Hvad er matematik? C, i-bog ISBN

Størrelse: px
Starte visningen fra side:

Download "Hvad er matematik? C, i-bog ISBN"

Transkript

1 Man kan nøjes med at gennemføre første del af projektet, som er den spiralkonstruktion, der er omtalt i kapitel 10. Eller man kan udvide med anden del, der giver en mere elegant, men også mere kompliceret spiralkonstruktion. Man kan også vælge senere at udbygge projektet med spiralkonstruktioner, der kræver lidt mere matematik, som vi møder på B-niveau. Første del: Vitruvs og Serlios beskrivelse af spiraler på ioniske søjler Som omtalt i kapitel 10, afsnit 5.2 dukker spiraler op i antikken i forbindelse med den ene af de klassiske søjletyper, den ioniske søjle, der prydes af en kapitæl bestående af en dobbeltspiral, også kaldet en volut, med en cirkel i centrum, det såkaldte øje, og en 'pude' oven på volutten, den såkaldte abakus. Den romerske arkitekt Vitruv var mildest talt ikke særlig klar i sin beskrivelse af udformningen af denne kapitæl: 'Hele kapitælens højde deles nu i ni en halv dele, hvoraf halvanden del svarer til højden af abakusssen og de resterende otte dele svarer til voluttens omfang. Trækkes en linje lodret fra et hjørne i abakussen kan man i en afstand af halvanden dele lægge et lodret linjestykke. Dette linjestykke deles nu med et punkt beliggende fire en halv dele under abakussen; dette svarer til centrum for voluttens øje; Det resterende udgør tre en halv del. Hvis der trækkes en cirkel med en radius svarende til halvdelen af en af disse dele, vil den netop udgøre en sjettedel 1 af volutten. Gennem dennes centrum trækkes en vandret linje, og med udgangspunkt i det øverste punkt af den lodrette diameter for volutten frembringes en kvartcirkelbue der netop rører undersiden af abakussen. Skift så centrum og lad successive radier blive formindsket med halvdelen af øjets diameter hver gang 2, så den sidste cirkelbue falder i selve øjet på den lodrette linje vinkelret under det punkt vi startede med.' 1 Her må Vitruv mene en ottendedel, jfr. figuren. 2 Også denne del er ret så uklar! Det fremgår fx ikke hvordan centrene for de successive kvartcirkelbuer skal placeres i forhold til øjet. 1

2 Så i renæssancen blev Vitruvs beskrivelse strammet betydeligt op og forskellige mulige konstruktioner blev forslået. Den første kommentar kommer fra Alberti i Han forenklede konstruktionen ved at slå kvartcirkelbuerne sammen to og to til halvcirkelbuer med centre skiftevis i øjets øverste og nederste punkt. Derved fås en spiral med netop to omdrejninger, før spiralen slutter sig til øjet. Da den første radius er 4 enheder svarer det netop til at diameteren formindskes med øjets diameter hver gang, hvilket er i overensstemmelse med Vitruv, idet en halvcirkelbue svarer til to kvartcirkelbuer. Øvelse: Gennemfør Albertis konstruktion i dit dynamiske geometriprogram. Men i den virkelige verden har spiralen typisk tre omdrejninger før den slutter sig til øjet. Den simpleste tolkning af Vitruv stammer fra den italienske arktitekt Serlio i Han benyttede som Alberti halvcirkler, men har en lidt mere kompliceret fordeling af centrene, idet han som forklaret i bogen først deler den lodrette diameter i voluttens pupil i 6 lige store dele, som han nummererer som vist udefra og indefter. Med centrum i delepunkt 1 trækker han først en halvcirkel fra det øverste punkt på den lodrette diameter for volutten (dvs. abakussens nederste kant). Derefter skifter han centrum til delepunkt 2, ligesom Alberti, men herefter flyttes delepunkterne langsomt indad mod øjets centrum indtil han kommer til delepunkt 6, som er centrum for den sidste halvcirkel. På denne måde får spiralen netop tre fulde omdrejninger og slutter sig som den skal til øjet. A B Øvelse: Gennemfør nu selv i dit dynamiske geometriprogram Serlios spiralkonstruktion som vist i detaljer ni det følgende: 2

3 Først deles en lodret linje i otte lige store dele, hvor den fjerde del fra neden netop svarer til diameteren for voluttens øje. Dernæst deles diameteren for øjet i seks lige store dele. Så tegnes den første og yderste halvcirkelbue med den lodrette linje som diameter, dvs. det øverste delepunkt i øjet som centrum. Denne halvcirkelbue slutter altså tættere på øjet i sit nederste punkt. Så tegnes den næste halvcirkelbue som en fortsættelse af den forrige men denne gang med centrum i det nederste delepunkt i øjet. Den spænder altså over de seks nederste delepunkter. Den næste halvcirkelbue er igen en fortsættelse af den forrige, men denne gang med det næstøverste delepunkt i øjet som centrum. 3

4 Den næste halvcirkelbue er igen en fortsættelse af den forrige, men denne gang med det næstnederste delepunkt i øjet som centrum. Således fortsætter vi med at indsnævre halvcirkelbuen, idet vi skifter med at vælge centrene for oven og for neden og successivt tættere på øjet. I det næste skridt lukker spiralen sig netop om øjet og vi er færdig med selve spiralen. Vi kan nu skjule hjælpelinjerne og evolutten fremstår som en spiral med et øje. 4

5 Serlios spiralkonstruktion er nok den simplest mulige, men den er ikke så elegant, for ved at bruge halvcirkelbuer kommer den til at virke lidt skæv. Her har vi ved hjælp af en spejling fået frembragt den fulde dobbeltspiral efter Serlios konstruktion. Anden del: Salviatis konstruktion af spiraler Det blev derfor også foreslået at man som i Vitruvs tekst skulle forsøge sig med kvartcirkelbuer og måske endda ottendelsbuer i konstruktionen. Prisen er imidlertid en mere kompliceret fordeling af centrene for cirkelbuerne, som jo i Serlios konstruktion altid ligger på den lodrette diameter for centercirklen. Ønsker vi fx tre omdrejninger med kvartcirkelbuer kræver det således 12 centre, der skiftevis ligger på lodrette og vandrette linjer. Centrene bliver da i stedet spredt ud på et kvadratisk net med 6 6 = 36 gitterpunkter, hvilket selvfølgelig betyder at man skal holde tungen lige i munden for at slippe frelst gennem alle 12 kvartcirkelbuer. Øvelse: I 1552 offentliggør Salviati en simpel regel for hvordan centrene skal placeres, hvis man ønsker at bruge kvartcirkelbuer. Da han skal bruge dobbelt så mange buer er udgangspunktet denne gang et kvadrat med den halve diameter som side. Dette finder han indskrevet i centercirklen ved at halvere et kvadrat indskrevet i centercirklen som vist på den følgende figur: 5

6 De 12 centre findes nu ved at starte i øverste venstre hjørne og følge pilene rundt. Den første radius fås af Vitruvs regel om at abakussen skal ligge fire diametre oven over centercirklen. Resten af radierne følger nu ved at lave kvartcirkelbuer og fortsætte indtil man når indtil centercirklen. Efterprøv Salviatis konstruktion og forklar hvor han snyder på vægten! Selvom han rent faktisk snyder blev konstruktionen uhyre populær og findes på mange afbildninger af ioniske søjler. 6

7 Øvelse 3 : Faktisk er det ikke så svært at undgå Salviatis snyd med spiralkonstruktionen. Her er en moderne udgave, hvor vi som før lægger et kvadrat med den halve diameter som side inde i centercirklen og udbygger det til et kvadratisk gitter med 6 6 = 36 delepunkter. De 12 centre findes nu ved at starte i øverste venstre hjørne og følge pilene rundt. Den første radius fås af Vitruvs regel om at abakussen skal ligge fire diametre oven over centercirklen. Resten af radierne følger nu ved at lave kvartcirkelbuer og fortsætte indtil man når centercirklen. Efterprøv konstruktionen. Tredje del: Arkimedes-spiraler og logaritmiske spiraler Dette afsnit rummer matematik, vi først møder på B-niveau, og kan gemmes til det tidspunkt, hvor vui udbygger det. Men vi præsenterer det her, dels for at perspektivere og dels fordi man godt kan gennemføre konstruktionerne nu. Så kan teorien komme på senere. Øvelse: Albertis spiral kan nemt generaliseres til en fin approksimation af en Arkimedes-spiral, hvor radien for hver bue formindskes med det samme stykke hver gang. Skal der være et centralt øje, som spiralen lukker sig om, skal dimensionerne blot vælges med omhu. Lad os som et eksempel se på ottendedelsbuer. Udgangspunktet er da det centrale øje og det øverste punkt som ligger 16 øjeradier over øjet, hvis spiralen skal gennemføre to fulde omdrejninger hvor radien for hver omdrejning mindskes med en øjeradius. Vi starter da med at konstruere en regulær ottekant over øjets lodrette radius: 3 Fra Sacred geometry af Miranda Lundy, Wooden books Ltd,

8 P Spiralen starter da med at have centrum i P og gå gennem det øverste delepunkt på aksen. I næste skridt flytter vi til den næste stråle på ottekanten og bruger hjørnet i ottekanten som centrum og lader cirklen gå gennem skæringspunktet med den første bue: 8

9 P Fortsæt således og eftervis at spiralen lukker sig om øjet og at den ender i punktet P. 9

10 Øvelse: Den gyldne spiral I naturen er det ofte logaritmiske spiraler, der er de fremherskende spiralformer. De kan også tilnærmes med cirkelbuespiraler efter det foregående mønster. Særligt berømt er den gyldne spiral bygget over det gyldne snit. Udgangspunktet er denne gang et gyldent rektangel, hvor siderne forholder sig som det gyldne snit, der som vist bør defineres helt præcist: C = A Pointen ved det gyldne snit er nu at hvis man som vist skærer et kvadrat ud er resten selv et gyldent rektangel, men nu drejet 90 i forhold til det oprindelige. Men så kan vi jo igen skære et kvadrat ud osv. B = Men hvert af kvadraterne spænder jo over en kvartcirkelbue, hvorfor vi kan trække en spiral igennem delepunkterne på rektanglernes sider: 10

11 = Gennemfør konstruktionen af den gyldne spiral i dit dynamiske geometriprogram. Hvor ligger centrum for spiralen i forhold til siderne i det gyldne rektangel? Er nautilus skallen nedenunder et eksempel på en gylden spiral? 11

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer:

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer: Euclidean Eggs Freyja Hreinsdóttir, University of Iceland 1 Introduction Ved hjælp af et computerprogram som GeoGebra er det nemt at lave geometriske konstruktioner. Specielt er der gode værktøjer til

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Introduktion til ovaler: Ovato Tondo fra Rafaels skole En oval er en lukket krum kurve med to vinkelrette symmetriakser, storeaksen og lilleaksen, og dermed også et symmetricentrum. Der findes mange forskellige

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

Projekt 5.9. Geometriske fraktaler og fraktale dimensioner

Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Indhold 1. Fraktaler og vækstmodeller... 2 2. Kløverøen... 2 3. Fraktal dimension... 4 3.1 Skridtlængdemetoden... 4 3.2 Netmaskemetoden... 7 3.3

Læs mere

Korncirkler og matematik

Korncirkler og matematik Korncirkler og matematik I den følgende opgave vil jeg undersøge om korncirkler indeholder matematiske figurer nærmere bestemt det gyldne snit, det gyldne rektangel og den gyldne spiral. Før jeg starter

Læs mere

Julehjerter med motiver

Julehjerter med motiver Julehjerter med motiver Torben Mogensen 18. december 2012 Resumé Jeg har i mange år moret mig med at lave julehjerter med motiver, og er blevet spurgt om, hvordan man gør. Så det vil jeg forsøge at forklare

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Bacheloruddannelsen 1. år E15

Bacheloruddannelsen 1. år E15 Bacheloruddannelsen 1. år E15 2 v/jan Fugl 3 Projektionstegning Projek tion -en, -er (lat.pro jectio, til pro jicere-, kaste frem, af pro frem + jacere kaste; jf. Projekt, projektil, projektion) afbildning

Læs mere

Animationer med TI-Nspire CAS

Animationer med TI-Nspire CAS Animationer med TI-Nspire CAS Geometrinoter til TI-Nspire CAS version 2.0 Brian Olesen & Bjørn Felsager Midtsjællands Gymnasieskoler Marts 2010 Indholdsfortegnelse: Indledning side 1 Eksempel 1: Pythagoras

Læs mere

Mandatfordelinger ved valg

Mandatfordelinger ved valg Mandatfordelinger ved valg I denne note vil vi prøve at beskrive et nyttigt diagram når man skal analysere problemstillinger vedrørende mandatfordelinger. For at holde diagrammet enkelt ser man på den

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Projekt 3.7. Pythagoras sætning

Projekt 3.7. Pythagoras sætning Projekt 3.7. Pythagoras sætning Flere beviser for Pythagoras sætning... Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... Opgave 1: Et kinesisk og et indisk bevis for Pythagoras sætning...

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Om opbygningen af en geometrisk model for mandatfordelinger

Om opbygningen af en geometrisk model for mandatfordelinger Om opbygningen af en geometrisk model for mandatfordelinger I denne note vil vi prøve at beskrive et nyttigt diagram når man skal analysere problemstillinger vedrørende mandatfordelinger. For at holde

Læs mere

F I N N H. K R I S T I A N S E N DET GYLDNE SNIT TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING

F I N N H. K R I S T I A N S E N DET GYLDNE SNIT TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING F I N N H. K R I S T I A N S E N 6 DET GYLDNE SNIT 4 TES REGNING MED REGNEARK KUGLE G Y L D E N D A L SIMULATIONER 5 LANDMÅLING Faglige mål: Demonstrere viden om matematikanvendelse samt eksempler på matematikkens

Læs mere

1.1.1 Første trin. Læg mærke til at linjestykket CP ikke er en cirkelbue; det skyldes at det ligger på en diameter, idet = 210

1.1.1 Første trin. Læg mærke til at linjestykket CP ikke er en cirkelbue; det skyldes at det ligger på en diameter, idet = 210 1.1 Konstruktionen Denne side går lidt tættere på den hyperbolske geometri. Vi bruger programmet HypGeo, og forklarer nogle geometriske konstruktioner, som i virkeligheden er de samme, som man kan udføre

Læs mere

Projekt 3.1 Pyramidestub og cirkelareal

Projekt 3.1 Pyramidestub og cirkelareal Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydningsloven Når en bølge, fx en lysbølge, rammer en grænseflade mellem to stoffer, vil bølgen normalt blive spaltet i to: Noget af bølgen kastes tilbage (spejling), hvor udfaldsvinklen u

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE I den midtengelske by Liverpool ligger bydelen Sefton med Sefton Park - et parkanlæg, der bl.a. er kendt for det ottekantede palmehus, hvor man kan

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Introducerende undervisningsmateriale til Geogebra

Introducerende undervisningsmateriale til Geogebra Klaus Frederiksen & Christine Hansen Introducerende undervisningsmateriale til Geogebra - Dynamisk geometriundervisning www.bricksite.com/ckgeogebra 01-03-2012 Indhold 1. Intro til programmets udseende...

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Konstruktion af SEGMENTBUE I MURVÆRK.

Konstruktion af SEGMENTBUE I MURVÆRK. Konstruktion af SEGMENTBUE I MURVÆRK. Murerviden.dk - 1 - RE Forudsætninger. Segmentbuens endepunkt i overkant sten Stander Overkant segmentbue i lejefuge Vederlag Pilhøjde Det er nødvendigt at kende visse

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Baggrund: I de senere år har en del gymnasieskoler eksperimenteret med HOT-programmet i matematik og fysik, hvor HOT står for Higher

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version Rettevejledning, FP9, Prøven med hjælpemidler, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. Den udvidede rettevejledning

Læs mere

Bjørn Felsager, Haslev Gymnasium & HF, 2003

Bjørn Felsager, Haslev Gymnasium & HF, 2003 Keglesnitsværktøjer De følgende værktøjer er beregnet til at tegne keglesnit på forskellig vis, såsom ellipser og hyperbler ud fra centrum, toppunkter, halvakser og lignende. Der er faktisk allerede inkluderet

Læs mere

Projekt 3.3 Linjer og cirkler ved trekanten

Projekt 3.3 Linjer og cirkler ved trekanten Projekt 3.3 Linjer og cirkler ved trekanten Midtnormalerne i en trekant Konstruer et linjestykke (punkt-menuen) og navngiv endepunkterne A og B (højreklik og vælg: Etiket), dvs. linjestykket betegnes AB.

Læs mere

Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont

Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont Rumlig afbildning For at illustrere en bygning eller et Rum, i et sprog der er til at forstå, for ikke byggefolk, kan det være en fordel at lave en gengivelse af virkeligheden. Perspektiv At illustrerer

Læs mere

Installer DesignPro. DesignPro I Side 1

Installer DesignPro. DesignPro I Side 1 DesignPro I Side 1 Installer DesignPro DesignPro 5 DesignPro fra Avery, er fint layoutprogram, der har nogle store fordele frem for Publisher og Draw. Det er på Dansk, og så er det gratis. Programmet er

Læs mere

Geometri med Geometer II

Geometri med Geometer II hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne

Læs mere

Værktøjskasse til analytisk Geometri

Værktøjskasse til analytisk Geometri Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Projekt 2.5 Brændpunkt og ledelinje

Projekt 2.5 Brændpunkt og ledelinje Projekter. Kapitel. Projekt.5 Brændpunkt og ledelinje Projekt.5 Brændpunkt og ledelinje En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

************************************************************************

************************************************************************ Projektet er todelt: Første del har fokus på Euklids system og består af introduktionen, samt I og II. Anden del har fokus på Hilberts system fra omkring år 1900 og består af III sammen med bilagene. Man

Læs mere

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion Transformationsgeometri: Inversion. Kirsten Rosenkilde, august 2007 1 Inversion Inversion er en bestemt type transformation af planen, og ved at benytte transformation på en geometrisk problemstilling

Læs mere

Opsætte f.eks. en rejsebeskrivelse med tekst og billede i Draw side 1

Opsætte f.eks. en rejsebeskrivelse med tekst og billede i Draw side 1 side 1 Hvis man vil lave en opsætning af rejsebeskrivelse og billeder, kan man også gøre det i DRAW. Denne vejledning vil vise hvordan man indsætter hjælpelinjer så man laver en pæn opstilling med billede

Læs mere

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Introduktion: Vi vil nu se på et konkret eksempel på hvordan man i praksis fordeler mandaterne i et repræsentativt demokrati,

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

MATEMATIK ( 5 h ) DATO: 4. juni 2010

MATEMATIK ( 5 h ) DATO: 4. juni 2010 EUROPÆISK STUDENTEREKSAMEN 2010 MATEMATIK ( 5 h ) DATO: 4. juni 2010 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

Matematik og dam. hvordan matematik kan give overraskende resultater om et velkendt spil. Jonas Lindstrøm Jensen

Matematik og dam. hvordan matematik kan give overraskende resultater om et velkendt spil. Jonas Lindstrøm Jensen Matematik og dam hvordan matematik kan give overraskende resultater om et velkendt spil Jonas Lindstrøm Jensen (jonas@imf.au.dk) March 200 Indledning Det klassiske spil dam spilles på et almindeligt skakbræt.

Læs mere

1gma_tændstikopgave.docx

1gma_tændstikopgave.docx ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når

Læs mere

F3A X-klassen Program og manøvrebeskrivelser

F3A X-klassen Program og manøvrebeskrivelser F3A X-klassen Program og manøvrebeskrivelser F3A X-klassen Beskrivelse af manøvrerne for R/C kunstflyvning Alle manøvrer starter i samme højde og på samme linje. Centermanøvrer starter og slutter i samme

Læs mere

Rybners Teknisk Skole. Tømrer afdeling. Frank Kleemann Aarestrup

Rybners Teknisk Skole. Tømrer afdeling. Frank Kleemann Aarestrup Rybners Teknisk Skole Tømrer afdeling Frank Kleemann Aarestrup Opstart Start programmet og vælg Template måleenhed Millimeters Start Sketchup Velkommen til Sketchup brugerflade! Sketchup Opstart 2 Introduktion

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Sekstant (plastik) instrumentbeskrivelse og virkemåde

Sekstant (plastik) instrumentbeskrivelse og virkemåde Sekstant (plastik) instrumentbeskrivelse og virkemåde Sekstantens dele Sekstantens enkeltdele. Sekstanten med blændglassene slået til side. Blændglassene skal slås til, hvis man sigter mod solen. Version:

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

Projekt 2.4 Euklids konstruktion af femkanten

Projekt 2.4 Euklids konstruktion af femkanten Projekter: Kapitel Projekt.4 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære femkant. 0. Forudsætninger, definitioner og

Læs mere

Beregning til brug for opmåling, udfoldning og konstruktion

Beregning til brug for opmåling, udfoldning og konstruktion VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages

Læs mere

Du har med andre ord lavet en amigurumi en kærlig bamse med et sjovt udtryk og et trygt kram!

Du har med andre ord lavet en amigurumi en kærlig bamse med et sjovt udtryk og et trygt kram! Hæklet Sutteklud Dette skulle gerne være en opskrift for dig der har mod på at hækle, men måske ikke helt har haft modet endnu. Opskriften vil blive skrevet som en almindelig hækleopskrift, og nedenfor

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Invarianter. 1 Paritet. Indhold

Invarianter. 1 Paritet. Indhold Invarianter En invariant er en størrelse der ikke ændrer sig, selv om situationen ændrer sig. I nogle kombinatorikopgaver hvor man skal undersøge hvilke situationer der er mulige, er det ofte en god idé

Læs mere

Halvcirkelbue i Autocad murerviden.dk. Murerviden.dk - René Eriksen. Fri brug af materialet. Materialet må ikke videresælges.

Halvcirkelbue i Autocad murerviden.dk. Murerviden.dk - René Eriksen. Fri brug af materialet. Materialet må ikke videresælges. Side 1 Det færdige resultat: Spændevide / åbning = 972 mm Stikhøjde = 108 mm Side 2 Hent og åbn en passende skabelon(bueøvelse- hf4.020 - halvcirkelbue.dwg). Tegn / indsæt højdemål. Tegn overkant halvcirkelbue

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten.

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten. Perspektiv tegning Hjælp til perspektivtegning. Illustrationerne er købt fra Perspektivtegning - Matematik i Billedkunst, billedkunst i matematik. - en kopimappe som er lavet af Jørgen Skourup og Ole Stærkjær.

Læs mere

Animationer og Websider med TI-Nspire CAS

Animationer og Websider med TI-Nspire CAS Animationer og Websider med TI-Nspire CAS Geometrinoter til TI-Nspire CAS version 3.1 Brian Olesen & Bjørn Felsager Midtsjællands Gymnasieskoler Revideret november 2011 69 Indholdsfortegnelse: Animationer

Læs mere

Mastercam Øvelsesvejledning

Mastercam Øvelsesvejledning Mastercam Øvelsesvejledning Fræsning og Design version 9 MASTERCAM V9 ØVELSER 1 2 MASTERCAM V9 ØVELSER Indhold: 1. Indledning 5 1.1. Konfiguration 5 1.2. Brugerfladen 6 1.3. Menuerne 7 1.3.1. Analyser

Læs mere

Projekt 8.10: Gitterformlen og Thomas Young

Projekt 8.10: Gitterformlen og Thomas Young Projekt 8.10: Gitterformlen og Thomas Young Indledning: Opdagelsen af lysets bølgenatur Lysets natur var længe omdiskuteret: Kunne det bedst forstås som partikler eller som bølger? I første omgang sejrede

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik.

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik. Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1 1 Paritet Diskret matematik. I mange matematikopgaver er det en god ide at se på paritet dvs. hvornår en bestemt størrelse er henholdsvis lige

Læs mere

Lad os prøve GeoGebra.

Lad os prøve GeoGebra. Brug af Geogebra i matematik Programmet Geogebra er et matematisk tegneprogram. Det findes i øjeblikket i flere versioner. Direkte på nettet uden download. http://www.geogebra.org/cms/ Klik på billedet.!

Læs mere

GeoGebra 3.0.0.0 Quickstart. det grundlæggende

GeoGebra 3.0.0.0 Quickstart. det grundlæggende GeoGebra 3.0.0.0 Quickstart det grundlæggende Grete Ridder Ebbesen frit efter GeoGebra Quickstart af Markus Hohenwarter Virum, 28. februar 2009 Introduktion GeoGebra er et gratis og meget brugervenligt

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Forunderlig matematik. Svanholm. Matematik trin 2. Matematik trin 2. avu

Forunderlig matematik. Svanholm. Matematik trin 2. Matematik trin 2. avu Forunderlig matematik Svanholm Matematik trin 2 Matematik trin 2 avu Almen voksenuddannelse 8. december 2005 Forunderlig matematik Matematik trin 2 Opgavesættet består af: informationshæfte (dette hæfte)

Læs mere

Fagudtryk. Murerviden.dk - René Eriksen. Fri brug af materialet. Materialet må ikke videresælges. Side 1

Fagudtryk. Murerviden.dk - René Eriksen. Fri brug af materialet. Materialet må ikke videresælges. Side 1 Fagudtryk Side 1 Find segmentbuens radius i tabelen: R R R R R Stikhøjde(b) 108 168 228 288 348 Åbningsmål(a) Skifter ned(c) mm mm mm mm mm 612 1 931,81 1034,37 1133,69 1230,41 1324,99 2 591,99 683,79

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Boxsekstant (kopi) instrumentbeskrivelse og virkemåde

Boxsekstant (kopi) instrumentbeskrivelse og virkemåde Boxsekstant (kopi) instrumentbeskrivelse og virkemåde Sekstantens dele Figur 1. Boxsekstanten med låget skruet på som håndtag. Figur 2 Boxsekstanten anbragt i sin trækasse i lukket tilstand. Boxsekstanten

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

Fyld en mængde genstande i en ikke gennemsigtig beholder. Man skal nu gætte to ting:

Fyld en mængde genstande i en ikke gennemsigtig beholder. Man skal nu gætte to ting: Tidlig matematik, Workshop 10. februar 2016 Aktiviteter Hvad er matematik? Gæt hvor mange og hvad Fyld en mængde genstande i en ikke gennemsigtig beholder. Man skal nu gætte to ting: Hvad er i beholderen?

Læs mere

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm.

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm. Homografier Möbius transformationer Følgende tema, handler om homografier, inspireret af professor Børge Jessens noter, udgivet på Københavns Universitet 965-66. Noterne er herefter blevet bearbejdet og

Læs mere

Undersøgelser i nyere geometri

Undersøgelser i nyere geometri Figur 15. Skatteøen. Undersøgelser i nyere geometri På opdagelse i grafteorien Grafteori teorien om netværk er et af de områder i matematikken, der er bedst egnet til at gå på opdagelse i. Det skyldes,

Læs mere

Fraktaler. Vejledning. Et snefnug

Fraktaler. Vejledning. Et snefnug Fraktaler Vejledning Denne note kan benyttes i gymnasieundervisningen i matematik i 1g, eventuelt efter gennemgangen af emnet logaritmer. Min hensigt har været at give en lille introduktion til en anderledes

Læs mere