistisk

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Aktiv porteføljeallokering: Teori og praksis. 10. maj 2010 TeisKnuthsen Investeringsdirektør tekn@nykredit.dk

Aktiv porteføljeallokering: Teori og praksis. 10. maj 2010 TeisKnuthsen Investeringsdirektør tekn@nykredit.dk Aktiv porteføljeallokering: Teori og praksis 10. maj 2010 TeisKnuthsen Investeringsdirektør tekn@nykredit.dk Opgaven Find den bedst mulige portefølje Højt afkast Rimelig risiko Inden for givne rammer Løst

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Estimation af volatilitet på aktiemarkedet

Estimation af volatilitet på aktiemarkedet H.D. studiet i Finansiering Hovedopgave Foråret 2009 ---------------------------- Opgaveløser: Daniel Laurits Jensen Vejleder: Bo Vad Steffensen Opgave nr. 21 Estimation af volatilitet på aktiemarkedet

Læs mere

Løsninger til kapitel 6

Løsninger til kapitel 6 Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180)

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Opgave nr. 5 og 31. Værdiansættelse af stiafhængige bermuda optioner, ved Least Squares Monte Carlo simulation.

Opgave nr. 5 og 31. Værdiansættelse af stiafhængige bermuda optioner, ved Least Squares Monte Carlo simulation. H.D.-studiet i Finansiering Hovedopgave - forår 2009 ---------------- Opgaveløser: Martin Hofman Laursen Joachim Bramsen Vejleder: Niels Rom-Poulsen Opgave nr. 5 og 31 Værdiansættelse af stiafhængige bermuda

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Bilag A. Dexia-obligationen (2002/2007 Basis)

Bilag A. Dexia-obligationen (2002/2007 Basis) Bilag A Dexia-obligationen (2002/2007 Basis) Også kaldet A.P. Møller aktieindekseret obligation (A/S 1912 B). Dette værdipapir som i teorien handles på Københavns Fondsbørs (omend med meget lille omsætning)

Læs mere

Hovedløs overvægt af aktier er blot investeringsdoping

Hovedløs overvægt af aktier er blot investeringsdoping Hovedløs overvægt af aktier er blot investeringsdoping Af Peter Rixen Senior Porteføljemanager peter.rixen@skandia.dk Aktier har et forventet afkast, der er højere end de fleste andre aktivklasser. Derfor

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Hvor: D = forventet udbytte. k = afkastkrav. G = Vækstrate i udbytte

Hvor: D = forventet udbytte. k = afkastkrav. G = Vækstrate i udbytte Dec 64 Dec 66 Dec 68 Dec 70 Dec 72 Dec 74 Dec 76 Dec 78 Dec 80 Dec 82 Dec 84 Dec 86 Dec 88 Dec 90 Dec 92 Dec 94 Dec 96 Dec 98 Dec 00 Dec 02 Dec 04 Dec 06 Dec 08 Dec 10 Dec 12 Dec 14 Er obligationer fortsat

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Den lineære normale model

Den lineære normale model Den lineære normale model Ingredienser: V : N-dimensionalt vektorrum. X : Ω V : stokastisk variabel. L : ægte underrum af V, dimension k., : fundamentalt indre produkt på V. Vi laver en hel familie af

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Hvad bør en option koste?

Hvad bør en option koste? Det Naturvidenskabelige Fakultet Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag 19. marts 2015 Dias 1/22 Reklame først: Matematik-økonomi-uddannelsen Økonomi på et solidt matematisk/statistisk

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Lidt om fordelinger, afledt af normalfordelingen

Lidt om fordelinger, afledt af normalfordelingen IMM, 2002-10-10 Poul Thyregod Lidt om fordelinger, afledt af normalfordelingen 1 Introduktion I forbindelse med inferens i normalfordelinger optræder forskellige fordelinger, der er afledt af normalfordelingen,

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Matematisk Modellering 1 Cheat Sheet

Matematisk Modellering 1 Cheat Sheet By a team of brave computer scientists: Mads P. Buch, Tobias Brixen, Troels Thorsen, Peder Detlefsen, Mark Gottenborg, Peter Krogshede - 1 Contents 1 Basalt 3 1.1 Varianser...............................

Læs mere

Modelusikkerhed i stokastiske volatilitets modeller

Modelusikkerhed i stokastiske volatilitets modeller Erhvervsøkonomisk institut Msc in Finance Forfattere: Jannie Tornvig Kristine Bærentzen Vejleder: David Skovmand Modelusikkerhed i stokastiske volatilitets modeller Handelshøjskolen i Aarhus, Aarhus Universitet

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version university of copenhagen University of Copenhagen Notat om statistisk inferens Larsen, Martin Vinæs Publication date: 2014 Document Version Peer-review version Citation for published version (APA): Larsen,

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Volatiliteten i dag-til-dag pengemarkedsrenten

Volatiliteten i dag-til-dag pengemarkedsrenten 3 Volatiliteten i dag-til-dag pengemarkedsrenten Allan Bødskov Andersen, Økonomisk Afdeling INDLEDNING OG SAMMENFATNING I denne artikel analyseres de daglige udsving i den danske dag-til-dag pengemarkedsrente

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Kapitel Indledning Problemformulering Struktur & metode Afgrænsning...6. Kapitel 2...7

Kapitel Indledning Problemformulering Struktur & metode Afgrænsning...6. Kapitel 2...7 Indhold Kapitel 1...3 1.1 Indledning...3 1.2 Problemformulering...4 1.3 Struktur & metode...5 1.4 Afgrænsning...6 Kapitel 2...7 2.1 Black-Scholes introduktion...7 2.1.1 Optioner...7 2.1.2 Black-Scholes

Læs mere

Anvendelse af Value-at-Risk som mål for Nationalbankens markedsrisiko

Anvendelse af Value-at-Risk som mål for Nationalbankens markedsrisiko 35 Anvendelse af Value-at-Risk som mål for Nationalbankens markedsrisiko Morten Malle Høyer, Kapitalmarkedsafdelingen INDLEDNING I løbet af de seneste 0 år er der sket en kolossal udvikling med hensyn

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni timers prøve med hjælpemidler

Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni timers prøve med hjælpemidler Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni 2007 4 timers prøve med hjælpemidler Opgaven består af re delopgaver, som alle skal besvares. De re opgaver indgår med samme vægt. Opgaverne

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen

Læs mere

Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering

Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering Landmålingens fejlteori Lektion 3 Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition: Middelværdi og

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Vi sætter. (Signal støj- forhold) Poul Thyregod, 25. april Specialkursus vid.stat. foraar Lad Y i angiver observationer fra i te udtagne balle.

Vi sætter. (Signal støj- forhold) Poul Thyregod, 25. april Specialkursus vid.stat. foraar Lad Y i angiver observationer fra i te udtagne balle. Modellens parametre Mandag den 25 april Hierarkiske normalfordelingsmodeller Dagens program: Resume af ensidet variansanalysemodel med tilfældig effekt estimation af tilfældige effekter, fortolkning som

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Perspektiver i Matematik-Økonomi: Linær regression

Perspektiver i Matematik-Økonomi: Linær regression Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: jlj@imf.au.dk Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede) fordelingsfunktion

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Brownsk Bevægelse fra pollenkorn til matematisk blomst

Brownsk Bevægelse fra pollenkorn til matematisk blomst HCØ-dage 2007 Brownsk Bevægelse fra pollenkorn til matematisk blomst Niels Richard Hansen Institut for Matematiske Fag Forskningsgruppe: Statistik og Sandsynlighedsregning Præsentation ved HCØ-dage 2007.

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

FINANSIERING 1. Opgave 1

FINANSIERING 1. Opgave 1 FINANSIERING 1 3 timers skriftlig eksamen, kl. 9-1, onsdag 9/4 008. Alle sædvanlige hjælpemidler inkl. blyant er tilladt. Sættet er på 4 sider og indeholder 8 nummererede delspørgsmål, der indgår med lige

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Introduktion til Konjunktur teori. Carl-Johan Dalgaard Økonomisk Institut Københavns Universitet

Introduktion til Konjunktur teori. Carl-Johan Dalgaard Økonomisk Institut Københavns Universitet Introduktion til Konjunktur teori Carl-Johan Dalgaard Økonomisk Institut Københavns Universitet 1 Introduktion Formål: Forstå hvad der driver afvigelserne ibnpfratrend Politik anbefalinger Kræver konstruktion

Læs mere

Det naturvidenskabelige fakultet Sommereksamen 1997 Matematisk-økonomisk kandidateksamen Fag: Driftsøkonomi 2

Det naturvidenskabelige fakultet Sommereksamen 1997 Matematisk-økonomisk kandidateksamen Fag: Driftsøkonomi 2 1 Det naturvidenskabelige fakultet Sommereksamen 1997 Matematisk-økonomisk kandidateksamen Fag: Driftsøkonomi 2 Opgavetekst Generelle oplysninger: Der ses i nedenstående opgaver bort fra skat, transaktionsomkostninger,

Læs mere

Demo af PROC GLIMMIX: Analyse af gentagne observationer

Demo af PROC GLIMMIX: Analyse af gentagne observationer Demo af PROC GLIMMIX: Analyse af gentagne observationer Kristina Birch, seniorkonsulent, PS Banking Agenda Uafhængige vs. afhængige observationer Analyse af uafhængige vs. afhængige observationer Lille

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Opgave fra sidst (Gauss-Markov teoremet) Kvantitative metoder Inferens i den lineære regressionsmodel 7. marts 007 Opgave: Vis at hvis M = I X X X X ( ' ) ' er M idempoten dvs der gælder gælder M = M '

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

HD Finansiering. Copenhagen Business School. Afgangsprojekt forår 2012. Alternativer til VaR

HD Finansiering. Copenhagen Business School. Afgangsprojekt forår 2012. Alternativer til VaR HD Finansiering Copenhagen Business School Afgangsprojekt forår 2012 Alternativer til VaR Afleveringsdato: 14. maj 2012 Vejleder: Udarbejdet af: Robert Neumann Mie Birck Jensen Indholdsfortegnelse 1 Indledning...

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Aalborg universitet. P4-4. semestersprojekt. Optionsteori Optioner på valuta

Aalborg universitet. P4-4. semestersprojekt. Optionsteori Optioner på valuta Aalborg universitet P4-4. semestersprojekt Optionsteori Optioner på valuta 25. maj 2012 AAUINSTITUT FOR MATEMATISKE FAG TITEL: Optioner på valuta PROJEKT PERIODE: Fra 1. februar 2012 til 25. maj 2012

Læs mere

FREMTIDIG VOLATILITET

FREMTIDIG VOLATILITET AALBORG UNIVERSITET, 2009 FREMTIDIG VOLATILITET IMPLICIT VOLATILITET KONTRA GARCH(1,1) BACHELORPROJEKT CHRISTIAN BALTHAZAR JAKOB TRAUMER MØLLER Titelblad Titel: Fremtidig volatilitet - Implicit volatilitet

Læs mere

Diskret delta hedging af optionsporteføljer. Matematik-Økonomi 4. semester - Gruppe G Aalborg Universitet

Diskret delta hedging af optionsporteføljer. Matematik-Økonomi 4. semester - Gruppe G Aalborg Universitet Diskret delta hedging af optionsporteføljer Matematik-Økonomi 4. semester - Gruppe G3-110 Aalborg Universitet Aalborg University Department of Mathematics Frederik Bajers Vej 7G, DK-90 Aalborg Ø, Denmark

Læs mere