Matematisk modellering og numeriske metoder

Størrelse: px
Starte visningen fra side:

Download "Matematisk modellering og numeriske metoder"

Transkript

1 Matematik modellering og numerike metoder Morten Grud Ramuen 4. oktober 26 Laplace-tranformationer. Definitionen af Laplace-tranformationen Definition. (Laplace-tranformation). Lad f være en funktion defineret på de ikke-negative reelle tal. Hvi integralet F () = L(f)() = e t f(t) dt () ekiterer, å kalde L(f) Laplace-tranformationen af f. Den lineære operator L om afbilder en funktion ind i in Laplace-tranformation kalde ogå for Laplace-tranformationen. Bemærkning.2. Notationen f(t) dt = I betyder at tørrelen f(t) dt = I(M) ekiterer for alle M > og at grænen lim M I(M) ekiterer og er ligmed I. Laplace-tranformationen af en funktion navngivet med et lille bogtav (ekempelvi f) krive ofte om amme bogtav i tor udgave (ekempelvi F ). I det følgende vil vi reervere bogtavet t til den uafhængige variabel af den originale funktion, men bruge om den uafhængige variabel af Laplace-tranformationen. Hvi F () = L(f)() for alle værdier af, kriver vi ogå f = L (F ). Der finde forkellige funktioner f g om opfylder, at L(f) = L(g), å trengt taget er L (F ) ikke entydigt defineret. Heldigvi har dette problem ikke de tore praktike konekvener og kan helt undgå, hvi man ekempelvi holder ig til kontinuerte funktioner; hvi f g og f og g begge er kontinuerte, å vil ogå L(f) L(g). Ekempel.3. Lad f(t) = for t. Vi vil finde L(f). Pr. definition, for. L(f)() = L()() = e t dt = e t t= =,

2 Ekempel.4. Lad f(t) = e at for t og en kontant a. Vil vil finde L(f). Vi bruger igen definitionen: L(e at )() = e t e at dt = a e ( a)t = a, når a >..2 Linearitet af Laplace-tranformationen Som allerede nævnt er Laplace-tranformationen L en lineær operator. Og hvad betyder å det? Jo: Definition.5 (Lineær operator). En lineær operator L er en afbildning fra et vektorrum X til et andet vektorrum Y om opfylder L(ax + by) = al(x) + bl(y) for alle vektorer x, y X og alle kalarer a, b. Denne egenkab kan bruge til nemmere at udregne Laplace-tranformationen af en funktion. Vi ikke har præcieret hvilke funktionrum, L er defineret fra og til, men det kan vie, at de rent faktik begge er vektorrum. Vi vil nu vie påtanden: Sætning.6 (Laplace-tranformationen er en lineær operator). Laplace-tranformationen er en lineær operator. Bevi. Lad a og b være reelle tal, og antag at f og g ligger i domænet for L, dv. e t f(t) dt og e t g(t) dt ekiterer. Dette betyder at I f (M) = e t f(t) dt og I g (M) = ekiterer for alle M og har de endelige græneværdier t= e t g(t) dt lim I f(m) = I f = M e t f(t) dt og lim M I g(m) = I g = e t g(t) dt. Da integration er lineær, å må e t (af(t) + bg(t)) dt = a e t f(t) dt + b e t g(t) dt = ai f (M) + bi g (M) (2) hvor højreiden oplagt konvergerer mod ai f + bi g. Da (2) gælder for alle M, å må ventreiden have amme græneværdi og vi konkluderer at for alle a, b, f og g. L(af + bg) = al(f) + bl(g) Ekempel.7. Vi vil finde Laplace-tranformationen af f : t coh(at). Da coh(at) = 2 (eat + e at ), et andet ord for tal, om ofte bruge i forbindele med vektorer 2

3 kan vi udnytte lineariteten og Ekampel.4 til at få L(f)() = 2 (L(ea ) + L(e a ))() = 2 hvor e a betegner funktionen t e at. ( a + ) = + a 2 a 2, Laplace-tranformationen af t inh(at) kan udregne tilvarende, men de ikke-hyperbolke udgaver, in og co, med jere nuværende viden kræver et trick for at blive udregnet, omend man kan blive fritet til at nyde og bruge de åkaldte Euler-repræentationer co(at) = 2 (eiat +e iat ) og in(at) = 2i (eiat e iat ) (hvi man ignorerer at ekponenten er komplek og bare bruger metoden ovenfor algebraik, å vil man komme til det rigtige reultat vi vil dog bevæge o på uikker grund, da vi ikke har et, hvordan man håndterer kompleke integraler)..3 Laplace-tranformationen af polynomier Pr. linearitet kan oventående ektionoverkrift reducere til Laplace-tranformationen af imple monomier, hvor et monomium er en funktion f på formen f : t t n for et naturligt tal n. Vi udleder i tedet det mere generelle reultat at for alle reelle tal a og f : t t a er L(f)() = Γ(a + ) a+. Da e x x n dx = Γ(n + ) = n!, varer denne formel til den anden formel, når a = n er et naturligt tal. Vi nyder dog en mule ved at undlade at vie, at Γ(n + ) = n! rent faktik er tilfældet. Udledningen går om følger. L(f)() = e t t a dt = e x ( x ) a dx = a+ e x x a dx = Γ(a + ) a+ hvor vi undervej ubtituerede t = x og brugte definitionen af Γ(a + )..4 At udkifte med a i tranformationen Handlingen bekrevet i denne ektion overkrift kalde ogå -hifting eller -forkydning og klare ved at udnytte følgende imple trick. Sætning.8. Hvi f Laplace-tranformation er F () for > k, hvor k er et tilpa tort tal, å er t e at f(t) Laplace-tranformation F ( a) for a > k, kort krevet: L(e a f)() = F ( a) Bevi. Lad k være å tor at F () ekiterer for > k. Så ekiterer F ( a) for a > k og om påtået. F ( a) = e ( a)t f(t) dt = 3 e t e at f(t) dt = L(e a f)

4 .5 Ekiten og entydighed Sætning.9. Lad f være integrabel på ethvert endeligt interval på den poitive halvake og have højt ekponentiel vækt: f(t) Me kt for paende kontanter M og k. Så ekiterer Laplace-tranformationen L(f)() for alle > k. Vi bemærker, at en tiltrækkelig betingele for at være integrabel på ethvert endeligt interval er at være tykkevit kontinuert. Bevi. Antag at > k. Så er M k = Me kt e t dt Da førte tal er endeligt, er det idte ogå. f(t) e t e t f(t) dt = L(f)(). Dette var ekiten. Hvad med entydighed? Vi har allerede berørt emnet; to forkellige funktioner f og g kan give anledning til amme Laplace-tranformerede, hvi man ikke nøje med at kigge på ekempelvi kontinuerte f og g. Det er dog muligt at give præci matematik betydning af udagnet: hvi L(f) = L(g), å er f og g eentielt en. 2 Laplace-tranformationen og ODE er Okay, hvad er pointen med die Laplace-tranformationer? Jo, det vier ig, at Laplace-tranformationen gør det muligt at tranformere et IVP om til et algebraik problem, hvi løning kan tranformere tilbage til en løning af IVP et. En grundlæggende ingredien er det følgende. 2. Laplace-tranformationer af afledte Sætning 2. (Laplace-tranformationen af den n te afledte af en funktion). Antag at den k te afledte t f (k) (t) af en funktion f er kontinuert for alle t og har højt ekponentiel vækt for alle k n. Antag at f (n) er tykkevit kontinuert på ethvert endeligt interval på den poitive halvake. Så er L(f (n) )() = n L(f)() n f() n 2 f () f (n ) () for alle tiltrækkeligt tore. Specielt gælder for henholdvi n = og n = 2, at L(f )() = L(f)() f() og L(f )() = 2 L(f)() f() f (). Bevi. Vi begynder med tilfældet n =. Antag ført, at f er kontinuert (og ikke blot tykkevit kontinuert). Ved at bruge definitionen og partiel integration få L(f )() = e t f (t) dt = [e t f(t)] + e t f(t) dt. 4 t=

5 Antagelerne giver nu, at t e t f(t) evalueret i (trengt taget er der tale om at finde en græneværdi) er, når er tiltrækkeligt tor ( > k, hvor k er k et fra væktbetingelen), men e f() = f() og det idte integral er L(f)(). Dette giver L(f )() = L(f)() f(). (3) Hvi f kun er tykkevit kontinuert, kan de amme argumenter bruge på hver af de kontinuerte dele, og pr. linearitet er konkluionen den amme. Det generelle reultat følger nu af at bruge (3) på f (n) iterativt: hvilket aflutter beviet. L(f (n) )() = L(f (n ) )() f (n ) () = 2 L(f (n 2) )() f (n 2) () f (n ) ()... = n L(f)() n f() f (n ) () Ekempel 2.2. Tidligere talte vi om at nyde med udregningen af Laplace-tranformationen af t co(at). Nu gør vi det ordentligt. Lad f(t) = co(at). Så er f() =, f () = og f (t) = a 2 f(t). Pr. linearitet og Sætning 2. får vi nu to forkellige måder at udtrykke L(f ) ved hjælp af L(f): L(f )() = a 2 L(f)() = 2 L(f)(). Hvi vi nu iolerer L(f)() i den idte lighed, få L(f)() = 2 + a 2. et tilvarende argument giver Laplace-tranformationen af t in(at). (Vink: betragt L(f ).) 2.2 Laplace-tranformationen af integralet af en funktion Sætning 2.3 (Laplace-tranformationen af et integral). Lad F betegne Laplace-tranformationen af en tykkevit kontinuert funktion f med højt ekponentiel vækt (vi kalder faktoren i ekponenten for k). Så har vi for > max(, k) og t > hvor f(t) dt er funktionen τ Bevi. Vi begynder med at kontatere at f(t) dt f(t) dt M å τ f(t) dt = f(τ) tykkevit kontinuert og ( ) L f(t) dt () = F (), f(t) dt. d f(t) dt har højt ekponentiel vækt. Deuden er dτ f(t) dt =. Vi kan nu benytte Sætning 2. på f og få ( ) L(f)() = L f(t) dt (). Reultatet få nu ved at dividere begge ider med. 5 e kt dt = M k (ekτ ) M k ekτ

6 2.3 Laplace-tranformationen om et værktøj til at løe IVP er Betragt andenorden IVP et y (t) + ay (t) + by(t) = r(t), y() = K, y () = K, (bemærk at andenorden IVP er ogå kræver y (x ) = z og ikke blot y(x ) = y for at være fuldt determineret.) Her er a, b, K og K kontanter, og funktionen r kalde inputtet eller den drivende kraft og y kalde outputtet eller reponen til den drivende kraft. Idéen er nu at tage Laplace-tranformationen på begge ider af ligningen: hvilket vi er kan krive om L(y + ay + by)() = L(r)(t) ( 2 Y () y() y ()) + a(y () y()) + by () = ( 2 + a + b)y () ( + a)y() y () = R() hvor Y = L(y) og R = L(r). Ved at iolere Y () få Y () = ( + a)y() + y () + R() 2 + a + b = ( ( + a)y() + y () ) Q() + R()Q(), (4) hvor Q() = = kalde tranferfunktionen. Bemærk at Q hverken afhænger af r(t) 2 +a+b (+ 2 a)2 +b 4 a2 eller af begyndeleværdibetingelerne men kun af a og b. Da løningen y er differentiabel, er den ogå kontinuert, og den invere Laplace-tranformation af Laplace-tranformationen af y er derfor entydigt betemt. Dette betyder, at vi blot kan tage den invere Laplace-tranformation af den algebraike løning af Laplace-tranformationen af ODE en (4) for at finde en løning til ODE en. Dette gøre normalt ved at omkrive højreiden af (4) om en um af led hvi invere Laplace-tranformation kan finde i tabeller er ved at bruge et computerprogram. Ekempel 2.4. Vi vil nu løe andenorden IVP et y (t) y(t) = t, y() =, y () =. Vi bemærker at Q() = 2 og da r(t) = t, er L(r) = 2, å (4) bliver Y () = ( ( + ) + ) = + ( 2 2 ). Vi er nu klar til at ætte det hele ammen for at finde løningen til det oprindelige problem. Vi genkender førte led om en -forkudt (forkudt med ). Da er Laplace-tranformationen af den kontante funktion, og da -forkydninger få ved at gange med funktionen t e at, hvor a er tørrelen af kiftet, konkluderer vi at L ( )(t) = et. Det næte led, 2 er Laplace-tranformationen af t inh(t). Derfor er L ( 2 )(t) = inh(t). Det idte led er Laplace-tranformationen af t. Alt i alt, y(t) = e t + inh(t) t, og vi bemærker at denne løning blev fundet uden ført at finde en generel løning. 6

7 3 Tabel over Laplace-tranformationen af udvalgte funktioner f(t) t t 2 t n n=,,2,... t a a e at L(f)() 2! n! 2 3 n+ Γ(a+) a+ a f(t) co(ωt) in(ωt) coh(at) inh(at) e at co(ωt) e at in(ωt) L(f)() 2 +ω 2 ω 2 +ω 2 2 a 2 a 2 a 2 a ( a) 2 +ω 2 ω ( a) 2 +ω 2 7

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi Fag: Termodynamik - Statitik fyik - Termodynamike relationer - Fri energi - Entropi 1 Indholdfortegnele... 2 Forord... 3 Formelle definitioner... 3 Et ytem... 3 Et lukket ytem... 3 Et ioleret ytem... 3

Læs mere

Sammenhængen mellem strækning og tid Farten angiver den tilbagelagte strækning i et tidsrum. Farten kan bestemmes ved brug af formlen:

Sammenhængen mellem strækning og tid Farten angiver den tilbagelagte strækning i et tidsrum. Farten kan bestemmes ved brug af formlen: Oplag 8: FORMLHÅNDTRING Sammenhængen mellem trækning og tid Farten angiver den tilbagelagte trækning i et tidrum. Farten kan betemme ved brug af formlen: fart = trækning tid Anvender vi i tedet ymboler,

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen Program Statitik og Sandynlighedregning 2 Normalfordelingen venner og bekendte Helle Sørenen Uge 9, ondag Reultaterne fra denne uge kal bruge om arbejdhete i projekt 1. I formiddag: χ 2 -fordelingen, t-fordelingen,

Læs mere

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse Hjemmeopgave Makroøkonomi,. årprøve, foråret 2005 Vejledende bevarele Opgave. Korrekt. Arbejdtyrken er en beholdning- (tock) variabel, idet man på et givet tidpunkt (fx. jan) kan tælle, hvor mange der

Læs mere

Matematisk modellering og numeriske metoder. Lektion 4

Matematisk modellering og numeriske metoder. Lektion 4 Matematisk modellering og numeriske metoder Lektion 4 Morten Grud Rasmussen 17. september, 013 1 Homogene andenordens lineære ODE er [Bogens afsnit.1] 1.1 Linearitetsprincippet Vi så sidste gang, at førsteordens

Læs mere

Matematisk modellering og numeriske metoder. Overskrifter

Matematisk modellering og numeriske metoder. Overskrifter Matematisk modellering og numeriske metoder Overskrifter Morten Grud Rasmussen 25. november, 2013 Lektion 1 Ordinære differentialligninger ODE er helt grundlæggende Løsninger Begyndelsesværdiproblemer

Læs mere

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast Det krå kat Data Forøg 1: = 38 V 0 = 4, 94 K vidde = 2, 058 H = 0, 406 t = 0, 53 Forøg 2 (60 ): = 60 V 0 = 4, 48 K vidde = 1, 724 H = 0, 788 t = 0, 77 Fyik del Udførel af forøg Kat på 38 : Forøgoptilling:

Læs mere

Matematisk modellering og numeriske metoder. Lektion 6

Matematisk modellering og numeriske metoder. Lektion 6 Matematisk modellering og numeriske metoder Lektion 6 Morten Grud Rasmussen 24. september, 2013 1 Forcerede oscillationer [Bogens afsnit 2.8, side 85] 1.1 Et forstyrret masse-fjeder-system I udledningen

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Matematisk modellering og numeriske metoder. Lektion 10

Matematisk modellering og numeriske metoder. Lektion 10 Matematisk modellering og numeriske metoder Lektion 10 Morten Grud Rasmussen 2. november 2016 1 Partielle differentialligninger 1.1 Det grundlæggende om PDE er Definition 1.1 Partielle differentialligninger

Læs mere

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008 Faldmakine Eben Bork Hanen Amanda Laren Martin Sven Qvitgaard Chritenen 23. november 2008 Indhold Formål 3 2 Optilling 3 2. Materialer............................... 3 2.2 Optilling...............................

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Den Teknisk-Naturvidenskabelige Basisuddannelse Storgruppe 9736

Den Teknisk-Naturvidenskabelige Basisuddannelse Storgruppe 9736 Den Teknik-Naturvidenkabelige aiuddannele Storgruppe 9736 Titel: Digital ignalbehandling Synopi: Projektperiode: P //98-9/5/98 Projektgruppe: 347 Deltagere: Clau Albøge Mad Chritenen Tonny Gregeren Karten

Læs mere

6 ARMEREDE BJÆLKER 1

6 ARMEREDE BJÆLKER 1 BETONELEMENTER, SEP. 009 6 ARMEREDE BJÆLKER 6 ARMEREDE BJÆLKER 1 6.1 Brudgrænetiltande 3 6.1.1 Bøjning 3 6.1.1.1 Tværnitanalye generel metode 3 6.1.1. Kanttøjning 5 6.1.1.3 Bøjning uden trykarmering 5

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 17. oktober, 2013 1 Partielle differentialligninger 1.1 D Alemberts løsning af bølgeligningen [Bogens sektion 12.4 på side 553]

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Brugerundersøgelse 2013 Plejebolig

Brugerundersøgelse 2013 Plejebolig Brugerunderøgele 2013 Plejebolig Brugerunderøgelen er udarbejdet af Epinion AS og Afdeling for Data og Analye, Sundhed- og Omorgforvaltningen, København Kommune. Layout: KK deign Foridefoto: Henrik Friberg

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

Matematisk modellering og numeriske metoder. Lektion 1

Matematisk modellering og numeriske metoder. Lektion 1 Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen 4. september, 2013 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Nøgleord og begreber Eksistens og entydighed Elementære funktioner Eksponential af matrix Retningsfelt Eulers metode Hastighedsfelt for system Eulers metode for

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

BRUGERUNDERSØGELSE 2015 PLEJEBOLIG LANGGADEHUS

BRUGERUNDERSØGELSE 2015 PLEJEBOLIG LANGGADEHUS BRUGERUNDERSØGELSE PLEJEBOLIG LANGGADEHUS Sundhed- og Omorgforvaltningen Brugerunderøgele : Plejebolig 1 Brugerunderøgele Plejebolig Brugerunderøgelen er udarbejdet af Epinion P/S og Afdeling for Data

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Reeksamen i Calculus Tirsdag den 20. august 2013

Reeksamen i Calculus Tirsdag den 20. august 2013 Reeksamen i Calculus Tirsdag den 20. august 2013 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

Implicit givne og inverse funktioner

Implicit givne og inverse funktioner Implicit givne og inverse funktioner Morten Grud Rasmussen 1 11. april 2016 1 Implicit givne funktioner I lineær algebra har vi lært meget om at løse lineære ligningsystemer og om strukturen af løsningsmængden.

Læs mere

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker Arne Jensen 7. 11. marts 2005 1 Indledning I forbindelse med kurset i Reelle og Komplekse Funktioner afholdes et fordybelsesprojekt med et omfang

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Noter til Computerstøttet Beregning Taylors formel

Noter til Computerstøttet Beregning Taylors formel Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Semesterprojekt 2007 - Svingningssystemer mekanisk/elektrisk analogi

Semesterprojekt 2007 - Svingningssystemer mekanisk/elektrisk analogi Semeterprojekt SDU - Det Teknik Fakultet Gruppe 6 DDF1 Vejleder: Henning Bremøe Hanen Projektperiode: 10. eptember 007-14. december 007 Semeterprojekt 007 - Svingningytemer mekanik/elektrik analogi Udarbejdet

Læs mere

En varmluftsballon. s Kurvelængden fra ballonens toppunkt til punktet P. til symmetriaksen.

En varmluftsballon. s Kurvelængden fra ballonens toppunkt til punktet P. til symmetriaksen. P og En varmluftballon Denne artikel er en lettere revideret udgave af en artikel, om Dan Frederiken og Erik Vetergaard fra Haderlev Katedralkole havde i LMFK-bladet nr. 2, februar 1997. Enhver, om er

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

er en n n-matrix af funktioner

er en n n-matrix af funktioner Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Ligning og løsning Nøgleord og begreber Eksistens og entdighed Elementære funktioner Eksponential af matrix Retningsfelt Hastighedsfelt for sstem for sstem Stabilitet

Læs mere

Fourier transformationen

Fourier transformationen MODUL 6 Fourier transformationen Forfattere: Øistein WIND-WILLASSEN & Michael ELMEGÅRD 4. juni 4 Indhold Fourier transformationen 5. Definition og oprindelse.............................. 5.. Funktioner

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleord og begreber Differentiabel funktion i en variabel Partielle afledede i flere variable Notation og regneregler for partielle afledede Test partielle afledede Grafisk

Læs mere

Kompleks Funktionsteori

Kompleks Funktionsteori Kompleks Funktionsteori Formelræs Holomorfe funktioner Sætning. (Caucy-Riemans ligninger). Funktionen f : G C, f = u+iv er holomorf i z 0 = x 0 + iy 0 hvis og kun hvis i punktet (x 0, y 0 ). du dx = dv

Læs mere

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2 M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning

Læs mere

guide skift elselskab og spar en formue billigere Januar 2015 Se flere guider på bt.dk/plus og b.dk/plus

guide skift elselskab og spar en formue billigere Januar 2015 Se flere guider på bt.dk/plus og b.dk/plus guide Januar 2015 få billigere el kift elelkab og par en formue Se flere guider på bt.dk/plu og b.dk/plu 2 SKIFT ELSELSKAB SPAR EN FORMUE INDHOLD SIDE 4 Mange kan core hurtige og nemme penge ved at kifte

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske

Læs mere

Differentialligninger af første orden

Differentialligninger af første orden Differentialligninger af første orden Preben Alsholm Februar 2006 Basale begreber. Eksistens og entydighed. En differentialligning af første orden er en ligning, der sammenknytter differentialkvotienten

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Wigner s semi-cirkel lov

Wigner s semi-cirkel lov Wigner s semi-cirkel lov 12. december 2009 Eulers Venner Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Diagonalisering af selvadjungeret matrix Lad H være en n n matrix med komplekse

Læs mere

Eksamensnoter til Analyse 1

Eksamensnoter til Analyse 1 ksamensnoter til Analyse 1 Martin Geisler gimpster@daimi.au.dk Sommer 23 Indledning Disse noter gennemgår de 26 spørgsmål stillet til den mundtlige eksamen i Analyse 1 ved Aarhus Universitet sommeren 23.

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 5. november 2016 1 Partielle differentialligninger 1.1 Udledning af varmeligningen Vi vil nu på samme måde som med bølgeligningen

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

1. Lineær kinematik. 1.1 Kinematiske størrelser

1. Lineær kinematik. 1.1 Kinematiske størrelser . Lineær kinematik Kinematik anaye og dermed kinematik udgør en tor og vigtig de af biomekanikken. I en tørre biomekanik anaye vi kinematikken normat være det ted man tarter, da begrebet omhander ammenhængen

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Oversigt [S] 8.7, 8.8, 8.9

Oversigt [S] 8.7, 8.8, 8.9 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Potensrækker og opgaver Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger

Læs mere

BRUGERUNDERSØGELSE 2014 PLEJEBOLIG. Dr. Ingrids Hjem. Sundheds- og Omsorgsforvaltningen - Brugerundersøgelse 2014: Plejebolig 1

BRUGERUNDERSØGELSE 2014 PLEJEBOLIG. Dr. Ingrids Hjem. Sundheds- og Omsorgsforvaltningen - Brugerundersøgelse 2014: Plejebolig 1 BRUGERUNDERSØGELSE 2014 PLEJEBOLIG Sundhed- og Omorgforvaltningen - Brugerunderøgele 2014: Plejebolig 1 Brugerunderøgele 2014 Plejebolig Brugerunderøgelen er udarbejdet af Epinion P/S og Afdeling for Data

Læs mere

Besvarelse til eksamen i Matematik F2, 2012

Besvarelse til eksamen i Matematik F2, 2012 Besvarelse til eksamen i Matematik F2, 202 Partiel besvarelse - har ikke inkluderet alle detaljer! Med forbehold for tastefejl. Opgave Find og bestem typen af alle singulariteter for følgende funktioner:

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

Matematisk modellering og numeriske metoder. Lektion 18

Matematisk modellering og numeriske metoder. Lektion 18 Matematisk modellering numeriske metoder Lektion 18 Morten Grud Rasmussen 12. november, 2013 1 Numeriske metoder til førsteordens ODE er [Bens afsnit 21.1 side 898] 1.1 Euler-metoden Vi stiftede allerede

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/29 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Prøveeksamen i Calculus

Prøveeksamen i Calculus Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

4.1 Lineære Transformationer

4.1 Lineære Transformationer SEKTION 41 LINEÆRE TRANSFORMATIONER 41 Lineære Transformationer Definition 411 ([L], s 175) Lad V, W være F-vektorrum En lineær transformation L : V W er en afbildning, som respekterer lineær struktur,

Læs mere

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne en mængde af opgaver, som tilsammen dækker 100 point. De små opgaver giver hver 5 point,

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Lineære systemer med hukommelse.

Lineære systemer med hukommelse. Lineær Response Teori. I responseteorien interesserer man sig for, hvad der kan siges generelt om sammenhængen mellem input φ(t) og output γ(t) for et system. Valg af variable. Det betragtede systems forskellige

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Indledning. 1 Martingalerepræsentationssætningen

Indledning. 1 Martingalerepræsentationssætningen Indledning I disse noter vil uddybe nogle af Øksendals resultater i afsnittene 4 og 7 samt give andre beviser for dem. Disse resultater er gennemgået til forelæsningerne. 1 Martingalerepræsentationssætningen

Læs mere

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar - 1 Vankelige vilkår for generationkifte med nye regler - Afkaffele af formuekattekuren amt vækkele af ikkerheden trod bindende var Af advokat (L) Bodil Chritianen og advokat (H), cand. merc. (R) Tommy

Læs mere

Undervisningsmiljøvurdering Style og Wellness College

Undervisningsmiljøvurdering Style og Wellness College Underviningmiljøvurdering 2014 Underøgelen er gennemført via pørgekemaunderøgele Wellne Efterår 2014 10 9 8 7 6 79,2 73,4 88,6 Overordnede reultater 73,2 73,8 74,1 67,7 64,4 57,7 85,5 80,4 96,8 5 4 3 2

Læs mere

Punktmængdetopologi. Mikkel Stouby Petersen. 1. marts 2013

Punktmængdetopologi. Mikkel Stouby Petersen. 1. marts 2013 Punktmængdetopologi Mikkel Stouby Petersen 1. marts 2013 I kurset Matematisk Analyse 1 er et metrisk rum et af de mest grundlæggende begreber. Et metrisk rum (X, d) er en mængde X sammen med en metrik

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer Hypoteetet Hypoteetet og kritike værdier Type og Type fejl Styrke af e tet Sammeligig af to populatioer Kofideiterval for σ tore tikprøver. Hvi X følger e χ -fordelig med frihedgrader, dv. X~χ (), gælder

Læs mere

Newton-Raphsons metode

Newton-Raphsons metode Newton-Raphsons metode af John V. Petersen Indhold Indledning: Numerisk analyse og Newton-Raphsons metode... 2 Udlede Newtons iterations formel... 2 Sætning 1 Newtons metode... 4 Eksempel 1 konvergens...

Læs mere

Numeriske metoder i matlab

Numeriske metoder i matlab NMM minimodul 6 p. 1/2 Numeriske metoder i matlab Lektion 6 Tom Søndergaard Pedersen Palle Andersen Aalborg University NMM minimodul 6 p. 2/2 Interpolation Polynomium, splines, mindste kvadraters metode.

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen

Læs mere

Søgning i decentrale og ustrukturerede P2P netværk

Søgning i decentrale og ustrukturerede P2P netværk Speciale Mart 2003 Internetteknologilinjen IT-højkolen i København Glentevej 67 2400 København NV Søgning i decentrale og utrukturerede P2P netværk Sune Kloppenborg Jeppeen Vejleder: Kåre Jelling Kritofferen

Læs mere

En ny mellemfristet holdbarhedsindikator

En ny mellemfristet holdbarhedsindikator En ny mellemfrie holdbarhedindikaor Andrea Øergaard Iveren Danih aional Economic Agen Model, DEAM Peer Sephenen Danih aional Economic Agen Model, DEAM DEAM Arbejdpapir 03: Februar 03 Abrac Arbejdpapire

Læs mere