Euklids algoritme og kædebrøker



Relaterede dokumenter
Projekt 7.9 Euklids algoritme, primtal og primiske tal

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Ringe og Primfaktorisering

Algebra - Teori og problemløsning

Kædebrøker. b 0 f.eks. 3 b 0 + a 1. f.eks b 1 7. a 1. b 1 + a f.eks f.eks. 3 + b 1 + a Notation: a 2 b 2 + an.

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel.

Polynomiumsbrøker og asymptoter

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Grundlæggende Matematik

Elementær Matematik. Mængder og udsagn

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Matematiske metoder - Opgavesæt

De rigtige reelle tal

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal og algebraens fundamentalsætning.

Noter til Perspektiver i Matematikken

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Jeg foretager her en kort indføring af polynomier over såvel de reelle som

Regning. Mike Vandal Auerbach ( 7) 4x 2 y 2xy 5. 2x + 4 = 3. (x + 3)(2x 1) = 0. (a + b)(a b) a 2 + b 2 2ab.

Grundlæggende Matematik

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen

Archimedes Princip. Frank Nasser. 12. april 2011

Affine - et krypteringssystem

Grafmanipulation. Frank Nasser. 14. april 2011

Opgave 1 Regning med rest

Oprids over grundforløbet i matematik

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

Omskrivningsregler. Frank Nasser. 10. december 2011

tal og algebra F+E+D brikkerne til regning & matematik preben bernitt

Differential- regning

Spilstrategier. 1 Vindermængde og tabermængde

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

Matricer og lineære ligningssystemer

Projekt 3.1 Pyramidestub og cirkelareal

Andengradsligninger. Frank Nasser. 11. juli 2011

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

Elementær Matematik. Tal og Algebra

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Andengradsligninger. Frank Nasser. 12. april 2011

UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, Indledning

Løsning af simple Ligninger

π er irrationel Frank Nasser 10. december 2011

Newton-Raphsons metode

Fejlkorligerende køder Fejlkorrigerende koder

Asymptoter. for standardforsøgene i matematik i gymnasiet Karsten Juul

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Differentiation af Potensfunktioner

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet

4. Snittets kædebrøksfremstilling og dets konvergenter

Vektorer og lineær regression

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

Vektorer og lineær regression. Peter Harremoës Niels Brock

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

Kapitel 2 Tal og variable

brikkerne til regning & matematik tal og algebra preben bernitt

Eksponentielle sammenhænge

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Nogle grundlæggende begreber

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Projekt 3.5 faktorisering af polynomier

Kapitel 7. Hvad er matematik? 1 ISBN Øvelse Øvelse a = 3 0, = 8 2,6 3 = 25 3, , =

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Periodiske kædebrøker eller talspektre en introduktion til programmet periodisktalspektrum

Projekt 7.4. Rationale tal brøker og decimaltal

Differentialregning. Ib Michelsen

Appendix 1. Nogle egenskaber ved reelle tal.

>> Analyse af et rektangels dimensioner

Matematisk induktion

Indhold. Kontrol af resultater, skrivemåder osv.

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

En forståelsesramme for de reelle tal med kompositioner.

Diskrete Matematiske Metoder. Jesper Lützen

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

PeterSørensen.dk : Differentiation

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Mere om differentiabilitet

Projekt 0.5 Euklids algoritme, primtal og primiske tal

fortsætte høj retning mellem mindre over større

Kapital- og rentesregning

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Fibonacci følgen og Det gyldne snit

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Mordell s Sætning. Henrik Christensen og Michael Pedersen. 17. december 2003

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen runde

Brøker og forholdstal

TALTEORI Wilsons sætning og Euler-Fermats sætning.

Formler & algebra - Fase 2 Omskriv & beregn med variable

Differentiation af Trigonometriske Funktioner

Fraktaler Mandelbrots Mængde

Transkript:

Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n m, n Z, n 0, og vi forudsætter, at de reelle tal er kendt fra gymnasiet. Et reelt tal, der ikke er et rationalt tal, kaldes irrationalt. Med Z 0 betegner vi mængden af de ikke-negative, hele tal. Lad d, n Z være hele tal. Vi siger, at d går op i n, hvis der findes et q Z, så n = qd. Eksempelvis går 7 op i 2, da 2 = 7, men for vilkårlige d og n er det ikke sikkert, at d går op i n. For eksempel går ikke op i 4, men det er tæt på vi skal bare lægge en rest til: 4 = 4 + 2. Der gælder helt generelt følgende meget vigtige sætning: Sætning.. Lad d, n Z med d 0 være givet. Da findes entydigt bestemte tal q, r Z, så n = qd + r og 0 r < d. Tallene q og r kaldes henholdvis kvotienten og resten af n ved division med d. Bemærk, at d går op i n, netop hvis resten af n ved division med d er 0. For eftertiden vil vi for at lette notationen skrive d n, hvis d går op i n. Lad nu m, n Z være hele tal. Vi definerer { } div(m, n) = d Z d m og d n, altså mængden af alle de tal, som går op i både m og n. Et tal d div(m, n) siges at være en fælles divisor i m og n.

Påstand.2. Lad d, n Z med d 0, og skriv n = qd + r ved division med rest. Da gælder div(n, d) = div(d, r). Bevis. Når man skal vise, at to mængder er ens, er det ofte en god ide at vise, at den første er indeholdt i den anden, og at den anden er indeholdt i den først tænk! Inklusionen : Lad x div(n, d). Så gælder x n og x d. Vi skal vise, at x div(d, r), altså at x d og x r. Det første har vi antaget, og da r = n qd, gælder x r, da x n og x d. Inklusionen : Lad nu x div(d, r). Så gælder x d og x r. Vi skal nu vise, at x n og x d. Det sidste har vi antaget, og da n = qd + r, gælder også x n, da x d og x r. Lad m, n Z. Den største fælles divisor af m og n er det største tal, som går op i både m on n. Vi skriver kort sfd(m, n) for den største fælles divisor af m og n. Påstand.. Lad d, n Z med d 0, og skriv n = qd + r ved division med rest. Da gælder sfd(n, d) = sfd(d, r). Bevis. I følge den foregående påstand er div(n, d) = div(d, r), så specielt er det største tal, der går op i både n og d, også det største tal, som går op i både d og r. Givet to hele tal, n og m, hvordan finder man så deres største fælles divisor? For relativt små tal er det som regel ikke noget problem at gætte den. Eksempelvis er sfd(, 8) =. Opgave. Beregn tallet sfd(294, 00). Prøv med andre tal. Er det let? Lad os med et (meget simpelt) eksempel illustrere en metode, som virker generelt. Lad os vise, at sfd(, 8) =. Vi laver division med rest nogle gange. Først deler vi med 8 og får: = 8 + 5 2

I følge påstanden ovenfor, har vi nu, at sfd(, 8) = sfd(8, 5). Gentages spøgen nu med tallene 8 og 5 i stedet for og 8, fås og vi har altså 8 = 5 +, sfd(8, 5) = sfd(5, ). Vi fortsætter på denne måde nogle gange endnu og finder så vi alt i alt har 5 = + 2 = 2 + 2 = 2 + 0, sfd(, 8) = sfd(8, 5) = sfd(5, ) = sfd(, 2) = sfd(2, ) = sfd(, 0) =. Opgave 2. Brug ovenstående metode til at beregne sfd(294, 00). Kan man bruge metoden til at berenge sfd(m, n) for vilkårlige hele tal m og n? Hvorfor stopper metoden efter endeligt mange skridt? Opgave. Når vi skal beregnes den største fælles divisor af to tal, laver vi division med rest et vist antal gange (som i eksemplet ovenfor). Gør rede for, at den sidste rest 0, er den største fælles divisor. Nu er vi vist ved at være godt nok rustede til at give os i kast med kædebrøker! Vi begynder med et simpelt eksempel. Følgende beregninger (division med rest) er rare at have ved hånden: 9 = 2 8 + 8 = 2 + 2 = 2 + Ved hjælp af ovenstående beregninger finder vi nu, at 9 8 = 2 + 8 = 2 + 8 = 2 + 2 + 2 = 2 + 2 + 2 = 2 + 2 +. + 2 Dette kaldes kædebrøken for tallet 9 8. Tallene 2, 2 + 2, 2 + 2 + og 2 + 2 + + 2

kaldes kædebrøkens konvergenter. Skrevet lidt pænere er konvergenterne 2, 5 2, 7 Bemærk, at konvergenterne (læst fra venstre mod højre) kommer nærmere og nærmere 9 8. Brug eventuelt en lommeregner. Generelt er en kædebrøk for et rationalt tal en opskrivning af tallet på formen q 0 + og q + q 2 + + qn hvor q 0, q,..., q n Z. Lad os for en stund tro på, at det altid kan lade sig gøre, at skrive et rationalt som en kædebrøk. Vi skal nok vende tilbage til beviset! Opgave 4. Find kædebrøken for 2 4. Det gik (forhåbentlig) godt med at finde kædebrøken for 2 4. Lad os nu se, hvorfor det altid går godt. 9 8. Sætning.4. Ethvert rationalt tal kan skrives som en kædebrøk. Bevis. Vi har ovenfor skitseret den metode, man skal bruge til gradvist at opbygge kædebrøken. Det gik godt i vores eksempel, fordi vi på et tidspunkt i udregningerne med division med rest fik resten. Ethvert rational tal kan skrives som en uforkortelig brøk. Det vil sige, at den største fælles divisor af tælleren og nævneren er. I følge Opgave vil vi altså på et tidspunkt få som rest. Opgave 5. Gør rede for, at ethvert tal, der kan skrives som en kædebrøk, er et rationalt tal., Påstand.5. Tallet 2 er ikke et rationalt tal. Bevis. Antag, at 2 er et rationalt tal, og skriv det som en uforkortelig brøk 2 = a b, hvor a, b Z, b 0. Ved at kvadrere på begge sider af lighedstegnet og gange over får vi 2b 2 = a 2, 4

så 2 går op i a 2. Det vil sige, at a 2 er et lige tal, men så må også a være lige (da kvadratet på et ulige tal er ulige). Altså går 2 op i a, så vi kan skrive a = 2c for et c Z. Altså gælder hvilket giver 2b 2 = a 2 = (2c) 2 = 4c 2, b 2 = 2c 2. Dette giver, at b 2 er lige, men så må også (med samme argument som ovenfor) b være lige. Altså har vi vist, at både a og b er lige. Så kan brøken a b forkortes, men det er i modstrid med, at den er uforkortelig. Altså må vores antagelse om, at 2 er et rationalt tal, være forkert. Vi ved nu, at tallet 2 ikke er et rationalt tal, og så kan det i følge Opgave 5 ikke skrives som en kædebrøk... men det kunne nu være fristende at prøve alligevel! Lad os først lige indføre lidt notation. For et reelt tal x R betegner vi heltalsdelen af x med [x]. Det vil sige, at [x] er det største hele tal, som er mindre end eller lig med x. For eksempel er [2, 7] = 2, [, 5] = 2 og [π] =. Opgave 6. Lad n, d Z med d 0, og skriv n = qd + r ved hjælp af division med rest. Gør rede for, at [ n d ] = q. Inden vi går videre, så lad os lige minde om, at 2 = 2 + ( 2 )( 2 + ) = 2 + og [ 2] =. Vi forsøger os nu med følgende fremgangsmåde (der faktisk er den samme som den vi brugte, da vi lavede kædebrøker for rationale tal brug Opgave 6): 2 = [ 2] + 2 [ 2] = + 2 = + = +. 2 2 + Vi gentager nu proceduren på 2 + bemærk at [ 2 + ] = 2 og får 2 = + 2 + ( 2 + ) 2 = + 2 + = + 2 +. 2 2+ Fortsætter vi på ovenstående måde (bemærk, at det er 2+, der dukker op hver gang), får vi 2 = + 2 + 2+ 2+ 2+, 5

som fortsætter i det uendelige. Dette giver ikke umiddelbart mening! Det er blot en notation, som skal antyde proceduren. Lad os prøve at kigge lidt på konvergenterne:, + 2, + 2 +, + 2 Skrevet lidt pænere er disse, 2 +, + 2+ 2 2, 7 5, 7 2, 4 29,.... 2 + 2+ 2+ 2,.... Det bemærkelsesværdige er, at konvergenterne nærmer sig 2. Prøv eventuelt at bruge en lommeregner. Dette er ikke tilfældigt! Faktisk gælder der følgende sætning, hvis bevis vi udelader. Sætning.6. Lad x R være et reelt tal, og skriv x som en kædebrøk med konvergenter K i, hvor i Z 0. Da gælder lim K n = x. n Man kan altså i følge ovenstående sætning benytte kædebrøker til at finde rationale tilnærmelser til reelle tal. Desværre kan det dog være lidt besværligt at beregne konvergenterne, da der skal sættes på fælles brøkstreg et betragteligt antal gange. Heldigvis er der en lettere metode, og denne er skræddersyet til at fodre en computer med. Påstand.7. Lad kædebrøken for et reelt tal være givet ved q 0 + q + q 2 + q + q 4 + hvor alle q i Z, og skriv den n te konvergent K n på formen K n = A n B n. Sætter vi A 2 = 0, A =, B 2 = og B = 0, så gælder følgende formler: A n = q n A n + A n 2 og B n = q n B n + B n 2., 6

Opgave 7. Tjek formlerne (op til et vist trin) i påstanden ovenfor i tilfældet med 2. Lad os prøve at kigge på kædebrøken for tallet 5. Det overlades til læseren som en øvelse at tjekke, at 5 = 2 + 4 + 4+ 4+ 4+ For at beregne konvergenterne hørende til kædebrøken, kan det være rart at stille tallene, der indgår i beregningerne, op i et skema. n 2 0 2 4 5 q n 2 4 4 4 4 4 A n 0 2 9 8 6 682 2889 B n 0 4 7 72 05 292 Kædebrøker har stor anvendelse inden for løsningen af såkaldte diofantiske ligninger. Det vil sige ligninger, hvor man kræver, at løsningerne skal være hele tal. Her er et eksempel: x 2 5y 2 =. Kan du finde hele tal, x og y, som opfylder ligningen? Naturligvis opfylder x = og y = 0 ligningen, men er der andre? Prøv dig eventuelt lidt frem med x = A n og y = B n fra eksemplet med 5 ovenfor. En kendt diofantisk ligning er x 2 4729494 y 2 =, der også kendes som Archimedes hævn. Oprindeligt stillede Archimedes en opgave, som handlede om at finde ud af, hvor meget kvæg, der kunne græsse på en bestemt græsk ø, hvis antallet af de forskellige typer kvæg opfyldte en række ligninger. Det viser sig, at ligningerne kan reduceres til ligningen ovenfor, men den er jo heller ikke lige til at løse... med mindre man kender til kædebrøker! Faktisk kan ligningen løses efter samme princip som ovenfor, men det er nu rarest at have en computer til at lave beregningerne. Den interesserede læser kan læse mere om Archimedes hævn (på engelsk kaldet Archimedes cattle problem) på hjemmesiden http://mathworld.wolfram.com/archimedescattleproblem.html.. 7