I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen
|
|
|
- Helle Klausen
- 9 år siden
- Visninger:
Transkript
1 S.&P. DIFFERENTIALLIGNINGER 2. februar 2006 Oversigt nr. 1 I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen [EP] Elementary differential equations with boundary value problems af C. H. Edwards og D. E. Penney, 5. udgave; Prentice Hall, Planen er at gennemgå afsnittene (om samhørende differentialligninger) og (om hovedtyper af partielle differentialligninger). Siden kommer der en skriftlig eksamen; mere derom senere. Jeg vil forsøge at kæde stoffet sammen med det I har haft på tidligere kurser om differentialligninger. Derfor kan jeg anbefale, at I repeterer afsnittene , som tidligere har været gennemgået på 3. semester. Måske endnu bedre ville det være at læse afsnit i [EP] som optakt. 1. gang, mandag den 6. februar 2006, kl Vi begynder her med forelæsning i Fib. 16/ Sigtet er at gennemgå afsnit 5.6 i [EP]. Nogle stikord: Fuldstændig egenværdi, defekt egenværdi; generaliseret egenvektor; kæde af længde k. Det er hensigten at I skal kunne forstå følgende hovedresultat: Sætning. Enhver n n matrix A har n lineært uafhængige generaliserede egenvektorer. NB! Som vi skal se, er dette nyttigt fordi et differentialligningssystem af formen x (t) = Ax(t) altid kan løses uanset hvad A er. Fra kl er der opgaveregning. Vi ser på opgaver i multiple egenværdier: ; i defekte egenværdier: ; kæder: ; anvendelse: (eksempel med andre tal) Man kan også se på for at se på hvad komplekse rødder giver af løsninger. 1
2 S.&P. DIFFERENTIALLIGNINGER 10. februar 2006 Oversigt nr. 2 Vi fik sidste gang gennemgået kapitel 5.6 i [EP]. Programmet for næste gang er afsnit Som noget helt nyt (for de fleste af jer, antager jeg) skal vi her møde ekponentialfunktionen af en matrix! Det vil sige, at for en n n-matrix A skal vi indføre e A. Tidligere har I mødt e t for reelt tal t R og e z for komplekse tal z C (jvf. mat1a på basis). Man kan vise at e t definere eksponentialmatricen = k=0 t k k! for alle t R. Dette kan vi så bruge til at exp(a) = e A = k=0 1 k! Ak. (1) Tilsvarende fås e ta ved at erstatte A ovenfor med ta, hvor t R. Fordelen ved matricen e ta er helt konkret at begyndelsesværdiproblemet for n samhørende differentialligninger x (t) = Ax(t), x(0) = x 0, (2) faktisk løses af x(t) = e ta x 0. Dette minder jo nydeligt om situationen for n = 1 (hvori A jo blot er et tal) og er nyttigt i mange sammenhænge. 2. gang, mandag den 13. februar Vi begynder kl med forelæsning over afsnit 5.7. Desuden skulle vi gerne nå 5.8, som dog kun gennemgås fra side 414. Fra kl ser vi på opgaver i kæder: ; fundamentalmatricer: ; nilpotente matricer: ; eksponentialmatricer: , og til den almene metode: løsningsformlen: NB! Sørg for at regne mindst en opgave fra hvert emne, mens Rasmus eller jeg kan hjælpe jer. Siden bør I naturligvis løse resten af opgaverne hjemme for at sikre jer I har forstået sagerne. 2
3 S.&P. DIFFERENTIALLIGNINGER 16. februar 2006 Oversigt nr. 3 Sidste gang gennemgik vi kapitel 5.7 af [EP], og ganske lidt fra kapitel 5.8 om de inhomogene førsteordens systemer: x (t) = Ax(t) + f(t), x(0) = x 0. (3) Vi viste at når koefficientmatricen A er konstant, så er løsningen givet ved formlen t x(t) = e ta x 0 + e ta e sa f(s) ds. (4) Bemærk at dette korrigerer formel (28) side 417 i [EP], hvor integrationsvariablen ikke burde hedde t. 3. gang, mandag den 27. februar. I tiden vil vi her runde kapitel 5 af ganske kort. Dernæst vil vi tage hul på emnet partielle diffenrentialligninger. Konkret vil vi gennemgå afsnit 8.5 i [EP] om varmeledningsligningen. Den er et eksempel på en såkaldt parabolsk differentialligning. I løsningen af denne ligning vil vi udnytte Fourierrækker, som blev gennemgået via bogens kapitel på 3. semester. Repeter dette! Som vi skal se, vil det for varmeledning i en stang af længde L være relevant at løse varmeledningsligningen (med u(x, t) = den ubekendte temperatur i x til tiden t) u t 2 u x = 0 (5) 2 under passende bibetingelser. Disse vil dels være begyndelsesbetingelser af formen u(x, 0) = f(x), (6) hvorved f(x) er en given funktion (der repræsenterer temperaturfordelingen til tiden t = 0). Dels er der flere typer af randbetingelser, som f.eks. den såkaldte Dirichlét-betingelse u(0, t) = 0 = u(l, t). (7) Tilsammenligning er Neumann-betingelsen den, hvor det kræves at Fra kl ser vi på opgaver i løsningsformlen: (NB! A er nilpotent); Dirichlétbetingelsen: ; 0 u u (0, t) = 0 = (L, t). (8) x x 3
4 Neumannbetingelsen: ; Randbetingelsens effekt: Regn både og ; Anvendelse: Regn først , dernæst ; Mere realistisk randbet.:
5 S.&P. DIFFERENTIALLIGNINGER 2. marts 2006 Oversigt nr. 4 Besvarelser af udvalgte opgaver fra sidste gang er nu tilgængelige fra jjohnsen/teaching/index.html Sidste gang fik vi gennemgået afsnit 8.5 om varmeledningsligningen (dog blev denne kun studeret, ej udledt). Vi så på den 1-dimensionale situation (som flere af jer bemærkede er lettere urealistisk). Hvis man regner temperaturen som en funktion u(x, y, z, t), som afhænger af de retvinklede koordinater x, y, z, så kan det vises at den relevante ligning bliver u t = u k( 2 x + 2 u 2 y + 2 u ). (9) 2 z2 De ekstra led komplicerer naturligvis sagerne, navnlig i notationen; grundtrækkene i behandlingen ligner det vi har set for den 1-dimensionale ligning. 4. gang, mandag den 6. marts. Vi gennemgår først den 1-dimensionale bølgeligning, som f.eks. beskriver en svingende guitarstreng (eller en hængebro...?), 2 u t 2 = a2 2 u x 2. (10) Her står a for bølgehastigheden. I tre dimensioner har man også her en mere generel ligning for den ubekendte u = u(x, y, z, t), 2 u t 2 = a 2 ( 2 u + 2 u + 2 u). (11) x 2 y 2 z 2 Desuden hører der randbetingelser til for at fastlægge løsningen. Og som noget anderledes skal der nu to begyndelsesbetingelser til, u(x, 0) = f(x), u(x, 0) = g(x). (12) t Dette er dog naturligt fordi vi har en tidsafledt af anden orden i ligningen. (Denne begyndelsesbetingelse, hvori antallet af betingelser er lig antallet af tidsafledte i ligningen, er kendt som Cauchys betingelse.) Fra ser vi på opgaver. grundfrekvens: (jvf. formlerne (2) og (25)). anvendelse: Regn ( og) Bemærk at opgaven kan illustrere, hvad der sker når en understøttelse pludselig forsvinder. (Man kan måske tænke på et stillads med tre standere, hvoraf den miderste pludselig knækker.) At den maksimale nedbøjning bliver y(x) = 2ϕ(x), hvor ϕ(x) angiver den (negative) ligevægtsstilling, er vel egentlig både simpelt og overraskende. (Hvordan skulle man opnå det resultat uden løsning af en partiel differentialligning?) 5
6 d Alemberts løsning: Regn Lav også , som viser at begyndelsesog randbetingelserne vil være opfyldt, hvis F er pæn nok. fart- eller steddata nul: hhv ingen nuldata:
7 S.&P. DIFFERENTIALLIGNINGER 9. marts 2006 Oversigt nr gang, fredag den 10. marts. Vi mødes kl til gennemgang af kapitel 8.7. Her skal vi møde Laplaceligningen, som er hovedeksemplet på partielle differentialligninger af den elliptiske type. For jeres formål vil det oftest betyde at tiden ikke indgår i ligningen så det er typisk stationære fænomener der beskrives af den slags ligninger (spændinger i et deformeret materiale, f.eks.). Som opgaver ser vi på Dirichlet-problemet for et rektangel: Bemærk at de sammmen med Eksempel giver hele løsningen for et rektangel. Områder med rotationssymmetri: Regn Bemærk udtrykket i formel (22) for Laplaceoperatoren i polære koordinater. 7
8 S.&P. DIFFERENTIALLIGNINGER 17. marts 2006 Oversigt nr. 6 Vi fik den sidste gang gennemgået afsnit 8.7 om Laplaces ligning og Dirichléts randværdiproblem for den. Hovedeksemplet var stationær temperaturfordeling. Vi nåede til og med løsningsformlen for et cirkulært område, behandlet i polære koordinater (til side 608). For en fuldstændigheds skyld nævnes, at funktionerne cosh x og sinh x (hyperbolsk cosinus og sinus) er defineret ved cosh x = 1 2 (ex + e x ), sinh x = 1 2 (ex e x ). (13) Disse optræder i bogens udregninger, men man kan altså også benytte eksponentialfunktioner som gjort ved forelæsningen. (Løsningsformlerne er dog nok mest klare når man bruger cosh og sinh.) Pensum. Kursets pensum er de læste afsnit af Edwards og Penneys bog. Mere præcist er dette afsnit 5.6, 5.7 og 5.8 (dog er side 412 til midten af 414 kursorisk); og 8.5, 8.6 og 8.7. Opgaver der er indikative for den kommende skriftlige eksamen kommer senere, sidst i maj. 8
MATEMATIK 1A MATEMATISK ANALYSE 12. november 2009 Oversigt nr. 1
MATEMATISK ANALYSE 12. november 2009 Oversigt nr. 1 På hold 3 fortsætter vi med integration i flere variable i uge 47. Man kan med fordel repetere kapitel 13.4 og 13.5 og deri regne sandt/falsk opgaverne
Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
Eksamen i Mat F, april 2006
Eksamen i Mat F, april 26 Opgave Lad F være et vektorfelt, givet i retvinklede koordinater som: Udregn F og F: F x F = F x i + F y j + F z k = F y = z 2 F z xz y 2 F = F x + F y + F z = + + x. F = F z
Modulpakke 3: Lineære Ligningssystemer
Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system
Matematisk modellering og numeriske metoder. Lektion 11
Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 17. oktober, 2013 1 Partielle differentialligninger 1.1 D Alemberts løsning af bølgeligningen [Bogens sektion 12.4 på side 553]
Besvarelser til de to blokke opgaver på Ugeseddel 7
Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene
Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005
Lineære 1. ordens differentialligningssystemer
enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære
Matematisk modellering og numeriske metoder. Lektion 13
Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 3. november 206 Numerisk metode til Laplace- og Poisson-ligningerne. Finite difference-formulering af problemet I det følgende
Lineære 1. ordens differentialligningssystemer
enote 7 enote 7 Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses Der bruges egenværdier og egenvektorer i løsningsproceduren,
Førsteordens lineære differentialligninger
enote 16 1 enote 16 Førsteordens lineære differentialligninger I denne enote gives først en kort introduktion til differentialligninger i almindelighed, hvorefter hovedemnet er en særlig type af differentialligninger,
Matematisk modellering og numeriske metoder
Matematisk modellering og numeriske metoder Morten Grud Rasmussen 5. september 2016 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne
Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)
Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer
DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET
DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET H.A. NIELSEN INDHOLD. Lineær ligning 2 2. Lineært system 8 3. Generel ligning 6 4. Stabilitet 8 Litteratur 2 Noterne er til 4 timers forelæsninger
Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan
Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles
Tidligere Eksamensopgaver MM505 Lineær Algebra
Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................
Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1
1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy
Matematik F Et bud på hvordan eksamenssæt løses
Matematik F Et bud på hvordan eksamenssæt løses Jeppe Trøst Nielsen 11. april 21 Denne samling af ligninger og løsninger er udarbejdet efter det princip, at eksamenssættene ikke ændrer sig specielt meget
Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning
Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis
Noter til Perspektiver i Matematikken
Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra
Matematisk modellering og numeriske metoder. Lektion 5
Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 19 Opgave 1 (6 point) En funktion
Gamle eksamensopgaver (DOK)
EO 1 Gamle eksamensopgaver ) Opgave 1. sommer 1994, opgave 1) a) Find den fuldstændige løsning til differentialligningen x 6x + 9x =. b) Find den fuldstændige løsning til differentialligningen Opgave 2.
Matematisk modellering og numeriske metoder. Overskrifter
Matematisk modellering og numeriske metoder Overskrifter Morten Grud Rasmussen 25. november, 2013 Lektion 1 Ordinære differentialligninger ODE er helt grundlæggende Løsninger Begyndelsesværdiproblemer
Projekt 4.9 Bernouillis differentialligning
Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,
af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning
EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens
Lineære differentialligningers karakter og lineære 1. ordens differentialligninger
enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.
ANALYSE 1, 2014, Uge 5
ANALYSE, 204, Uge 5 Afleveringsfrist for Prøve 2 er Tirsdag den 20/5 kl 0:5. Forelæsninger Tirsdag Vi går videre med Afsnit 4 om uniform konvergens af Fourierrækker, hvor hovedsætningen er Sætning 4.3.
x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet
Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen
DesignMat Uge 5 Systemer af lineære differentialligninger II
DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem
DesignMat Uge 4 Systemer af lineære differentialligninger I
DesignMat Uge Systemer af lineære differentialligninger I Preben Alsholm Efterår 008 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden I Lineært differentialligningssystem
Matematisk modellering og numeriske metoder. Lektion 11
Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 5. november 2016 1 Partielle differentialligninger 1.1 Udledning af varmeligningen Vi vil nu på samme måde som med bølgeligningen
Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion
ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit
Lineære 1. ordens differentialligningssystemer
enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Varmeligningen og cosinuspolynomier.
Varmeligningen og cosinuspolynomier. Projekt for MM50 Marts 009 Hans J. Munkholm 0. Praktiske oplysninger Dette projekt besvares af de studerende, som er tilmeldt eksamen i MM50 uden at være tilmeldt eksamen
Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen
Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger
Egenværdier og egenvektorer
1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.
12.1 Cayley-Hamilton-Sætningen
SEKTION 12.1 CAYLEY-HAMILTON-SÆTNINGEN 12.1 Cayley-Hamilton-Sætningen Sætning 12.1.1 (Cayley-Hamilton) Lad A Mat n,n (C). Så gælder p A (A) =. Sætningen gælder faktisk over et vilkårligt legeme, men vi
4. Differentialligninger i højere dimension, Dirichlet problemet
4.1 4. Differentialligninger i højere dimension, Dirichlet problemet 4.1. Indledning, de forskellige typer. Der er tre hovedeksempler på partielle differentialligninger, som har særlig betydning i fysik:
Eulers equidimensionale differentialligning
Eulers equidimensionale differentialligning Projektbesvarelse for MM501, udformet af Hans J. Munkholm Differentialligningen September-oktober 2009 For at kunne referere let og elegant gentages differentialligningen
Besvarelser til Calculus Ordinær Eksamen Juni 2018
Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1
Besvarelse af Eksamensopgaver Juni 5 i Matematik H Opgave De fire vektorer stilles op i en matrix som reduceres: 4 4 4 8 4 4 (a) Der er ledende et-taller så dim U =. Som basis kan f.eks. bruges a a jfr.
Lektion ordens lineære differentialligninger
Lektion 11 1. ordens lineære differentialligninger Lineære differentialligninger Lineære differentialligninger af 1. orden 1. homogene 2. inhomogene Lineære differentialligninger af 1. orden med konstante
Vejledende besvarelse på august 2009-sættet 2. december 2009
Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,
Matematisk modellering og numeriske metoder. Lektion 10
Matematisk modellering og numeriske metoder Lektion 10 Morten Grud Rasmussen 2. november 2016 1 Partielle differentialligninger 1.1 Det grundlæggende om PDE er Definition 1.1 Partielle differentialligninger
Differentialligninger med TI-Interactive!
Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4
(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.
MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)
Besvarelser til Calculus Ordinær Eksamen Juni 2019
Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Matematisk modellering og numeriske metoder. Lektion 1
Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen 4. september, 2013 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).
Matematisk modellering og numeriske metoder. Lektion 13
Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 9. november 25 Divergens af et vektorfelt [Sektion 9.8 og.7 i bogen, s. 43]. Definition af og og egenskaber for divergens Lad
2010 Matematik 2A hold 4 : Prøveeksamen juni 2010
1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik
Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)
SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige
Matematik-teknologi 3. semester Projekt introduktion
Matematik-teknologi 3. semester Projekt introduktion Thomas Arildsen, Arne Jensen, Rafael Wisniewski Version 3 31. august 2015 1 Indledning Dette dokument giver en introduktion til projektmodulet på 3.
Ugeseddel 12(10.12 14.12)
Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen
Eksamen i Calculus Fredag den 8. januar 2016
Eksamen i Calculus Fredag den 8. januar 2016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med
Komplekse tal og algebraens fundamentalsætning.
Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes
Matematik for økonomer 3. semester
Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben
Lineær Algebra, 2015 1. kursusgang
Lineær Algebra, 2015 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2015 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Fredrik
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over
Vektorfelter. enote Vektorfelter
enote 24 1 enote 24 Vektorfelter I enote 6 indføres og studeres vektorer i plan og rum. I enote 16 ser vi på gradienterne for funktioner f (x, y) af to variable. Et gradientvektorfelt for en funktion af
Noter til Computerstøttet Beregning Taylors formel
Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også
Flemmings Maplekursus 1. Løsning af ligninger
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er
Noter til An0 DIFFERENTIALLIGNINGER MED KONSTANTE KOEFFICIENTER
UDKAST 7122009 Noter til An0 Inst f Matematiske Fag Gerd Grubb December 2009 DIFFERENTIALLIGNINGER MED KONSTANTE KOEFFICIENTER 1 Generelle resultater 11 Introduktion I tidligere kurser er der gennemgået
To find the English version of the exam, please read from the other end! Eksamen i Calculus
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er
[EP] C. Edwards og D. Penney: Calculus, 6th edition, Prentice Hall, New Jersey, 2002.
MATEMATISK ANALYSE 29. august 2003 Oversigt nr. 1 I kurset matematik 1A skal vi beskæftige os med matematisk analyse, og der kommer groft sagt til at være tre emner: Funktioner af flere variable (hvordan
MATEMATIK C. Videooversigt
MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...
DesignMat Lineære differentialligninger I
DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En
Biologisk model: Epidemi
C1.2 C.7 Se forklaring i Appendiks A 1, si. 9 Biologisk model: Epidemi af John V. Petersen 1. Biologisk model: Epidemi... si. 1 A. Appendiks A 1. Ligninger si. 1, forklaring... si. 9 A 2. Egenvektorer
