I. Deskriptiv analyse af kroppens proportioner
|
|
|
- Tove Dahl
- 10 år siden
- Visninger:
Transkript
1 Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data, der kan hentes i regneark-format. I. Deskriptiv analyse af kroppens proportioner Holdet kan lave sine egne målinger og udfylde et skema som ovenstående. Eller holdet kan vælge at arbejde med ovenstående talmateriale. Du kan hente et Excel-ark med ovenstående talmateriale her. Du kan hente et ark til TI Nspire CAS med ovenstående talmateriale her. 1
2 Del 1: Deskriptiv analyse af legemshøjde Denne del laves i hånden uden anvendelse af TI-NSpire :o( Bestem middeltal Lav hyppigheds og frekvenstabel Lav et prikdiagram Bestem minimum og maksimum Bestem kvartil-sættet (Q1, Q2, Q3) Lav et boksplot Bestem kvartilspredningen (Q3 Q1) Lav et stolpediagram Kommenter/diskuter hver enkelt deskriptor Del 2: Deskriptiv analyse af spændvidde Denne del må gerne laves i TI-NSpire :o) Lav et prikdiagram og et stolpediagram (vælg Histogram og lav søjlerne smallere ved at trække i en søjlernes kanter) Bestem middeltal, minimum, maksimum og kvartil-sæt Bestem kvartilspredningen (Q3 Q1) Kommenter/diskuter hver enkelt deskriptor Del 3: Usikkerheder Overvej/diskuter usikkerheder ved jeres målinger kom med eksempler på faktorer der influerer målingernes validitet/pålidelighed. Del 4: To variabel undersøgelse Hypotese: Legemshøjde er lig spændvidde! 2
3 Hvem har blandt andet opstillet ovenstående hypotese? Bestem den lineære sammenhæng mellem Legemshøjde og spændvidde ved regression i TI- NSpire (vælg Mindste kvadraters linie) Opstil andre hypoteser med udgangspunkt i jeres målinger. Deskriptiv statistik dobbelt variabel analyse Her beskrives og analyseres den sammenhængende fordeling for to variable: Spændvidden og legemshøjden. Det er nærliggende at kigge på forholdet mellem de to variable i lyset af hypotesen om ligefrem proportionalitet. En forventning om at spændvidden er lig legemshøjden svarer til en forventning om at forholdet (Spændvidde/Legemshøjde) er lig 1. Dette forhold er et dimensionsløst tal, da begge variable har samme enhed. Medianen for forholdet er og middeltallet er Første kvartil er lig og 3. kvartil er lig , hvormed kvartilspredningen er Det mindste observerede forhold er 0,95 og det største er 1,0337. Dermed ligger det forventede forhold på 1 inden for kvartilboksen. Undersøgelse af hypotese For at undersøge sammenhænge mellem de to variable, er målingerne afbilledet som punkter i et koordinatsystem med legemshøjde på x-aksen og spændvidde på y-aksen. På grund af en forventning om ligefrem proportionalitet mellem de to variable låses skæringen til 0 ved hjælp af en flytbar linje. Ved at vise residuelle kvadrater og residualplot hørende til den flytbare linje kan linjen justeres til summen af kvadraterne er mindst mulig. Den rette linje, der fremkommer, er den linie som bedst beskriver punkternes beliggenhed når linien samtidig skal gå gennem (0,0). 3
4 Ligningen for linien bestemmes som Spænd Hoved hvor Spænd er udtryk for spændvidden og Hoved er udtryk for legemshøjden (begge mål i centimeter). Vælges som vist menupunktet vis residualplot kan man se, at der ikke er nogen tydelig systematik i restdataene for proportionalmodellen. Tilføjes vis residualkvadrater ses ydermere at summen af kvadrater er lig 727 for proportionalmodellen. Bootstrap test af hypotese Igen kan man dog fundere over, hvorvidt den sande værdi for middelforholdet ligger en anelse over 1, eller om vi kan forklare det som en tilfældig fluktuation i de pågældende målinger. Vi opstiller dermed følgende 0-hypotese: H 0 : Spændvidden divideret med legemshøjde er lig 1 Hypotesen svarer til påstanden om ligefrem proportionalitet, hvor Spændvidde er lig med Legemshøjde. Vi vil undersøge om denne hypotese kan forkastes altså om hypotesen er falsk. Metoden vi anvender til denne hypotesetest kaldes bootstrapping3. Vi antager, at målingerne er repræsentative for en langt større population af elever spredt ud over landet. Dermed kan vi konstruere en tilnærmelse til denne population ved at gentage vores egne målinger rigtig mange gange: Hvis vi f.eks. gentager hver af målingerne gange, har vi 4
5 en population på elever, hvoraf de første ligner den første elev på holdet, de næste ligner den anden elev osv. Trækker vi så en tilfældig stikprøve fra denne superpopulation, vil alle elever i praksis have lige store chancer for at blive udtrukket. Det svarer til at bootstrappe holdet, dvs. til at trække en stikprøve på 21 elever med gentagelse og tilbagelægning. Hver gang vi har trukket en elev, lægger vi altså vedkommende tilbage igen, så der stadigvæk er samme chance for at trække denne elev næste gang. Ved at lave gentagne målinger på bootstrappet kan vi nu finde fordelingen for middelforholdet for tilfældige hold. Vi ser da, at den forventede værdi 1 ligger forholdsvis langt inde i fordelingen. Usikkerhedsintervallet for middelforholdet ligger mellem 2,5%-fraktilen og 97,5%-fraktilen og dermed givet ved: [0,9886; 1,01695]. Det rummer den forventede værdi på 1 og vores hypotese er derfor ikke i modstrid med data. Vi kan altså ikke forkaste hypotesen og sige at den er falsk! 5
6 II. Da Vincis hypoteser om menneskets proportioner I det følgende kan eleverne på holdet selv måle de størrelser der er tale om, eller man kan bruge nedenstående ark. Køn Hoved Stræk Spænd Navle Knæl Hånd Pige Pige , ,5 Pige ,7 Pige Dreng ,5 107,5 133,5 18 Dreng Dreng Dreng Pige Pige Dreng 187, Dreng ,5 Pige 171, ,5 Pige Pige ,5 Dreng , Dreng Dreng ,
7 Dreng ,5 Pige Pige , ,5 Du kan hente et Excel-ark med ovenstående talmateriale her. Du kan hente et ark til TI Nspire CAS med ovenstående talmateriale her. (Uddrag af elevrapport) Da Vinci har mange teorier om menneskets opbygning. Han mener, der er en sammenhæng mellem bestemte ting. Han har fem teorier og den 6. har vi selv fundet, for hvis hans teorier er rigtige må den 6. vi har fundet også være rigtige. De 6 teorier er: spændhøjde H 1 = 1 (dette er konstanten, dette burde gælde for hver person, undtagelsen kan hovedhøjde være små børn og gamle mennesker der er ved at krybe sig sammen). strækhøjde H 2 = 2 (det vil sige at for hvert menneske med nogle få undtagelser burde det give 2 navlehøjde hvis man dividerede deres strækhøjde med navlehøjde.) navl ehøjd e H 3 = hov edhøjd e ( ) Dette er det lille gyldne snit. Det gyldne snit som betegnes som det guddommelige forhold er et irrationalt tal, som nogle gange dukker op i naturen. Indenfor matematikken betegnes det med det græske bogstav Φ (phi). En af de personer der forskede i det gyldne snit var Da Vinci, han forsøgte at vise, at det gyldne snit ligger i mennesket proportioner. Han prøvede sig frem og en af hans versioner er den vitruvianske mand, der viser de menneskelige proportioner. Der er ingen der helt præcis kan svare på, hvorfor at navlehøjde divideret med hovedhøjden giver det gyldnesnit, så det er derfor stadig en gåde, som ikke er blevet løst, og som ingen har præcise svar på. Det lille gyldne snit kan udregnes som side/diagonal i en regulær femkant, se figuren. strækhøjde H 4 = 2 det gyldnesnit(1,3 ) denne formel er en vi har fundet i klassen. Hvis Da spændhøjde Vincis teorier er rigtig må denne teori også være rigtig. Hvis vi sætter en formel op vil vi nå frem til at denne formel i stor sigt må give to gange det gyldne snit. H 5 = knæhæjde hovedhøjde 3 4 her siges at forholdet mellem de to er konstant og er derfor ¾. 7
8 H 6 = håndhøjde hovedhøjde 1 9 her er forholdet mellem håndhøjden og hovedhøjden 1/9. Opgave Undersøg selv de hypoteser, der er opstillet i elevrapporten. Formuler evt selv andre hypoteser. 8
(Projektets første del er rent deskriptiv, mens anden del peger frem mod hypotesetest. Projektet kan gemmes til dette emne, eller tages op igen der)
Projekt 2.4 Menneskets proportioner (Projektets første del er rent deskriptiv, mens anden del peger frem mod hypotesetest. Projektet kan gemmes til dette emne, eller tages op igen der) I. Deskriptiv analyse
Deskriptiv statistik for hf-matc
Deskriptiv statistik for hf-matc 75 50 25 2018 Karsten Juul Deskriptiv statistik for hf-matc Hvad er deskriptiv statistik? 1.1 Hvad er deskriptiv statistik?... 1 1.2 Hvad er grupperede og ugrupperede data?...
Deskriptiv statistik for matc i stx og hf
Deskriptiv statistik for matc i stx og hf 75 50 25 2019 Karsten Juul Deskriptiv statistik for matc i stx og hf Hvad er deskriptiv statistik? 1.1 Hvad er deskriptiv statistik?... 1 1.2 Hvad er grupperede
Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014
Vejledning til udvalgte opgave fra Matematik B, sommer 2014 Opgave 7 Størrelsen og udbudsprisen på 100 fritidshuse på Rømø er indsamlet via boligsiden.dk. a) Grafisk præsentation, der beskriver fordelingen
for gymnasiet og hf 2016 Karsten Juul
for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen
Workshop i Lister og Regneark
Workshop i Lister og Regneark Indholdsfortegnelse: 1. Øvelser i variabelsammenhænge side 1 Elementære modelleringsøvelser Lineære sammenhænge (C) side 1 Omvendt proportionalitet (C/B) side 3 Potensvækst
Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium
Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,
Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1
Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke
Peter Harremoës Matematik B eksamen med hjælpemidler 25. maj 2016
Opgave 6 a) Skæringspunktet mellem linjerne med ligningerne l : 10x + 20y = 1000 og m : 90x 30y = 600 bestemmes. 10x + 20y = 1000 og 90x 30y = 600Ligningerne er skrevet op. y = 0.5x + 50 og y = 3x 20y
for matematik pä B-niveau i hf
for matematik pä B-niveau i hf 75 50 5 016 Karsten Juul GRUPPEREDE DATA 1.1 Hvad er deskriptiv statistik?...1 1. Hvad er grupperede og ugrupperede data?...1 1.1 Eksempel pä ugrupperede data...1 1. Eksempel
1gma_tændstikopgave.docx
ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når
for gymnasiet og hf 2017 Karsten Juul
for gymnasiet og hf 75 50 5 017 Karsten Juul Statistik for gymnasiet og hf 017 Karsten Juul 5/11-017 Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm Hæftet må benyttes i undervisningen
Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k
Statistik 5 Statistik er en meget omfattende matematisk disciplin, og den anvendes i meget stor udstrækning i vores moderne samfund. Den handler om at analysere et (ofte meget stort) talmateriale. Det
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik B Henrik Laursen
Lineære sammenhænge, residualplot og regression
Lineære sammenhænge, residualplot og regression Opgave 1: Er der en bagvedliggende lineær sammenhæng? I mange sammenhænge indsamler man data som man ønsker at undersøge og afdække eventuelle sammenhænge
Noter til Statistik. Lisbeth Tavs Gregersen. 1. udgave
Noter til Statistik Lisbeth Tavs Gregersen 1. udgave 1 Indhold 1 Intro 3 1.1 HF Bekendtgørelsen........................ 3 1.2 Deskriptiv statistik......................... 3 2 Ikke-grupperet Talmateriale
Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet
Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der
Hvad siger statistikken?
Eleverne har tidligere (fx i Kolorit 7, matematik grundbog) arbejdet med især beskrivende statistik (deskriptiv statistik). I dette kapitel fokuseres i højere grad på, hvordan datamateriale kan tolkes
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Uddannelse Fag og niveau Lærer(e) Hold CampusVejle, Boulevarden 48, 7100 Vejle HHX Matematik
5. Statistik. Hayati Balo,AAMS. 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime
5. Statistik Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime 1. Ugrupperede Observationer Hvis der foreligger et antal målinger eller observationer
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 4 Statistik & sandsynlighedsregning 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver
Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul
Deskriptiv statistik for C-niveau i hf 75 50 25 2015 Karsten Juul DESKRIPTIV STATISTIK 1.1 Hvad er deskriptiv statistik?...1 1.2 Hvad er grupperede og ugrupperede data?...1 1.21 Eksempel pä ugrupperede
for matematik pä B-niveau i hf
for matematik pä B-niveau i hf 014 Karsten Juul TEST 1 StikprÅver... 1 1.1 Hvad er populationen?... 1 1. Hvad er stikpråven?... 1 1.3 Systematiske fejl ved valg af stikpråven.... 1 1.4 TilfÇldige fejl
Opgave 1 - Rentesregning. Opgave a)
Matematik C, HF 7. december 2016 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Løsningerne nedenfor er løst
Ved et folketingsvalg eller en folkeafstemning spørger man alle stemmeberettigede, og kun en del af dem stemmer.
Matematik C (må anvendes på Ørestad Gymnasium) Statistik Statistik er bearbejdning af talmaterialer, der ofte indeholderstore mængder af tal. De indsamles og registreres i mange forskellige sammenhænge
Statistik. Statistik er analyse af indsamlet data. Det vil sige at man bearbejder et datamateriale som i matematik næsten altid er tal.
Statistik Statistik er analyse af indsamlet data. Det vil sige at man bearbejder et datamateriale som i matematik næsten altid er tal. Derved får man et samlet overblik over talmaterialet, og man kan konkludere
Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:
Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse
2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:
Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.
Kvantitative Metoder 1 - Forår 2007. Dagens program
Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe
Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.
Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært
Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer.
Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke
Uafhængig og afhængig variabel
Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig
Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1
Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke
Statistik (deskriptiv)
Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken
Dig og din puls Lærervejleding
Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet
Formelsamling Matematik C
Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden
Formelsamling. Ib Michelsen
Formelsamling T = log(2) 2 log(a) Ikast 2016 Ib Michelsen Ligedannede trekanter Hvis to trekanter er ensvinklede, har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson
Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.
Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt
Dig og din puls. 17-10-2004 Dig og din puls Side 1 af 17
Dig og din puls Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Dig og din puls Side 1 af 17
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution Vestegnen HF og VUC Uddannelse Fag og niveau Lærer(e) Hold stx Matematik A Kirsten
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C PEJE (Pernille
Statistik viden eller tilfældighed
MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår
Torben Rønne. Statistik. med TI InterActive
Torben Rønne Statistik med TI InterActive Indholdsfortegnelse 1 Beskrivende statistik... 3 1.1 Middelværdi, kvartilsæt og boksplot... 3 1. Histogram og sumkurve... 5 1.3 Varians og spredning... 9 Normalfordelingen...
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding
Bemærkninger til den mundtlige årsprøve i matematik
Spørgsmål til årsprøve 1v Ma 2008 side 1/5 Steen Toft Jørgensen Bemærkninger til den mundtlige årsprøve i matematik IT-værktøjer Jeg forventer, at I er fortrolige med lommeregner TI-89 og programmerne
Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode
Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Man kan skifte mellem tekst- og matemamatikmode ved at trykke på F5. I øjeblikket er jeg i tekstmode.. 2. lektion.
statistik og sandsynlighed
brikkerne til regning & matematik statistik og sandsynlighed trin 2 preben bernitt brikkerne statistik og sandsynlighed 2 1. udgave som E-bog ISBN: 978-87-92488-20-6 2004 by bernitt-matematik.dk Kopiering
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2015 VUC
CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM
CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM FORMÅL - BEKENDTGØRELSEN STX MATEMATIK A Kompetencer anvende simple statistiske eller sandsynlighedsteoretiske modeller
Personlig stemmeafgivning
Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt
Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF
Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Vi ønskede at planlægge og afprøve et undervisningsforløb, hvor anvendelse af
Potensfunktioner samt proportional og omvent proportional. for hf Karsten Juul
Potensfunktioner samt proportional og omvent proportional for hf 2018 Karsten Juul Potensfunktion 1. Oplæg til forskrift for potensfunktion...1 2. Forskrift for potensfunktion...2 3. Udregn x eller y i
Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul
Nogle emner fra Deskriptiv Statistik 75 50 25 2011 Karsten Juul Indhold Hvad er deskriptiv statistik?... 1 UGRUPPEREDE OBSERVATIONER Hyppigheder... 1 Det samlede antal observationer... 1 Middeltallet...
c) For, er, hvorefter. Forklar.
1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:
Statistik II 1. Lektion. Analyse af kontingenstabeller
Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression
Projekt 8.6 Linearisering af data fra radioaktivt henfald
Projekt 8.6 Linearisering af data fra radioaktivt henfald Bemærk, at i det følgende er værktøjet TINspire anvendt. Det kan lige så godt laves i et andet værktøj. En vigtig metode til at få overblik over
Eksempel på logistisk vækst med TI-Nspire CAS
Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet
Perspektiver i Matematik-Økonomi: Linær regression
Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: [email protected] Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem
Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]
Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...
SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014
SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014 1. Procent og rente Forklar hvordan man udregner procentvis ændringer i forskellige tidsrum og giv et konkret eksempel herpå. Forklar gerne med et eksempel,
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleåret 13/14 Institution Herning HF oh VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik
9 Statistik og sandsynlighed
9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Enkeltobservationer: kunne skabe overblik over statistisk materiale og anvende udvalgte
Matematik B. Højere handelseksamen. Vejledende opgave 1
Matematik B Højere handelseksamen Vejledende opgave 1 Efterår 011 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen af denne delprøve
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2015, skoleåret 14/15 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik
STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT
STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve
MATEMATIK C. Videooversigt
MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...
T A L K U N N E N. Datasæt i samspil. Krydstabeller Grafer Mærketal. INFA Matematik - 1999. Allan C
T A L K U N N E N 3 Allan C Allan C.. Malmberg Datasæt i samspil Krydstabeller Grafer Mærketal INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et
Matematikprojekt Belysning
Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang
Bedste rette linje ved mindste kvadraters metode
1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik B Else Marie
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2019 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HFe Matematik C Anne Birte
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
Vejledning til GYM17 Copyright Adept Nordic 2013
Vejledning til GYM17 Copyright Adept Nordic 2013 Vejledning i brug af Gym17-pakken... iv 1 Deskriptiv statistik... 1 1.1 Ikke-grupperede observationssæt... 1 1.2 Grupperede observationssæt... 4 2 Regressioner...
