Rettevejledning, FP9, Prøven med hjælpemidler, endelig version

Størrelse: px
Starte visningen fra side:

Download "Rettevejledning, FP9, Prøven med hjælpemidler, endelig version"

Transkript

1 Rettevejledning, FP9, Prøven med hjælpemidler, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. Den udvidede rettevejledning skal sikre, at alle elever vurderes ensartet. 1

2 1 Ferielejlighed i Italien Opgavenummer =3051 Forskellen på udlejningsprisen er 3051 kr kr kr. = 3051 kr. Forskel er: =3051 kr. Korrekt regneudtryk, korrekt facit og korrekt konklusion (bidrager positivt til helhedsindtryk). Korrekt regneudtryk, korrekt facit, ingen konklusion =3051 kr kr. Korrekt facit, ingen regneudtryk =3151 Forskellen på udlejningsprisen er 3151 kr Korrekt regneudtryk, ukorrekt facit. Korrekt regneudtryk, ingen facit. 0 Forskellen er 1351 kr. Ingen rigtige elementer. 2

3 Opgavenummer = Min beregning bekræfter, at den samlede pris for leje af ferielejlighed, sengetøj og for slutrengøring er kr. Korrekt regneudtryk, korrekt konklusion. Korrekt regneudtryk, ingen konklusion. Ferielejlighed: Leje af sengetøj: = 520 Slutrengøring: 625 I alt: = kr = Det bliver kr. i alt. Delvist korrekt regneudtryk. 0 Jeg har regnet efter, og det passede. Konklusion uden beregninger. 3

4 Opgavenummer ,88 = ,56 Familien skal betale10 350,56 kr. (10 350,50 kr.), hvis de bestiller inden den 1. juni. Korrekt regneudtryk, korrekt facit og korrekt konklusion (bidrager positivt til helhedsindtryk) ,56 Familien skal betale kr., hvis de bestiller inden den 1. juni. Korrekt regneudtryk, korrekt facit og korrekt konklusion (bidrager positivt til helhedsindtryk). kr. Korrekt regneudtryk, korrekt facit, kun enhed på facit og ingen konklusion (bidrager negativt til helhedsindtryk). Beregner kun rabatten ,88 = 9409, , 56 Korrekt udtryk, ukorrekt facit. Korrekt facit, ukorrekt udtryk. Korrekt facit, ukorrekt udtryk , ,56 kr. 0 Det bliver kr. Ingen rigtige elementer. 4

5 5

6 Opgavenummer 1.4 Jeg har undersøgt, om der er nogen forskel på priserne ved at opstille disse regneudtryk: Opstilling af regneudtryk, der repræsenterer hver rækkefølge og efterfølgende konklusion med ræsonnement. Da faktorernes orden er lige gyldig, gør det ikke nogen forskel, hvilken rækkefølge rabatten bliver trukket i. 3 I den ene rækkefølge fratrækker jeg først 3 % af : =11 409,14 Derefter fratrækker jeg 12 % af ,14: Opstilling af regneudtryk, der repræsenterer hver rækkefølge og sammenligning med beregning. I den anden rækkefølge fratrækker jeg først 12 % af : =10 350,56 Derefter fratrækker jeg 3 % af ,56: Da de to resultater er ens, kan jeg se, at rækkefølgen ikke har nogen betydning. Undersøgelse, der baserer sig på fejl fra opgave 1.3, men i øvrigt er korrekt. 6

7 I den ene rækkefølge fratrækker jeg først 3 % rabat: = Så beregner jeg 12 % rabat: Undersøgelse, hvor afrunding fører til forkert konklusion. I den anden rækkefølge beregner jeg først 12 % rabat: = Derefter beregner jeg 3 % rabat: På de to resultater kan jeg se, at det bliver 1 kr. billigere, hvis man først fratrækker 3 % og derefter 12 %. = = Undersøgelse med korrekt fremgangsmåde men med små regnefejl. Manglende konklusion. 12 % af er 1411,44 3 % af er 352, ,44-352,86 =9997, , ,44 =9997,7 Rækkefølgen er altså ligegyldig. Undersøgelse med ukorrekt fremgangsmåde, men med få rigtige elementer. 0 Jeg har tjekket de to rækkefølger, og det gør ingen forskel. Gæt, ingen korrekte beregninger. 7

8 Det er lige meget, for i begge rækkefølger er der 15 % i rabat. 8

9 2 Danskernes mest populære feriemål % af danskernes ferierejser gik til enten Italien eller Spanien Korrekt facit (dvs. i intervallet [ (bidrager positivt til helhedsindtryk). ]) og forklarende tekst 25 % 15 % af danskernes ferierejse gik til Spanien og 10 % danskernes ferierejse til Italien Korrekt facit uden forklarende tekst (bidrager negativt til helhedsindtryk) Korrekte aflæsninger, der ikke er summerede, og konklusion. 10 % tager til Italien 10 og 15 En korrekt aflæsning Korrekte aflæsning, uden procenttegn og uden forklarende tekst. 0 5 % af danskernes ferierejser gik til enten Italien eller Spanien Ingen rigtige elementer. 9

10 2.2 (15-10) : 10 = 0,50 Min beregning viser, at det var 50 %. (15-10) : = 50 Ifølge beregningen er det rigtigt, at der ifølge diagrammet var 50% flere der rejste til Spanien end til Italien. Der rejste 10 % til Italien. 50 % mere er: 10 * 1,5 = 15 Det passer med diagrammet, at 15 % rejste til Spanien. (15-10) : 10 = 50 %. (15-10) : = 50 % Korrekt beregning og korrekt konklusion (bidrager positivt til helhedsindtryk). Korrekt beregning og ingen konklusion (bidrager negativt til helhedsindtryk). Beregning der er korrekt bortset fra manglende procenttegn, ingen konklusion (bidrager negativt til helhedsindtryk). Ifølge beregningen er det rigtigt, at der var 50 % flere der rejste til Spanien end til Italien Beregninger med elementer, som kunne have ført til et korrekt resultat. 0 Det passer, at det er 50 % Konklusion uden beregninger. 10

11 er det mindste antal ferierejser, danskerne kan have foretaget. Ca. 0,6 mio. ferierejser er det mindste antal. 0,13 4,8 =0, 624 Korrekt regneudtryk, korrekt facit og korrekt konklusion (bidrager positivt til helhedsindtryk) er det mindste antal ferierejser dansker kan have foretaget. Mindst antal ferierejser: : 100 = : 100 = Korrekt regneudtryk, korrekt facit og uden konklusion (bidrager negativt til helhedsindtryk) : 100 = : 100= ,8=0,624 mio. Korrekt udtryk, ukorrekt facit. Korrekt facit og regneudtryk med korrekte elementer er det mindste antal ferierejser, danskerne kan have foretaget 0, ,8 = ,8:100 = 0, 81 mio. Korrekt facit uden begrundelse. Ukorrekt facit, enkelte rigtige elementer i udtrykket. 11

12 15 % - 2 % = 13 % 0 Ingen rigtige elementer i beregningen % rejser til Italien, men med usikkerheden på +,- 2 procent kunne det lige så godt kun være 8 %. Tyskland med sine 8 % kunne ligeså godt være 10 % og dermed komme på andenpladsen. Holdbar forklaring. Tyskland kan også være 10 % og dermed på andenpladsen. Italien kunne også være 8 %. Forklaring med korrekte elementer. 0 Italien vil altid være på 2. pladsen. Forklaring uden korrekte elementer. 12

13 3 Peterspladsen i Rom Korrekt tegning (bidrager positivt til helhedsindtryk). Korrekt håndtegning med passende nøjagtighed. Tegning med mange korrekte elementer. Cirkelbuerne har forkert centrum. Tegning med få korrekte elementer. 13

14 0 Tegning uden korrekte elementer. 14

15 3.2 De røde linjestykker er diametre i cirklerne på Amandas tegning. Radius svarer til halvdelen af disse diametre. Derfor er radius i cirklerne på Amandas tegning 30 : 2 = 15. Radius er cm Jeg har målt radius. Den var 7,2. Korrekt facit med begrundelse (bidrager positivt til helhedsindtrykket). Korrekt facit uden begrundelse. Korrekt facit med (ukorrekt) enhed (bidrager negativt til helhedsindtrykket). Facit, der svarer til radius på elevens egen tegning af cirklerne. 0 Radius er 1,5 cm. Radius er 30 cm Facit, der svarer til radius på opgavens tegning. Facit, der indikerer at de fire linjestykker på figur 2 opfattes som 8 linjestykker, hvis længde er radius. 60 Ingen rigtige elementer i beregningen 15

16 3.3 u og v er vinkler i hver sin trekant. Siderne i disse trekanter er lige lange, da de (samtidig) er radier i cirklerne på Amandas tegning. Trekanterne er derfor ligesidede, og i ligesidede trekanter er hver vinkel 60 o. Vinkel u og vinkel v er derfor også 60 o. Holdbar forklaring (korrekt anvendelse af fagbegreber bidrager positivt til helhedsindtrykket). Hvis Amanda spejler de midterste trekanter i en bestemt linje, kan hun se, at alle vinklerne er lige store. Så må de være 60 grader, for 180:3=60. Forklaring med korrekte elementer. 0 Jeg kan se det på tegningen og har målt efter. Forklaringer, der baserer sig på målinger. Forklaringer, der ikke har korrekte elementer. 16

17 3.4 Korrekt beregning 3 Beregning der baserer sig på fejl fra opgave 3.2, men i øvrigt er korrekt. Beregning med elementer der kunne have ført til en rigtig løsning. Hvis cirkelbuerne gik hele vejen rundt, ville de have længden 0 Vinkel v er 60, og derfor er den røde bue 60 : pi = 10 pi 10 pi =31,4 Beregning med mindst et element, der kunne have ført til en rigtig løsning. Beregning uden elementer, der kunne have ført til en rigtig løsning. 17

18 3.5 Omkreds: ( ) Korrekt regneudtryk og korrekt facit Længden af de røde buer er 10 pi. Længden af den sorte bue med dobbelt vinkelmål og halv radius må have samme længde. Altså. Holdbar forklaring/ræsonnement og korrekt facit. Tegning, måling og beregning med digitalt værktøj. 3 Beregning der baserer sig på fejl fra opgave 3.2, men i øvrigt er korrekt. 0 =188,4 = 94,2 = 251,2 Regneudtryk hvor der er mindre fejl. Men beregningen af regneudtrykket er korrekt gennemført. Beregning med mindst et element, der kunne have ført til et rigtigt resultat. Ingen rigtige elementer i beregningen 18

19 4 Leje af cykler 4.1 Det koster 96 euro at leje en cykel, en hjelm og en cykeltaske. Korrekt regneudtryk, korrekt facit og korrekt konklusion (bidrager positivt til helhedsindtryk). Korrekt regneudtryk, korrekt facit, ingen konklusion. Korrekt regneudtryk, korrekt facit, ukorrekt brug af enheder og ingen konklusion (bidrager negativt til helhedsindtryk) = 84 Det koster 84 euro ( ) 7 =168 Regneudtryk og facit, der kun delvist løser opgaven. Regneudtryk og facit, der rummer korrekte elementer. 96 euro 96 kr ( ) 2 = 192 Korrekt regneudtryk, ukorrekt facit. Korrekt facit, ingen regneudtryk. Korrekt antal, manglende regneudtryk og forkert enhed. Korrekt regneudtryk, ingen facit. Regneudtryk, hvor prisen for leje af cykelhjelm og cykeltaske bliver ganget 19

20 0 med = 24 De tre tal adderet. Ingen rigtige elementer. 4.2 Korrekt regneudtryk. Det er ikke nødvendigt med reduktion. Delvis korrekt regneudtryk, hvori n indgår. Korrekte eller delvist korrekte regneudtryk, hvori en anden variabel end n indgår. Hvis n fx er 100, bliver det Regneudtryk og forklaring, der udtrykker en begyndende generalisering. 0 Regneudtryk, hvori der ikke indgår variable, og som ikke udtrykker en begyndende generalisering 20

21 4.3 ( ) De kan leje cykler i 7 dage. 1500: 7,50 = 200 euro Pr. person: 200: 2 = 100 euro = 88 euro 88 : 12=7,3 De kan leje cykler i 7 dage. Korrekte beregninger, korrekt facit og korrekt konklusion (bidrager positivt til helhedsindtryk). Korrekte beregninger, korrekt facit, ukorrekt brug af enheder. Korrekt løsning og efterprøvning. 1500:7,50= dage koster 2( ) = dage koster: 2( )= 192 Det må blive 7 dage. Dvs. 7,3 dage. Korrekte beregninger, ingen konklusion. Korrekte beregninger, forkert konklusion. Beregninger med korrekte elementer. 7 dage eller 8 dage Korrekt resultat uden begrundelse. 21

22 Korrekt omregning til euro. Regneudtryk, forkert resultat, konklusion. 14 dage med beregning, regneudtryk og konklusion Manglende omregning mellem kroner og euro dage Ingen korrekte elementer x+12 =y 13x + 6 = y 12x+12 > 13x+6 To ligninger med to ubekendte eller ulighed løses fx ved brug af CAS. De skærer i (6,84). Derfor er TopBici billigst i op til og med fem dage. x x x Undersøgelse, hvor der indgår korrekte beregninger, fx opstilling og løsning af to ligninger med to ubekendte, tabel eller graf. Det er ikke nødvendigt, at alle tre elementer indgår. Konklusion på undersøgelsen. (tabel, som indgår i løsning) (graf, som indgår i løsning) 22

23 Ligningerne løses, og der konkluderes korrekt. TopBici er billigst, hvis de ikke skal leje cykler så længe, for en dag koster 19 euro, og hos CICLI DEGANI koster en dag 24 euro. På et tidspunkt bliver TopBici dyrere, fordi prisen stiger 13 euro pr. dag, mens prisen stiger 12 euro pr. dag hos CICLI DEGANI. Undersøgelse, hvor der er mindre fejl. Det kan fx være, at en ligning er skrevet forkert. Der kan være mindre regnefejl. Undersøgelse, hvor der indgår korrekte beregninger, fx opstilling og løsning af to ligninger med to ubekendte, tabel eller graf. Det er ikke nødvendigt, at alle tre elementer indgår, men der mangler en konklusion. Korrekt resultat, som er svagt begrundet. Forkert resultat, men der er vist en form for undersøgelse. 0 Det vil altid være dyrest i TopBici, fordi der koster det 13 euro pr dag, mens det kun koster 12 euro hos CICLI DEGANI. Ingen eller meget få rigtige elementer, ukorrekt resultat, ingen konklusion. 23

24 5 Femkantede fliser 5.1 Femkanten tegnet med høj grad af præcision med et dynamisk geometriprogram eller med lineal og blyant på svararkets kvadratnet. Femkanten tegnet med nogen grad af præcision eller med mindre fejl i størrelsen. 0 Det omskrevne rektangel er tegnet. Femkanten har store mangler eller er ikke tegnet. Femkanten er tegnet direkte med brug af Words figurer. 24

25 5.2 Arealet er 32. Aflæst i dynamisk geometriprogram. Arealet er 32. Talt antallet af kvadrater på svararket. Arealet er 32. Regneudtryk med fx arealet af det ydre rektangel minus de fire hjørnetrekanter bidrager positivt ved den samlede vurdering. Korrekt facit begrundet i aflæsning i et dynamisk geometriprogram. Korrekt facit på baggrund af optælling. Korrekt facit uden begrundelse (bidrager negativt til helhedsindtrykket)) Arealet er 32 cm 2. Korrekt facit med enhed (bidrager negativt til helhedsindtrykket). Korrekt facit i forhold til forkert tegning i opgave 5.1. Der er målt korrekt på tegningen på svararket, og arealet på svararket er beregnet korrekt med eller uden angivelse af passende enhed. Korrekt regneudtryk, forkert facit. Jeg har målt på tegningen og regnet. Der er målt korrekt på tegningen i opgaven, og arealet på svararket er beregnet korrekt med eller uden enhed. Arealet er 14,58 cm². Jeg har talt mig frem til arealet 31. Facit med mindre fejl (+/- 2) i optællingen. 0 Arealet er 24. Jeg har talt. Facit med større fejl i optælling. 25

26 Der indgår tal fra opgaven, men de bliver brugt forkert. 5.3 Jeg har aflæst sidelængderne i GeoGebra. Det er Omkredsen er 21,89. Omkredsen er 21,89 cm. 4 4,5 + 4 = 22 Korrekt regneudtryk og korrekt facit (med eller uden afrunding). Et helt præcist facit (fx angivet med udtrykket ) bidrager positivt til helhedsindtrykket). Aflæsning i et geometriprogram Korrekt facit uden begrundelse (bidrager negativt til helhedsindtrykket)) Korrekt facit med enhed (bidrager negativt til helhedsindtrykket). Korrekt facit i forhold til forkert tegning i opgave 5.1. Der er målt korrekt på tegningen på svararket, og omkredsen på svararket er beregnet korrekt med eller uden angivelse af passende enhed = ,5 = 22,5 Regneudtryk med nogle rigtige elementer. Korrekt regneudtryk, men resultatet er forkert. Korrekt beregning af længden på en af femkantens fire længste sider. Beregning af rektanglets omkreds 26

27 5.4 Korrekt regneudtryk og korrekt facit. Korrekt regneudtryk med forkert resultat. Korrekt regneudtryk og korrekt beregning af en eller to af vinklerne. 0 Målt i et geometriprogram. Facit baseret på målinger i opgavesættet. 27

28 5.5 Tegning af mindst tre kongruente femkanter, der ikke tesselerer og kort, korrekt forklaring på hvorfor. De kongruente femkanter på tegningen kan ikke dække fladen, da hver vinkel har en størrelse på 108. Tre vinkler giver vinkelsummen 324, og fire vinkler giver vinkelsummen 432. For at dække fladen skal summen af vinklerne ramme 360, og det kan ikke lade sig gøre. Tegning af to eller flere kongruente femkanter, der ikke kan tesselere, men uden holdbar forklaring. Regulære femkanter kan ikke dække fladen. Holdbar forklaring, men ingen tegning. Holdbar forklaring og tegning af en enkelt femkant, der ikke kan tesselere. 0 Tegning af en enkelt femkant og ingen holdbar forklaring 28

29 6 Tal-ligevægt 6.1 Gult felt: 5 Orange felt: 4. Gult felt: fx 6 Orange felt: 5 Gult felt: fx 8 Orange felt: 1 Tal ligevægt 1 er korrekt udfyldt. Der ikke krav om begrundelser. Der er ligevægt mellem den gule og orange streng eller ligevægt mellem den blå streng og de to andre strenge, men der er ikke samlet ligevægt. 0 Ingen rigtige elementer 29

30 6.2 Når jeg indsætter 3 på m s plads får jeg: Opstilling af ligning og korrekt løsning (bidrager positivt til helhedsindtrykket). Korrekt løsning og efterprøvning. og Det passer, så m er 3.. Jeg prøvede først med 1 og 2, og det passede ikke, når jeg regnede efter. Det passer, når jeg prøver med 3. 3 eller Korrekt løsning og omtale af efterprøvning (bidrager negativt til helhedsindtrykket) Korrekt løsning uden angivelse af metode. Opstilling af korrekt ligning, men forkert løsning. 0 Ingen rigtige elementer. 30

31 6.3 p og 6 2p og 1 5 og 6 10 og 1 p 6 P + 8 Tal-ligevægt 3 er korrekt udfyldt. Der er ikke krav om begrundelser. I løsningerne kan der indgå udtryk med p, men det er ikke et krav. Når p indgår, skal summen af tallet og udtrykket være 11, fordi p=5. Når p ikke indgår, skal summen af de to tal være 11. Løsninger hvori p eller 6 indgår (det er evt. kun det ene af de gule felter, der er udfyldt). 0 Ingen rigtige elementer. 31

32 6.4 Opstilling af to ligninger med to ubekendte og korrekt løsning (bidrager positivt til helhedsindtrykket). WordMat's 'Løs Ligninger' funktion, Ligningssystemet løses for a,b vha. CAS-værktøjet Når jeg indsætter 1 på a s plads og 10 på b s plads, får jeg: og Det passer, så a er 1, og b er Korrekt løsning og efterprøvning. Korrekt løsning, men ingen begrundelse. Ligningen løses for a vha. CAS-værktøjet WordMat. Opstiller og løser en af ligningerne i forhold til den anden. Løsning der (kun) holder for den gule og orange streng. 4+b må være halvt så stor som b +18. Det betyder, at 2b+8 svarer til b +18. Så må b være 10. Korrekt løsning for (kun) den ene ubekendte 0 Skriver at a = 1 Skriver kun værdien for a 32

33 33

FP9. 1 Ferielejlighed i Italien 2 Danskernes mest populære feriemål. 3 Peterspladsen i Rom 4 Leje af cykler 5 Femkantede fliser 6 Tal-ligevægt

FP9. 1 Ferielejlighed i Italien 2 Danskernes mest populære feriemål. 3 Peterspladsen i Rom 4 Leje af cykler 5 Femkantede fliser 6 Tal-ligevægt FP9 9.-klasseprøven Matematik Prøven med hjælpemidler Maj 2016 To svarark er vedlagt til dette opgavesæt 1 Ferielejlighed i Italien 2 Danskernes mest populære feriemål 3 Peterspladsen i Rom 4 Leje af cykler

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Folkeskolens prøver i matematik. CFU København 28. september 2016

Folkeskolens prøver i matematik. CFU København 28. september 2016 Folkeskolens prøver i matematik CFU København 28. september 2016 Formålet Eleverne skal i faget matematik udvikle matematiske kompetencer og opnå færdigheder og viden, således at de kan begå sig hensigtsmæssigt

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

FP9. 1 Køb af smartphone 2 Skærmstørrelsen på en smartphone. 3 Mobilabonnement 4 På Facebook 5 En ydre og to indre cirkler 6 Talfølger i en gangetabel

FP9. 1 Køb af smartphone 2 Skærmstørrelsen på en smartphone. 3 Mobilabonnement 4 På Facebook 5 En ydre og to indre cirkler 6 Talfølger i en gangetabel FP9 9.-klasseprøven Matematisk problemløsning Maj 2015 Et svarark er vedlagt til dette opgavesæt 1 Køb af smartphone 2 Skærmstørrelsen på en smartphone 3 Mobilabonnement 4 På Facebook 5 En ydre og to indre

Læs mere

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole

Læs mere

fs10 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6 Regulær ottekant Matematik

fs10 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6 Regulær ottekant Matematik fs10 10.-klasseprøven Matematik December 2012 Et svarark er vedlagt som bilag til dette opgavesæt 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

1.1 Olivia sparer : ( ) kr = 330,00 kr : Eventuelt blot 330 kr 100 = 7, %

1.1 Olivia sparer : ( ) kr = 330,00 kr : Eventuelt blot 330 kr 100 = 7, % 1.1 Olivia sparer : (4325-3995) kr = 330,00 kr : Eventuelt blot 330 kr 1.2 Udsalgspris : 4325 (1 0,15) = 3676,25 : Det er hermed vist 1.3 Telebodenrabat : 3995 3676,25 100 = 7,978723425532 8 % 3995 At

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet.

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet. Algebra og ligninger - Facitliste Om kapitlet I dette kapitel om algebra og ligninger skal eleverne lære at regne med variable, få erfaringer med at benytte variable Elevmål for kapitlet Målet er, at eleverne:

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x))

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x)) A.0 A Algebradans x + y + k (x + y + k) (y + x) + (xy + k) (y + x) (k + (y + x)) k + k + k + (y +xy + k) (y + x) + k x + x + x + x + x + k (xy + (y + x) xy + xy + k (k + y + k) (xy + x) + y 6(x + xy) k

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE I den midtengelske by Liverpool ligger bydelen Sefton med Sefton Park - et parkanlæg, der bl.a. er kendt for det ottekantede palmehus, hvor man kan

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

Matematikbanken.dk WORDMAT - VEJLEDNING - TILRETTET 6. KLASSE.

Matematikbanken.dk WORDMAT - VEJLEDNING - TILRETTET 6. KLASSE. WordMat er en udvidelse til Microsoft Word, som kan køre både på Windows og Mac. Windows-versionen kræver mindst Office 2007, og mac-versionen kræver mindst Office 2011. Du downloader WordMat her: http://goo.gl/wubvvo

Læs mere

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2 Logik Udsagn Reduktion Ligninger Uligheder Regnehistorier I en trekant er den største vinkel 0 større end den næststørste og denne igen 0 større end den mindste. Find vinklernes gradtal. = og Lig med og

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

International matematikkonkurrence

International matematikkonkurrence Facit til demoopgaver for 6. og 7. klassetrin Navn og klasse 3 point pr. opgave Facit 1 Hvilken figur har netop halvdelen farvet? A B C D E 2 På min paraply fra Australien står der KANGAROO: Hvilket af

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Pangea Regler & Instruktioner

Pangea Regler & Instruktioner 1.runde 2016 8. Klasse Pangea Regler & Instruktioner Svarark Fornavn, efternavn og klasse skal udfyldes med blokbogstaver. Du må bruge en kuglepen/blyant til at løse opgaverne (Vi råder deltagerne til

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx13-mat/b-1408013 Onsdag den 14. august 013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Benyt regnearket Prislisten til at løse opgaverne 1.1, 1.2, 1.3, 1.4 og 1.8.

Benyt regnearket Prislisten til at løse opgaverne 1.1, 1.2, 1.3, 1.4 og 1.8. 1. Isabellas rabatkort På sin fødselsdag fik Isabella et rabatkort til køb af is i Iskiosken. Rabatkortet kan bruges både for at spare penge og som en gave. På Isabellas kort var der indsat 200 kr., og

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

FP9. Matematisk problemløsning. 9.-klasseprøven. December 2015

FP9. Matematisk problemløsning. 9.-klasseprøven. December 2015 FP9 9.-klasseprøven Matematisk problemløsning December 2015 1 I praktik i en boghandel 2 I praktik som murer 3 I praktik som journalist 4 I praktik som arkitekt 5 Sekskanter 6 Retvinklede og ligesidede

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 128 + 197 = 14. 18,3 2. 242-157 = 15. 54,8 3. 6 120 =

TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 128 + 197 = 14. 18,3 2. 242-157 = 15. 54,8 3. 6 120 = AEU Modul 1 maj 2010 Navn: CPR: TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 128 + 197 = 14. 18,3 2. 242-157 = 15. 54,8 3. 6 120 = 4. 168 : 4 = Løs ligningen 5. x + 4 = 39 x = 6. 6x = 42 x =

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe131-mat/b-31052013 Fredag den 31. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Tilfældighed Hvor tilfældige kan vi være? I skemaet ved siden af skal du sætte 0 er og 1-taller, ét tal i hvert felt. Der er 50 felter. Du skal prøve at

Læs mere

OM KAPITLET DIGITALE VÆRKTØJER. egne svar eller Elevernes egne forklaringer. I disse

OM KAPITLET DIGITALE VÆRKTØJER. egne svar eller Elevernes egne forklaringer. I disse OM KPITLET I dette kapitel om digitale værktøjer skal eleverne arbejde med anvendelse og vurdering af forskellige digitale værktøjer, som kan bruges til at løse opgaver og matematiske problemstillinger.

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Opgave 1 -Tages kvadrat

Opgave 1 -Tages kvadrat Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

fsa 1 På indkøb 2 En redekasse 3 Mikaels løbeture 4 Brug af Facebook 5 En femkantblomst 6 Sumtrekanter Matematisk problemløsning

fsa 1 På indkøb 2 En redekasse 3 Mikaels løbeture 4 Brug af Facebook 5 En femkantblomst 6 Sumtrekanter Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2013 Et svarark er vedlagt som bilag til dette opgavesæt 1 På indkøb 2 En redekasse 3 Mikaels løbeture 4 Brug af Facebook 5 En femkantblomst

Læs mere

2. Christian den Fjerde. Årsplan 2015 2016 (Matematik PHO) Elevbog s. 2-11

2. Christian den Fjerde. Årsplan 2015 2016 (Matematik PHO) Elevbog s. 2-11 Lærer. Pernille Holst Overgaard Lærebogsmateriale. Format 2 Tid og fagligt område Aktivitet Læringsmål Uge 33-36 Elevbog s. 2-11 Additions måder. Vi kende forskellige måder at Addition arbejder med addition

Læs mere

Variable. 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0

Variable. 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0 Variable 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0 2 a x = 5 b x = 1 c x = 1 d y = 1 e z = 0 f Ingen løsning. 3

Læs mere

Pangea Regler & Instruktioner

Pangea Regler & Instruktioner 1.runde 2016 9. Klasse Pangea Regler & Instruktioner Svarark Fornavn, efternavn og klasse skal udfyldes med blokbogstaver. Du må bruge en kuglepen/blyant til at løse opgaverne (Vi råder deltagerne til

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer

REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer LÆRERVEJLEDNING REELLE TAL Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Danskerne og ketchup Medieforbrug Decimaltal, brøker og procent og 2 Procentregning

Læs mere

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

Matematik undervisningsplan 4-6. klassetrin Årsplan 2015 & 2016

Matematik undervisningsplan 4-6. klassetrin Årsplan 2015 & 2016 Materialer Grundbog: kontext Arbejdsbog: kontext Rema Matematik undervisningsplan Matematikmappe til opgaveark, tilpasset elevernes individuelle niveau Tabeltræning og anden basistræning efter behov Supplerende

Læs mere

Årsplan for Matematik 8. klasse 2011/2012

Årsplan for Matematik 8. klasse 2011/2012 Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand

Læs mere

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK) Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

Grundlæggende Opgaver

Grundlæggende Opgaver Grundlæggende Opgaver Opgave 1 En retvinklet trekant har sine vinkelspidser i (,4),(4, 4) og (, 4). a) Hvor store er kateterne? b) Hvor store er hypotenusen? c) Beregn trekantens areal. d) Bestem kateterne,

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

STUDENTEREKSAMEN MAJ AUGUST 2007 2009 MATEMATIK B-NIVEAU. onsdag 12. august 2009. Kl. 09.00 13.00. STX092-MABx

STUDENTEREKSAMEN MAJ AUGUST 2007 2009 MATEMATIK B-NIVEAU. onsdag 12. august 2009. Kl. 09.00 13.00. STX092-MABx STUDENTEREKSAMEN MAJ AUGUST 007 009 MATEMATIK B-NIVEAU onsdag 1. august 009 Kl. 09.00 13.00 STX09-MABx Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

Facitliste til MAT X Grundbog

Facitliste til MAT X Grundbog Facitliste til MAT X Grundbog Foreløbig udgave Det er tanken der tæller A Formlen bliver l + b, når l og b er i uforkortet stand. B Ingen løsningsforslag. C Ved addition fås det samme facit. Ved multiplikation

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB GUX Matematik B-Niveau Fredag den 29. maj 2015 Kl. 9.00-13.00 Prøveform b GUX151 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe102-mat/b-31082010 Tirsdag den 31. august 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven med hjælpemidler består af opgave 7-14 med i alt 19 spørgsmål.

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

fs10 1 På rejse til VM i fodbold 2 VM-fodbolden Brazuca 3 Brasilien og Danmark 4 Fodboldkampe og odds 5 Korde i en cirkel Matematik 10.

fs10 1 På rejse til VM i fodbold 2 VM-fodbolden Brazuca 3 Brasilien og Danmark 4 Fodboldkampe og odds 5 Korde i en cirkel Matematik 10. fs10 10.-klasseprøven Matematik Maj 2014 1 På rejse til VM i fodbold 2 VM-fodbolden Brazuca 3 Brasilien og Danmark 4 Fodboldkampe og odds 5 Korde i en cirkel 1 På rejse til VM i fodbold Ane og Bjarne planlægger

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

GUX Matematik Niveau B prøveform b Vejledende sæt 1

GUX Matematik Niveau B prøveform b Vejledende sæt 1 GUX-013 Matematik Niveau B prøveform b Vejledende sæt 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Sæt 05 Geometri 01 Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Rettes: Karakter: Rettes ikke: Set og godkendt: Samlet elevtid: 165 min. = 2,75 time

Læs mere

brikkerne til regning & matematik geometri trin 2 preben bernitt

brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

Mundtlig gruppeprøve i matematik. 17-09-2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1

Mundtlig gruppeprøve i matematik. 17-09-2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1 Mundtlig gruppeprøve i matematik 2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1 Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve Eller kun delvist kan prøve

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af ligninger og formler... 39 To ligninger med to ubekendte... 44 Formler, ligninger, funktioner og grafer Side 38 Omskrivning af ligninger og formler

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

TAL OM - '" EKSEMPEL EKSEMPEL. a c. - x =.2 -f.)(

TAL OM - ' EKSEMPEL EKSEMPEL. a c. - x =.2 -f.)( Al gebra og ligning er 7..0-1 Ligninger '? k 'Z "-0'1 Zo '8 x.:: 3-4)("'~g 3~X"'3,.il ''

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Årsplan 4. Årgang

Årsplan 4. Årgang Årsplan 4. Årgang 2016-2017 Ved denne plan skal der tage der tages højde for at ændringer kan forekomme i løbet af året. Eleverne går fra engangsmaterialer til Grundbog med skrivehæfte. Det kan være en

Læs mere

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm KOM-rapporten Prøvevejledning Fælles Mål http://pub.uvm.dk/2002/kom/hel.pdf http://qa.uvm.dk/uddannelser-og-dagtilbud/folkeskolen/afsluttendeproever/om-afsluttende-proever/proevevejledninger

Læs mere