Types, tokens og rationalisme i matematikkens filosofi
|
|
|
- Henrik Brøgger
- 9 år siden
- Visninger:
Transkript
1 Types, tokens og rationalisme i matematikkens filosofi Klaus Frovin Jørgensen Afdelingen Filosofi og Videnskabsteori, RUC 6. marts, / 29
2 Hilbert og den aksiomatiske metode David Hilbert ( ) Über den Zahlbegriff er en lille artikel fra Trotz des hohen pädagogischen und heuristischen Wertes der genetischen Methode verdient doch zur endgültigen Darstellung und völligen logischen Sicherung des Inhaltes unserer Erkenntnis die axiomatische Methode den Vorzug. (Hilbert, 1899) 2 / 29
3 Det filosofiske grundlag for den genetiske metode 3 / 29
4 Types og tokens (1/4) Type-token: En vigtigt distinktion imellem kategori og et element af kategorien. En type eksemplificeres af en token. Når vi fælder subjekt-prædikat-domme benytter vi types (prædikaterne) og refererer til tokens (objekterne). Type Token 4 / 29
5 Types og tokens (2/4) Brugen af types og tokens er helt fundamental for erkendelsen. 5 / 29
6 Types og tokens (3/4) 6 / 29
7 Types og tokens (4/4) 5 7 / 29
8 Ækvivalensrelationer (1/3) Vi siger, at er en ækvivalensrelation over D, når den er refleksiv, symmetrisk og transitiv, dvs. hvis det for alle elementer i D gælder at: i) x x ii) x y medfører y x iii) x y og y z medfører x z Eksempler har samme farve som er parallel med er lig med kongruent modulus n er ækvipotent med... Vi betegner med [x] klassen af alle elementer fra D, som er ækvivalente med x, det vil sige: [x] = {y D y x} 8 / 29
9 Ækvivalensrelationer (2/3) l [ ] Ækvivalensklassen til linjen l under ækvivalensrelationen er parallel med. 9 / 29
10 Ækvivalensrelationer (3/3) For alle a, b D gælder [a] = [b] eller [a] [b] =. Sætning. Ækvivalensklasserne udgør en disjunkt forening af hele mængden. Givet et mængde D og en ækvivalensrelation kan vi gruppere D mht. ækvivalent opførsel. 10 / 29
11 Ækvivalensklasser som objekter På baggrund af en mængde D og ækvivalensrelation konstruerer vi [a]. Hvordan kan vi opfatte ækvivalensklassen som et objekt? Vores håndtering af de oprindelige objekter løftes til de nye, da [a] = [b] a b. Vi håndterer/opererer med de nye objekter (nemlig ækvivalensklasserne) ved hjælp af de gamle objekter (repræsentanterne). Vi samler alle ækvivalensklasserne i en kvotient-struktur: X/ = {[a] a D}. 11 / 29
12 Ækvivalensklasser og generatorer En ækvivalensrelation har en karakteristisk funktion: { 1, hvis a b, χ(a, b) = 0, ellers. Vi kan parametrisere χ: { 1, hvis a b, χ a (b) = 0, ellers. [a] b χ a (b)=1 χ a (b)=0 Således kan vi (intensionelt) forstå en ækvivalensklasse som genereret af et i) paradigmatisk eksempel samt ii) den tilhørende karakteristiske funktion. 12 / 29
13 Naturlige tal som konceptuelle objekter Relationen er parvist relateret til er en ækvivalensrelation. Vi forstår da et naturligt tal som bestående af 1 Et prototypisk eksempel, 2 Den tilhørende karakteristiske funktion. 13 / 29
14 Kant ( ) om tallene (1/2) 14 / 29
15 Kant ( ) om tallene (2/2) Begrebet tolv er på ingen måde alle medtænkt, når jeg tænker på foreningen af syv og fem. Jeg kan analysere mit begreb om en sådan forening så meget, jeg vil, og alligevel støder jeg ikke på tolv i det. Man må altså gå hinsides begrebet og gøre brug af den anskuelse, der svarer til det ene af de to tal, eksempelvis sine fem fingre eller (som Segner i sin aritmetik) fem punkter, hvorefter man led for led tilføjer enhederne i de i anskuelsen givne fem til begrebet syv. Jeg tager altså først tallet 7, og idet jeg for begrebet 5 tager min hånds fingre til hjælp som anskuelse, tilføjer jeg nu til mit billede de enheder, som jeg før har bragt sammen for at danne tallet 5, den ene efter den anden til tallet 7, hvorpå jeg ser tallet 12 træde frem. (Kant, Kritik af den rene fornuft, B 15-6) 15 / 29
16 Addition gennem tokens/repræsentanter sætte efter hinanden 16 / 29
17 Naturlige og hele tal På basis af N kan vi konstruere de hele tal Z. Definér følgende relation på N N. (m, n) (m, n ) m + n = m + n Ækvivalens mellem par reduceres til identitet mellem naturlige tal. Derved bliver en ækvivalensrelation. Ækvivalensklasserne bliver til de hele tal. 17 / 29
18 De hele tal Z er kvotientstrukturen ( N N ) /. Det vil sige: Z = {[n, 0] n N} {[0, n] n N}. De kanoniske repræsentanter for de positive hele tal er (n, 0), og for de negative har vi (0, n). Vi refererer til en hel ækvivalensklasse ved hjælp af i) Et kanonisk eksempel, samt (mere implicit), ii) Den tilhørende karakteristiske funktion. 18 / 29
19 Addition Z via tokens i N N Hvordan adderes to ækvivalensklasser? Baseret på addition i N definerer vi addition i Z: + Z : Z Z Z, (m n, r s) (m n) + Z (r s) := (m + N r) (n + N s) Vi skal herefter sikre os, at definitionen er veldefineret. Altså, at + Z respekterer ækvivalensklasserne. 19 / 29
20 + Z er veldefineret Lemma. m n = m n og r s = r s medfører: (m + N r) (n + N s) = (m + N r ) (n + N s ). Addition i Z reduceres til (komponentvis) addition i N: z 1 z 2 z 3 m n m n r s r s (m + r) (n + s) (m + r ) (n + s ) m + N r og n + N s m + N r og n + N s 20 / 29
21 Algebra, aksiomatik og den genetiske metode 21 / 29
22 Algebra og aksiomatik Lad G være en mængde med en operation : G G G. Dette kaldes en gruppe, hvis 1 (x y) z = x (y z), for alle x, y, z G 2 Der er et neutralt element e sådan at G: i) e x = x, for alle x ii) For alle x findes der x 1 sådan at x x 1 = e. Vi kan nu vise, at (Z, +) er en gruppe og, at (Z, ) er en semi-gruppe (dvs. en gruppe uden 2), samt at addition og multiplikation opfører sig distributivt. Altså, er Z en Ring. 22 / 29
23 De rationelle tal Genetisk metode. Konstruér Q som samlingen af ækvivalensklasserne af ordnede par af hele tal (a, b), med b 0. Den afgørbare ækvivalensrelation er defineret ved (a, b) (c, d) ad = bc. Q er bliver kvotient-strukturen (Z Z)/. På grundlag af repræsentanter af ækvivalensklasserne kan regnearterne i Z løftes til Q. (Vi skal også her vise veldefinerethed). Aksiomatisk metode. Går vi til det abstrakte kan vi vise, at (Q, +, ) er en kommutativ ring, med (Q, \{0}, ) som en gruppe. Altså er Q et legeme. 23 / 29
24 Mod de reelle tal: Cauchy-følger Cauchy-følge: En følge af rationelle tal x 1, x 2,... er Cauchy, hvis der for ethvert ɛ eksisterer et N således, at for alle n, m > N x n x m < ɛ Ud fra klassen Cau af alle Cauchy-følger kan vi konstruere de reelle tal. 24 / 29
25 Konstruktion af de reelle tal To Cauchy-følger (a n ) og (b n ) er ækvivalente, hvis deres forskel er 0 i grænsen; altså: (a n ) (b n ) lim(a n b n ) = 0 Fra klassen Cau af Cauchy-følger kan de reelle tal konstrueres som ækvivalensklasser: [(a n )] = {(b n ) Cau (a n ) (b n )}. Bemærk, et reelt tal er generelt en ret uendelig størrelse. 25 / 29
26 Regneregler for de reelle tal Definition. Lad x og y være reelle tal. Vælg (a n ) i x og (b n ) i y; vi definerer da x + y = [(a n + b n )] x y = [(a n b n )] 0 = [(0)] 1 = [(1)] Vi kan ligeledes definere < for de reelle tal. Derved får vi, at R = (Cau/, +,, <) er et fuldstændigt ordnet arkimedisk legeme. Altså fuldstændigt, uden infinitisimaler med Q tæt i R. 26 / 29
27 Den genetiske og den aksiomatiske metode 27 / 29
28 Samspil mellem de to metoder N Monoide Z Ring Q Legeme R Fuldstændigt arkimedisk legeme 28 / 29
29 Diskussion og konklusion 29 / 29
Om begrebet relation
Om begrebet relation Henrik Stetkær 11. oktober 2005 Vi vil i denne note diskutere det matematiske begreb en relation, herunder specielt ækvivalensrelationer. 1 Det abstrakte begreb en relation Som ordet
Konstruktion af de reelle tal
Konstruktion af de reelle tal Rasmus Villemoes 17. oktober 2005 Indledning De fleste tager eksistensen af de reelle tal R for givet. I Matematisk Analyse-bogen Funktioner af en og flere variable af Ebbe
Nogle grundlæggende begreber
BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element
Vi indleder med at minde om at ( a) = a gælder i enhver gruppe.
0.1: Ringe 1. Definition: Ring En algebraisk struktur (R, +,, 0,, 1) kaldes en ring hvis (R, +,, 0) er en kommutativ gruppe og (R,, 1) er en monoide og hvis er såvel venstre som højredistributiv mht +.
En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er
Ugens emner FA minimering [.-.] MyHill-Nerode-sætningen en algoritme til minimering af FA er En karakteristik af de regulære sprog Et sprog L er regulært hvis og kun hvis L beskrives af et regulært udtryk
Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.
Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger
Matematisk Metode Notesamling
Matematisk Metode Notesamling Anders Bongo Bjerg Pedersen Stud.Scient, Matematisk Institut, KU 21. november 2005 Bemærkninger til noterne: Hosliggende noter er fra faget Matematisk Metode, afholdt i blok
t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25
Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion
Den sproglige vending i filosofien
ge til forståelsen af de begreber, med hvilke man udtrykte og talte om denne viden. Det blev kimen til en afgørende ændring af forståelsen af forholdet mellem empirisk videnskab og filosofisk refleksion,
Note om endelige legemer
Note om endelige legemer Leif K. Jørgensen 1 Legemer af primtalsorden Vi har i Lauritzen afsnit 2.1.1 set følgende: Proposition 1 Lad n være et positivt helt tal. Vi kan da definere en komposition + på
Geom2-dispositioner (reeksamen)
Geom2-dispositioner (reeksamen) Rasmus Sylvester Bryder 20. april 2012 1 Mangfoldigheder i R n 1. Introducér begreberne parametriseret mangfoldighed, regularitet, indlejret parametriseret mangfoldighed
Kalkulus 2 - Grænseovergange, Kontinuitet og Følger
Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning
Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2
Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket
t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42
Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder
GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α )
GEOMETRI-TØ, UGE 8 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til [email protected]. Opvarmningsopgave 1. Lad X være en mængde og T familien af alle delmængder
Lidt alment om vektorrum et papir som grundlag for diskussion
Definition : vektorrum, vektorer Et vektorrum er en mængde af elementer med operationerne sum (+) og numerisk multiplikation (), så følgende regler gælder for alle a, b, c og for alle reelle tal s, t R.
Omskrivningsregler. Frank Nasser. 10. december 2011
Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)
Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...
Komplekse tal. Mikkel Stouby Petersen 27. februar 2013
Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil
Grundlæggende Matematik
Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske
De rigtige reelle tal
De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Regularitet og Automater. Tobias Brixen Q4-2012
Regularitet og Automater Tobias Brixen Q4-2012 1 Noterne er skrevet med inspiration fra http://cs.au.dk/ illio/courses/dregaut/dregautnoter.pdf Contents 1 Regulære udtryk 3 1.1 RegEx.................................
Archimedes Princip. Frank Nasser. 12. april 2011
Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Konvergens i L 1 -forstand. Definition af L 1 -seminorm. Topologi i pseudometrisk rum. Seminorm til norm
Definition af L 1 -seminorm Konvergens i L 1 -forstand Lad (X, E, µ) være et målrum. Husk at L(µ) er et reelt vektorrum. Vi definerer f 1 = f dµ for f L Definition En følge af funktioner f 1, f 2, L siges
************************************************************************
Projektet er todelt: Første del har fokus på Euklids system og består af introduktionen, samt I og II. Anden del har fokus på Hilberts system fra omkring år 1900 og består af III sammen med bilagene. Man
Gödels ufuldstændighedssætninger
Gödels ufuldstændighedssætninger Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige 2 Folkeuniversitetet i København, efteråret 2011 Thomas Bolander, FUKBH 11 s. 1/21 Gödels ufuldstændighedssætning
t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25
Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.
Elementær Matematik. Tal og Algebra
Elementær Matematik Tal og Algebra Ole Witt-Hansen 0 Indhold Indhold.... De naturlige tal.... Regneregler for naturlige tal.... Kvadratsætningerne..... Regningsarternes hierarki...4. Primtal...4 4. Nul
Matematiske metoder - Opgavesæt
Matematiske metoder - Opgavesæt Anders Friis, Anne Ryelund, Mads Friis, Signe Baggesen 24. maj 208 Beskrivelse af opgavesættet I dette opgavesæt vil du støde på opgaver, der er markeret med enten 0, eller
Vektorrum. enote Generalisering af begrebet vektor
enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske
Grundlæggende Matematik
Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske
Banach-Tarski Paradokset
32 Artikeltype Banach-Tarski Paradokset Uden appelsiner Andreas Hallbäck Langt de fleste af os har nok hørt om Banach og Tarskis såkaldte paradoks fra 1924. Vi har hørt diverse poppede formuleringer af
Teoretiske Øvelsesopgaver:
Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere
Hilbert rum. Chapter 3. 3.1 Indre produkt rum
Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E
Institut for Matematik, DTU: Gymnasieopgave. I. De komplekse tals historie. Historien om 3. grads ligningerne
De komplekse tals historie side 1 Institut for Matematik, DTU: Gymnasieopgave I. De komplekse tals historie Historien om 3. grads ligningerne x 3 + a x = b, x 3 + a x 2 = b, - Abraham bar Hiyya Ha-Nasi,
2. Fourierrækker i en variabel
.1. Fourierrækker i en variabel I Kapitel II 7 blev der indført, dels funktionsrummene L p (X, µ) (mere udførligt skrevet L p (X, E, µ)), dels rummene L p (X, µ), der fås af L p (X, µ) ved at funktioner
Fraktaler Mandelbrots Mængde
Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................
Matematik, der afgør spil
Artikeltype 47 Matematik, der afgør spil Sandsynlighedsregning vinder ofte. Kombinatorisk spilteori sejrer hver gang Mads Thrane Hvis du er træt af at tabe opvasketjansen i Sten Saks Papir eller Terning,
Selam Friskole Fagplan for Matematik
Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis
Elementær Matematik. Mængder og udsagn
Elementær Matematik Mængder og udsagn Ole Witt-Hansen 2011 Indhold 1. Mængder...1 1.1 Intervaller...4 2. Matematisk Logik. Udsagnslogik...5 3. Åbne udsagn...9 Mængder og Udsagn 1 1. Mængder En mængde er
MATEMATIK. Formål for faget
MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede
Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering
Algebra med Bea Bea Kaae Smit nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende regler 7 3.1 Tal..........................
Hvad er et tal? Dan Saattrup Nielsen
12 Det filosofiske hjørne Hvad er et tal? Dan Saattrup Nielsen Det virker måske som et spøjst spørgsmål, men ved nærmere eftertanke virker det som om, at alle vores definitioner af tal refererer til andre
Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet
Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Komplekse tal 3 1.1 Definition.......................................
ANALYSE 1, 2014, Uge 5
ANALYSE, 204, Uge 5 Afleveringsfrist for Prøve 2 er Tirsdag den 20/5 kl 0:5. Forelæsninger Tirsdag Vi går videre med Afsnit 4 om uniform konvergens af Fourierrækker, hvor hovedsætningen er Sætning 4.3.
Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk
matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
Konstruktionen af de reelle tal gennem decimaltalsrepræsentation og Dedekind-snit
Keeping it real Konstruktionen af de reelle tal gennem decimaltalsrepræsentation og Dedekind-snit Speciale 10. januar 2018 Pernille Andersen Rikke Bod Lund Matematisk Institut Skjernvej 4A 9220 Aalborg
Matematik samlet evaluering for Ahi Internationale Skole
efter 3.klasse. e efter 6.klasse. e Skole efter 9.klasse. e indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence formulere sig skriftligt og mundtligt
Oversigt over gruppeteori: definitioner og sætninger
Oversigt over gruppeteori: definitioner og sætninger (G, ) kaldesengruppe, når følgende aksiomer er opfyldt: 0) (G, ) er en organiseret (stabil) mængde: a, b G a b G 1) Den associative lov gælder, dvs.
Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser
Analyse 2 Øvelser Rasmus Sylvester Bryder 24. og 27. september 203 Bevis af Fatous lemma (Theorem 9.) Hvis (u j ) j er en følge af positive, målelige, numeriske funktioner (dvs. med værdier i [, ]) over
1 Punktmængdetopologi. metriske rum, fuldstændighed
Punktmængdetopologi, metriske rum, fuldstændighed Morten Grud Rasmussen 23. november 2015 1 Punktmængdetopologi I algebra beskæftiger man sig bl.a. med abstrakte strukturer, hvori forskellige regneoperationer
Ligningssystemer - nogle konklusioner efter miniprojektet
Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax
DM72 Diskret matematik med anvendelser
DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n
Ufuldstændighed, mængdelære og beregnelighed
Ufuldstændighed, mængdelære og beregnelighed Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 2009 Thomas Bolander, FUKBH 09 s. 1/27 Sidste
Fra logiske undersøgelser til fænomenologi
HUSSERL Fra logiske undersøgelser til fænomenologi For den kontinentale filosofi skete der et afgørende nybrud omkring århundredeskiftet. Her lagde tyskeren EDMUND HUSSERL (189-1938) med værket Logische
UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, Indledning
UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, ESBEN BISTRUP HALVORSEN 1 Indledning De fleste kan nok blive enige om, at mængden {a, b, c} er større end mængden {d} Den ene indeholder jo tre elementer,
Matricer og Matrixalgebra
enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,
Evaluering af matematik undervisning
Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om
3. klasse 6. klasse 9. klasse
Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning
Gult Foredrag Om Net
Gult Foredrag Om Net University of Aarhus Århus 8 th March, 2010 Introduktion I: Fra Metriske til Topologiske Rum Et metrisk rum er en mængde udstyret med en afstandsfunktion. Afstandsfunktionen bruges
1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.
SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret
DM547/MM537. Spørgsmål 2 (3%) Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1. Svar 2.h: x Z: y Z: x + y = 5. Svar 1.
DM547/MM537 Spørgsmål 1 (10%) Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1 Svar 1.b: x Z: y Z: x + y = 5 Svar 1.c: x Z: y Z: x + y = 5 Svar 1.d: x Z: y Z: x 2 + 2y = 0 Svar
Komplekse tal og rækker
Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver
Eksempel på den aksiomatisk deduktive metode
Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13
Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).
Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x
Appendiks 6: Universet som en matematisk struktur
Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes
Kontinuitet og Intuition
Kontinuitet og Intuition Gruppe 8 - Nat Bach - Hus 14.2 - RUC 2014-3. semester Vejleder: Johnny T. Ottesen Nathan Hugh Barr Marc John Bordier Dam Daniel Olesen Fejerskov Patrick Boll Hyldgaard René Møller
1 Sætninger om hovedidealområder (PID) og faktorielle
1 Sætninger om hovedidealområder (PID) og faktorielle ringe (UFD) 1. Introducér ideal, hovedideal 2. I kommutativt integritetsområde R introduceres primelement, irreducibelt element, association 3. Begrebet
Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8
Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt
Udvalgsaksiomet. Onsdag den 18. november 2009
Udvalgsaksiomet Onsdag den 18. november 2009 Eksempler Fourier udvikling af f(x)=x 4 3 5 10 2 1 1 2 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 1 2 3 4
Diskrete Matematiske Metoder. Jesper Lützen
Diskrete Matematiske Metoder Jesper Lützen Juni 2013 ii Indhold Introduktion. ix 0.1 Den aksiomatisk-deduktive metode................. ix 0.2 Diskret matematik; hvad er det?.................. x 1 Tal,
Tidligere Eksamensopgaver MM505 Lineær Algebra
Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................
MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål
MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig
Lineær Algebra. Lars Hesselholt og Nathalie Wahl
Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,
{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}
Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,
z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2
M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation
Matematik: Videnskaben om det uendelige. Anden forelæsning: Indivisibler
Matematik: Videnskaben om det uendelige Anden forelæsning: Indivisibler Klaus Frovin Jørgensen 20. september, 2010 1 / 24 Den græske matematik Endelige geometriske objekter er matematikkens objekter Kun
Sammenhængskomponenter i grafer
Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv
Ordbog over Symboler
Ordbog over Symboler Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
01017 Diskret Matematik E12 Alle bokse fra logikdelens slides
01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...
Undervisningsplan for faget matematik. Ørestad Friskole
Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2
Fundamentale begreber fra Analysen. Introduktion. De reelle tal. Carsten Lunde Petersen
IMFUFA Carsten Lunde Petersen Fundamentale begreber fra Analysen Introduktion Disse noter udgør et meget ltreret udkik over de grundlæggende begreber i reel analyse. Noten indeholder meget lidt om det
Første konstruktion af Cantor mængden
DYNAMIK PÅ CANTOR MÆNGDEN KLAUS THOMSEN Første konstruktion af Cantor mængden For de fleste der har hørt on Cantor-mængden, er den blevet defineret på flg måde: I = 0 I = I = 0 0 OSV Cantor mængden C er
Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931
Kommentar til 1 Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Denne afhandling af den 24-årige Kurt Gödel er blevet en klassiker. Det er vist den eneste
