Matematisk modellering og numeriske metoder. Overskrifter
|
|
|
- Merete Simonsen
- 9 år siden
- Visninger:
Transkript
1 Matematisk modellering og numeriske metoder Overskrifter Morten Grud Rasmussen 25. november, 2013 Lektion 1 Ordinære differentialligninger ODE er helt grundlæggende Løsninger Begyndelsesværdiproblemer Geometrisk fortolkning af y (x) = f(x, y(x)) Retningsfelter og linjeelementer Eulers metode Separable ODE er Separering af de variable Nogle eksempler Reduktion til separabel form 1
2 Lektion 2 Laplace-transformationer Definitionen af Laplace-transformationen Linearitet af Laplace-transformationen Laplace-transformationen af polynomier At erstatte s med s a in transformationen Eksistens og entydighed Laplace-transformationen og ODE er Laplace-transformationen af afledte Laplace-transformationen af integralet af en funktion Laplace-transformationen som et værktøj til at løse IVP er Lektion 3 Eksakte ODE er og integrerende faktorer Hvad er eksakte ODE er for nogle? Integrerende faktorer Lineære ODE er De grundlæggende definitioner Bernoulli-ligningen Populationsdynamik Eksistens og entydighed af løsninger 2
3 Lektion 4 Homogene andenordens lineære ODE er Linearitetsprincippet IVP er for andenordens homogene lineære ODE er Reduktion af orden Homogene lineære ODE er med konstante koefficienter Problemet i en nøddeskal Positiv diskriminant: a 2 4b > 0 og dermed to rødder Diskriminanten er 0: a 2 4b = 0 og dermed én dobbeltrod Negativ diskriminant: a 2 4b < 0 og ingen reelle rødder Opsummering Differentialoperatorer Differentialligninger i et abstrakt setup Oscilationer i et masse-fjeder-system Det udæmpede system Det samme men med dæmpning 3
4 Lektion 5 Euler-Cauchy-ligninger De tre typer af Euler-Cauchy-ligninger Eksistens og entydighed samt konsekvenser heraf Eksistens og entydighed af andenordens homogene lineære ODE er Andenordens ikke-homogene lineære ODE er Generelle og partikulære løsninger Stabilitet af løsinger for ODE er med konstante koefficienter De ubestemte koefficienters metode Lektion 6 Forcerede oscillationer Et forstyrret masse-fjeder-system Udæmpede, forcerede oscillationer samt resonans Dæmpede, forcerede oscillationer En generelt løsningsformel for andenordens ikke-homogene lineære ODE er med kontinuerte koefficienter og input De arbitrære parametres variationsmetode System af ODE er Et eksempel på et naturligt system af ODE er Konvertering af en n te-ordens ODE til et system af n ODE er 4
5 Lektion 7 Divergence of a vector field Definition and properties of divergence Curl of a vector field Definition and basic properties of the curl Lektion 8 Fourier series Periodic functions Orthogonality of the trigonometric system A concrete example Convergence of the Fourier series Lektion 9 Fourier series Changing periods in connection with Fourier series Simplifications for even and odd functions Half range expansions 5
6 Lektion 10 Partial differential equations The basics of PDE s Derivation of the wave equation Solution of the wave equation Lektion 11 Partielle differentialligninger D Alemberts løsning af bølgeligningen Karakteristikmetoden Udledning af varmeligningen Lektion 12 Partielle differentialliginger Løsning af varmeligningen vha. Fourierrækker Eksempler Nye randbetingelser: isolerede endepunkter Tidsuafhængige varmeligningsproblemer Laplace-ligningen 6
7 Lektion 13 Numeriske metoder til løsning af differentialligninger Bevarelseslove Numeriske overvejelser punktvis repræsentation Finite difference-metoden Lektion 14 Numeriske overvejelser elementvis repræsentation Finite element-metoden Numeriske overvejelser bevarelseslove og voluminer Finite volume-metoden Lektion 15 Numerisk analyse Grundlæggende numerik At løse ligninger vha. iterationer 7
8 Lektion 16 Interpolation Interpolationspolynomier Lagrange-interpolation Newtons generelle divideret differens-metode Newtons forward difference-formel Newtons backward difference-formel Lektion 17 Numerisk integration og differentiation Grundlæggende om numerisk integration Midtpunktsreglen Trapezreglen Simpsons regel Præcisionsgrad Fejlvurderinger i Simpsons regel Gauss-kvadratur Adaptiv numerisk integration Eksempler Numerisk differentiation 8
9 Lektion 18 Numeriske metoder til førsteordens ODE er Euler-metoden Adaptiv skridtlængde Heuns metode Runge-Kutta-metoder Fejlestimering i RK4 Runge-Kutta-Fehlberg Baglæns Euler-metode Eksempler Lektion 19 Mangeskridtsmetoder til løsning af førsteordens ODE er Adams-Bashforth-metoder Adams-Moulton-metoder Eksempel Metoder til førsteordenssystemer og højereordens ODE er Repetition af systemer af ODE er Euler-metoden Runge-Kutta-metoder Runge-Kutta-Nyström-metoder Eksempler Baglæns Euler for systemer 9
10 Lektion 20 Numerisk metode til Laplace- og Poisson-ligningerne Finite difference-formulering af problemet Dirichlet-randbetingelser Gauss-Seidel-iterationsmetoden Neumann- og blandede randbetingelser Irregulær rand 10
Matematisk modellering og numeriske metoder. Lektion 19
Matematisk modellering numeriske metoder Lektion 19 Morten Grud Rasmussen 15. november, 2013 1 Mangeskridtsmetoder til løsning af førsteordens ODE er [Bens afsnit 21.2 side 908] 1.1 Adams-Bashforth-metoder
Matematisk modellering og numeriske metoder. Metoder
Matematisk modellering numeriske metoder Metoder Morten Grud Rasmussen 29. december 2015 Indhold 1 Analytiske metoder 3 1.1 Metoder til ODE er af første orden............................ 3 1.1.1 Separation
Matematisk modellering og numeriske metoder. Lektion 13
Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 3. november 206 Numerisk metode til Laplace- og Poisson-ligningerne. Finite difference-formulering af problemet I det følgende
Matematisk modellering og numeriske metoder. Lektion 1
Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen 4. september, 2013 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).
Matematisk modellering og numeriske metoder
Matematisk modellering og numeriske metoder Morten Grud Rasmussen 5. september 2016 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).
Matematisk modellering og numeriske metoder. Lektion 6
Matematisk modellering og numeriske metoder Lektion 6 Morten Grud Rasmussen 24. september, 2013 1 Forcerede oscillationer [Bogens afsnit 2.8, side 85] 1.1 Et forstyrret masse-fjeder-system I udledningen
Matematisk modellering og numeriske metoder. Lektion 5
Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at
Matematisk modellering og numeriske metoder. Lektion 4
Matematisk modellering og numeriske metoder Lektion 4 Morten Grud Rasmussen 17. september, 013 1 Homogene andenordens lineære ODE er [Bogens afsnit.1] 1.1 Linearitetsprincippet Vi så sidste gang, at førsteordens
Matematisk modellering og numeriske metoder. Lektion 17
Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen. december 16 1 Numerisk integration og differentiation 1.1 Simpsons regel Antag, at vi har en funktion f på intervallet I = [a,
Matematisk modellering og numeriske metoder. Lektion 11
Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 17. oktober, 2013 1 Partielle differentialligninger 1.1 D Alemberts løsning af bølgeligningen [Bogens sektion 12.4 på side 553]
Matematisk modellering og numeriske metoder. Lektion 16
Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på
Matematisk modellering og numeriske metoder. Lektion 10
Matematisk modellering og numeriske metoder Lektion 10 Morten Grud Rasmussen 2. november 2016 1 Partielle differentialligninger 1.1 Det grundlæggende om PDE er Definition 1.1 Partielle differentialligninger
Matematisk modellering og numeriske metoder. Lektion 11
Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 5. november 2016 1 Partielle differentialligninger 1.1 Udledning af varmeligningen Vi vil nu på samme måde som med bølgeligningen
Matematisk modellering og numeriske metoder. Lektion 14
Matematisk modellering og numeriske metoder Lektion 4 Morten Grud Rasmussen 3 november 6 Numeriske metoder til løsning af differentialligninger Bevarelseslove I det følgende vil vi skrive p for et punkt
Matematisk modellering og numeriske metoder. Eksempelsamling
Matematisk modellering og numeriske metoder Eksempelsamling Morten Grud Rasmussen 2. december 206 Indhold Analytiske metoder 3. Metoder til ODE er af første orden............................ 3.. Separation
Matematisk modellering og numeriske metoder. Lektion 18
Matematisk modellering numeriske metoder Lektion 18 Morten Grud Rasmussen 12. november, 2013 1 Numeriske metoder til førsteordens ODE er [Bens afsnit 21.1 side 898] 1.1 Euler-metoden Vi stiftede allerede
Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5
Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5 Nøgleord og begreber Vækstmodel Bevægelsesligninger Retningsfelt Eulers metode Separable ligninger Logistisk ligning Eksponentiel vækst Begyndelsesværdiproblem Calculus
Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)
Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer
Numeriske metoder 2011: Adams-Bashforth-Moulton Predictor-Corrector method
Numeriske metoder 2011: Adams-Bashforth-Moulton Predictor-Corrector method Rasmus Søgaard Christensen (2008 4030) 10. juli 2011 Indhold Indhold 1 1 Introduktion 2 1.1 Systemet under betragtning.......................
Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet
Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning
I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen
S.&P. DIFFERENTIALLIGNINGER 2. februar 2006 Oversigt nr. 1 I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen [EP] Elementary differential equations with boundary
Matematisk modellering og numeriske metoder
Matematisk modellering og numeriske metoder Morten Grud Rasmussen 14. september 016 1 Numerisk analyse 1.1 Grundlæggende numerik Groft sagt handler numerisk analyse om at bringe matematiske problemer på
Differentialligninger med TI Nspire CAS version 3.1
Differentialligninger med TI Nspire CAS version 3.1 Der er tilføjet en ny graftype til Graf værkstedet kaldet Diff lign. Denne nye graftype er en implementering af differentialligningerne som vi kender
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
Førsteordens lineære differentialligninger
enote 16 1 enote 16 Førsteordens lineære differentialligninger I denne enote gives først en kort introduktion til differentialligninger i almindelighed, hvorefter hovedemnet er en særlig type af differentialligninger,
Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler
Lektion 12 2. ordens lineære differentialligninger homogene inhomogene eksempler højere ordens lineære differentiallininger 1 Anden ordens lineære differentialligninger med konstante koefficienter A. Homogene
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene
DesignMat Lineære differentialligninger I
DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En
Matematik-teknologi 3. semester Projekt introduktion
Matematik-teknologi 3. semester Projekt introduktion Thomas Arildsen, Arne Jensen, Rafael Wisniewski Version 3 31. august 2015 1 Indledning Dette dokument giver en introduktion til projektmodulet på 3.
Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005
Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Lineære differentialligningers karakter og lineære 1. ordens differentialligninger
enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.
Mini-formelsamling. Matematik 1
Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...
Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1
1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET
DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET H.A. NIELSEN INDHOLD. Lineær ligning 2 2. Lineært system 8 3. Generel ligning 6 4. Stabilitet 8 Litteratur 2 Noterne er til 4 timers forelæsninger
Mujtaba og Farid Integralregning 06-08-2011
Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation
Matematisk modellering og numeriske metoder
Matematik modellering og numerike metoder Morten Grud Ramuen 4. oktober 26 Laplace-tranformationer. Definitionen af Laplace-tranformationen Definition. (Laplace-tranformation). Lad f være en funktion defineret
Numeriske metoder - til løsning af differentialligninger - fra borgeleo.dk
Numeriske metoder - til løsning af differentialligninger - fra borgeleo.dk Eksakte løsninger: fuldstændig løsning og partikulær løsning Mange differentialligninger kan løses eksakt. Fx kan differentialligningen
Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag:
Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag: Jeg ønsker at gå til eksamen i nedennævnte eksaminationsgrundlag (pensum), som skolen har lavet. Du skal ikke foretage dig yderligere
Eksaminationsgrundlag for selvstuderende
Eksaminationsgrundlag for selvstuderende Jeg ønsker at aflægge prøve på nedenstående eksaminationsgrundlag. Jeg har foretaget ændringer i vejlederens fortrykte forslag: nej ja Dato: Underskrift HUSK at
Matematisk modellering og numeriske metoder. Lektion 15
Matematisk modellering og numeriske metoder Lektion 15 Morten Grud Rasmussen 1. november, 2013 1 Numerisk analyse [Bogens afsnit 19.1 side 788] 1.1 Grundlæggende numerik Groft sagt handler numerisk analyse
Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013
Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2017 Institution Uddannelse Fag og niveau Lærer(e) Hold Rybners HTX Esbjerg HTX Matematik A Vicki Jacob
Differentialligninger
en blid start på Differentialligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
DesignMat Uge 11 Lineære afbildninger
DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen
Lektion ordens lineære differentialligninger
Lektion 11 1. ordens lineære differentialligninger Lineære differentialligninger Lineære differentialligninger af 1. orden 1. homogene 2. inhomogene Lineære differentialligninger af 1. orden med konstante
Differentialligninger af første orden
Differentialligninger af første orden Preben Alsholm Februar 2006 Basale begreber. Eksistens og entydighed. En differentialligning af første orden er en ligning, der sammenknytter differentialkvotienten
Noter til elementær numerisk regning
Noter til elementær numerisk regning Dieter Britz Kemisk Institut, Aarhus Universitet 19 juli 2010 Foreord Dette hæfte er vokset fra noter oprindeligt skrevet af forskellige forfattere til kurset DatA,
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj, 2015 Institution Vid Gymnasier, Rønde Handelsgymnasium Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra
Besvarelser til Calculus Ordinær Eksamen Juni 2019
Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
1RWHWLOGLIIHUHQWLDOOLJQLQJHU
ote til differentialligninger rik Bennike marts 00 ROGIIUQOOJQQJU Først skal man naturligvis gøre sig klart hvilken orden differentialligningen er af. G G,? Indgår,, ( ) kun, eller er der også, ( ) 'IIUQOOJQQJUII
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 19 Opgave 1 (6 point) En funktion
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2013-forår 2014 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e)
Lektion 8 Differentialligninger
Lektion 8 Differentialligninger Implicit differentiation Differentialligninger Separable differentialligninger 0.5 Implicit differentiation 0.4 0.2 0.2 0.4 0.6 0.8 0 0.5 y Vi kan finde måske løse ligningen.5
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj-juni 2015 HTX Vibenhus
Lineære 2. ordens differentialligninger med konstante koefficienter
enote 13 1 enote 13 Lineære 2. ordens differentialligninger med konstante koefficienter I forlængelse af enote 11 og enote 12 om differentialligninger, kommer nu denne enote omkring 2. ordens differentialligninger.
Oversigt over gennemførte undervisningsforløb
Termin Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer Marie Kruses Skole Stx Matematik A Jørgen Ebbesen Hold 2.t Oversigt over gennemførte undervisningsforløb Titel 1 Titel 2 Titel 3 Titel 4
Den svingende streng
Den svingende streng Stig Andur Pedersen October 2, 2009 Ufuldstændigt udkast. Abstract 1 I det 18. århundrede blev differential- og integralregningen, som var introduceret af Newton, Leibniz og mange
Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6
Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter
