Beregning til brug for opmåling, udfoldning og konstruktion

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Beregning til brug for opmåling, udfoldning og konstruktion"

Transkript

1 VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion

2 Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages beregninger til brug for opmåling, udfoldning og konstruktion. B Skal der f.eks. fremstilles en tanktop eller en keglestub, er det meget hurtigere at beregne klipperadius samt kordemål frem for at bruge konstruktionsmetoden. Jo større emner, jo mere besværlig bliver c konstruktionsmetoden. Ud over dette er a beregningsmetoden 100% præcis. Katete Hypotenusen De trigonometriske funktioner: C Katete b A De trigonometriske funktioner gælder kun for retvinklede trekanter. Den længste side c benævnes som hypotenusen, siderne a og b som kateter Vinklerne i trekanter benævnes som A- B- C. (C er her 90 ). Eks. Kendes vinkel A, er kateten a den modstående katete, og katete b er den hosliggende katete. Hvad er sinus (SIN: Forholdet mellem modstående katete og hypotenusen) Kvadranten, der er tegnet herunder, har en radius på 1, for at vi nemt kan aflæse værdien af sinus. Vinklen som er indtegnet på figuren herunder er på 35. Som det fremgår, aflæses sinus (SIN) værdien på den lodrette akse (Y-aksen). Hvis vi dividerer længden af den modstående katete med længdeb af hypotenuse og får tallene 0,5736, svarer det til en vinkel på 35. Altså er sin til 35 lig med 0,5736. Dette tal er afrundet, da værdien som regel er en uendelig decimalbrøk. Fire decimaler vil i de fleste tilfælde være tilstrækkelig nøjagtig for håndværkeren. Lommeregneren er også udstyret med en 2nd-tast, hvilket vil sige at vi kan regne "baglæns". Hvis vi trykker 2nd, derefter sin- 1, indtaster 0,5736 vises resultatet 35, når der trykkes på enter, hvilket svarer til vinklen 35. Hvis vi kender vinklen, kan vi således finde SIN til vinklen. Hvis vi kender SIN til vinklen, kan vi finde vinklen. 1

3 Hvad er cosinus (COS: Forholdet mellem den hosliggende katete og hupotenusen) Herunder vises den samme kvadrant og vinkel på 35 som på forrige side. Som det fremgår, aflæses cosinus (COS) værdien på den vandrette akse (X-aksen). Hvis vi dividerer længden af den hosliggende katete med længden af hypotenusen og får tallene 0,8192, svarer det til at vinklen er 35. Altså er cos til 35 lig med 0,8192. Lommeregneren er også udstyret med en 2nd-tast, hvilket vil sige at vi kan regne "baglæns". Hvis vi trykker 2nd, derefter cos- 1, indtaster 0,8192 vises resultatet 35, når der trykkes på enter, hvilket svarer til vinklen 35. Hvis vi kender vinklen, kan vi således finde COS til vinklen. Hvis vi kender COS til vinklen, kan vi finde vinklen. 2

4 Hvad er tangens (TAN: forholdet mellem den modstående katete og den hosliggende katete) Herunder vises den samme kvadrant og vinkel på 35 som på forrige side. Som det fremgår, aflæses tangens (TAN) værdien på en lodret linie, hvis udgangspunkt tangerer cirklen i det punkt hvor cirkelperiferien skærer X-aksen. Hvis vi dividerer længden på den modstående katete med længden på den hosliggende katete og får tallene 0,7002, svarer det til at vinklen er 35. Altså er tan til 35 lig med 0,7002. Også her kan vi regne "baglæns". Hvis vi trykker 2nd, derefter tan- 1,indtaster 0,7002,vises resultatet 35, når der trykkes på enter, hvilket svarer til vinklen 35. Hvis vi kender vinklen, kan vi således finde TAN til vinklen. Hvis vi kender TAN til vinklen, kan vi finde vinklen. 3

5 Pythagoras I en retvinklet trekant kaldes de to sider nærmest den rette vinkel for kateterne, og siden modsat den rette vinkel for hypotenusen. Pythagoras læresætning Kvadratet på hypotenusen i en retvinklet trekant er lig summen af kateternes kvadrat. c² = a² + b² a² = c² - b² b² = c² + a² Pythagoras Formlerne er her omskrevet, således at de umiddelbart giver løsningen af en ubekendt side såfremt to af siderne kendes: 2 2 a= c -b 2 2 b= c - a 2 2 c= a +b I nedenstående eksempel antager vi at den retvinklede trekants sider har følgende mål: a = 3 b = 4 Den ubekendte er altså c. Vi bruger derfor den nederste af ovenstående formler. 2 2 c= c= 9+16 c= 25 c=5 a Kateten b Hypotenusen c Kateten a b? 4

6 Om brug af lommeregneren Herunder gives en kort forklaring til nogle af lommeregnerens funktioner og taster. Da lommeregnere fås i forskellige typer, mærker og prisklasser, henvises der til manualen til den enkelte lommeregner for uddybende forklaring. Tast 1 x eller x - 1 Forklaring og funktion Den reciprokke værdi af 2 er 1 2 = 0,5 x² Ganger tallet med sig selv (X X) x Kvadratrod - finder det tal som ganget med sig selv giver x (f.eks.: 4 = 2 2 = 2) DRG 2nd SIN COS TAN y x K Vinkelmålsvælger - når der står DEG i lyspanelet vises vinkler i grader. Visse af tasterne har to funktioner. Ved at taste 2nd vælges tastens anden funktion. Sinus - funktion Cosinus - funktion Tangens - funktion Potensopløftning Konstanttast - kan lagre et tal og et tegn som kan bruges flere gange som en konstant. Pi - tasten - med en tilnærmet værdi: = 3,1416 % Procenttasten ( ) Parentestasten - bestemmer beregningsrækkefølgen for algebraiske tals regneregler. STO RCL EXC SUM Lagring Fremkalder - henter værdien fra lageret Ombytning - Ombytter tallet i lyspanelet med værdien i lageret (STO). Summering - lægger tallet i lyspanelet til tallet i lageret. 5

7 Formler: Skal sin-cos-tan bruges til beregninger, stilles formlerne op som vist herunder. Forudsætningen for at anvende formlerne, skal vinklen kendes. Hvis man forestiller sig, at man stiller sig ved trekanten, der hvor vinklen kendes, vil kateterne benævnes som vist. Den længste side, benævnes altid hypotenusen. Den hosliggende, er der katete der ligger nærmest hos dig Den modstående er den katete der er længst væk, på den modsatte side. Modstående katete Hypotenusen Cos : Sin : Hosliggende Hypotenusen Modstående Hypotenusen Hosliggende katete V Tan : Modstående Hosliggende Vender trekanten på det andet led, og man stiller sig ved den kendte vinklen, er den hosliggende stadig den nærmeste katete. Hypotenusen Modstående katete V Hosliggende katete Ved COS. til en vinkel (V ) forstås forholdet mellem den hosliggende katete (siden der er nærmest vinklen)og hypotenusen. Altså den hosliggende divideres med hypotenusen. Ved SIN. til en vinkel (V ) forstås forholdet mellem den modstående katete (siden på den modsatte side af vinklen) og hypotenusen Altså den modstående divideres med hypotenusen. Ved TAN. til en vinkel (V ) forstås forholdet mellem den modstående katete (siden på den modsatte side af vinklen) og den hosliggende (siden der er nærmest vinklen) Altså den modstående divideres med den hosliggende. 6

8 Eksempel på en beregning: På denne trekant kender vi vinklen samt den hosliggende katete, og hypotenusen (c) ønskes beregnet. Formlen der skal bruges er cos, da der er tale om et forhold mellem hosliggende katete og hypotenusen. Cos : Hosliggend e c = Hypotenusen b Indskriv i formlen de kendte tal: Cos 34 = 400 c 400 cos34 Det er c der skal beregnes, og tastes på følgende måde på lommeregneren: 400/Cos 34 = 482,4872 = c Modstående katete =a c= Hypotenusen =c Hosliggende katete =b Skal den modstående katete beregnes, er det et forhold mellem den modstående - og hosliggende katete, det vil sige at formlen tan skal bruges. Tan : Modstående a = Hosliggende b Indskriv som før de kendte tal: X Tan 34 = a = tan Det er a der skal beregnes, og tastes på følgende måde på lommeregneren: a = 400 tan 34 =269,8034 7

9 Skal vinklen(v)beregnes, altså hvor siderne kendes, anvendes samme formler dog i cos- 1, tan- 1 og sin- 1. (tryk først på 2nd tasten, derefter cos, tan osv) Med samme trekant som udgangspunkt, hvor den hosliggende- og modstående katete kendes, vil beregningen se således ud: V = Tan- 1 Modstående Hosliggende V = Tan = 34 Da hypotenusen tidligere er beregnet, skal vinklen beregnes med følgende formel. V = Cos- 1 Hosliggende Hypotenusen V = Cos ,4872 = 34 V = Sin- 1 Modstående Hypotenusen 269,8034 V =Sin ,4872 = 34 8

10 Beregning af bukkevinkel for ligesidet pyramidestubbe: 90 For at pyramidestubben kan bukkes, skal bukkevinklen beregnes. Den vinkel der skal udregnes, ligger i 90 på bukket. Bukkevinklen beregnes på følgende måde: Beregning Først skal målet X beregnes. Her bruges Pythagoras formlen igen Y 2 + Y 2 = X Højde Y v Y X X X Q Højde Q Z X Q Z ½V Ved 1. beregning skal der bruges X og den færdige højde: Beregn vinklen med: højden tan -1. = V X Ved 2. beregning skal Z findes. Vinklen samt X kendes. 2. beregning Z vinkel 3. beregning Når Z er beregnet, skal siderne Z og Q bruges til at beregne vinklen med. Når overgangsstykket er koncentrisk, vil X og Q være det samme. Beregn vinklen med siderne Q og Z. Dette er den halve bukkevinkel, og skal derfor ganges med 2, bukkevinklen er herefter beregnet. Formel til beregning: Q ½ V =Tan -1 Z X Siden beregnes med: Modstående Z Sin V = = Z = sin V X Hypotenusen X 9

11 Beregning af bukkevinkler for sekskant: Bukkevinklen beregnes vinkelret ud fra bukkelinien. Figur 1. Beregningen påbegyndes med at afsætte et vilkårlig mål, på bundfladen, set fra oven, her er 50 mm. anvendt. Vinklen på en sekskant er 120 pr. del. Det vil sige at siden som er angivet med beregnes kan nu findes. Siden giver 86,60 mm. Formel: Modstående " beregnes" Tan V = = TanV = Tan60 50 = 86, 60 Hosliggende 50 Figur beregnes 10

12 Figur 2. Figur 2. På figur 2 ses de næste beregning. Ved hjælp af de 50 mm. som blev indsat før, beregnes vinklen først (50,19 ). Beregn nu det liniestykke der rammer vinkelret på bukkelinien. Liniestykket er 38,41 mm. Formlerne beregnes og indskrives nederst på siden. beregnes 90 beregnes 50 Ved at anvende tan -1 beregnes vinklen, som ses i figur 3. Bukkevinklen er 132,16 Figur 8. Beregnes og ganges med 2 = bukkevinkel Figur 3. 38,41 86,6 11

13 Formel til beregning af knærør: I forbindelse med udfoldning af knærør, kan vi anvende tabeller til at beregne længderne på frembringerne. Tabellerne kan udformes til alle tænkelige delinger f.eks. 12-, 24- eller 48-deling af røret. I det efterfølgende eksempel vil vi anvende tabellen for 12-deling af røret. V b V1 D Inden vi kan anvende tabellen skal vi først have beregnet b-målet på figuren. For at kunne beregne b-målet skal skæringsvinklen (V1 ) først beregnes. Til brug ved udfoldningen skal vi ligeledes have beregnet rørets omkreds. V1 = skæringsvinkel = V 2 Omkreds = D π (for pladeudfoldning husk pladetykkelse: middeldiameter π ) b = tan V1 D 12

14 Beregning af skrå rør ved 12-deling Herunder ses en 12-deling af hele rørets omkreds. Da vi kun ser den ene halvdel af røret på en plantegning, er denne opdelt i 6 lige store stykker. frembringer 7=0 1=180 6=30 2=150 5=60 3=120 4=90 Ved en 12-deling har vi behov for at beregne længderne på de 7 frembringer. På forrige side beregnede vi b-målet, som nu indgår som en konstant i formlerne. Herunder vises tabellen for 12-deling af snit i runde rør. 1 = b 0,0 2 = b 0,067 3 = b 0,25 4 = b 0,5 5 = b 0,75 6 = b 0,933 7 = b 1,0 1-2 = omkreds 12 Herunder er vist beregning af konstant for frembringer nr.2. D= 2 R= 1 V= 150 r + (r cos vo) Konstant frembringer = D 7 Udfoldning af skrå rør 1 7 Frembringer 1+ (1 cos150) Konstant frembringer = = 0, middeldiameter PI 13

15 Beregning af rundt til firkant overgang Eksempel: Formler til beregning af sande længder: h r B1 B4 1-2 = r π A1 = h +(BC-r ) B1 = h +(BC-r ) + AB B2 = h +(BC-r sin60 ) +(AB-r cos 60 ) B3 = h +(BC-r sin30 ) +(AB-r cos 30 ) B4 = h + BC +(AB-r ) 2 2 C4 = h +(AB-r ) 14

16 Formlernes anvendelse: Forskellige overgangsstykker Beregning af de viste overgangsstykker kræver, at følgende formler anvendes: I Formlerne 1-2', A1' og B2' anvendes. II Samtlige formler anvendes 1 gang. III Samtlige formler anvendes 2 gange. IV Samtlige formler anvendes 4 gange. I forbindelse med beregning af udfoldningerne, kan visse af de trigonometriske funktioner erstattes af tal f.eks. SIN 60 = 0,866 osv. Hvis der ønskes en større nøjagtighed, kan cirklen inddeles i flere stykker. Husk at ændre formlerne, således at de svarer til graderne. 15

17 Opgaver: 1) Beregn følgende mål for udfoldning af tanktop: 1. klipperadius 2. korde Tanktoppen er uden bertelkant, og har følgende mål. Diameter = 1200 mm. Vinkel = 15 2) Beregn følgende mål for udfoldning af tanktop: 1. klipperadius 2. korde Tanktoppen er med bertelkant, og har følgende mål. Diameter = 1400 mm. Vinkel = 20 Bertelradius = 25 mm. 3) Beregn følgende mål for udfoldning af keglestub: 1. stor klipperadius 2. lille klipperadius 3. korde Keglestubben har følgende mål. 5) Beregn de sande længder på et skrå rør med følgende mål: Diameter = 160 mm. Vinkel = 20 Inddeles i 24 dele. 6) Beregn radius af cirkelbue med følgende mål: Stor diameter = Lille diameter = Færdig højde = 1250 mm. 550 mm. 950 mm. 4) Beregn bukkevinklen for pyramidestub: Pyramidestubben har følgende mål mm. nederst mm. øverst Højde 200 mm. 16

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

1 Geometri & trigonometri

1 Geometri & trigonometri 1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Geometri, (E-opgaver 9b & 9c)

Geometri, (E-opgaver 9b & 9c) Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Projekt Beholderkonstruktion. Matematik - A

Projekt Beholderkonstruktion. Matematik - A Projekt Beholderkonstruktion Matematik - A [Skriv et resume af dokumentet her. Resumeet er normalt en kort beskrivelse af dokumentets indhold. Skriv et resume af dokumentet her. Resumeet er normalt en

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver Matematik B Hjemmeopgaver 1) opgave 107c, side 115 Jeg skal tegne en trekant og estemme vinklerne A og C og siderne a, og c. Jeg har følgende mål: Jeg har ikke nok mål til at kunne regne nogle af vinklerne

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Enhedscirklen og de trigonometriske Funktioner

Enhedscirklen og de trigonometriske Funktioner Enhedscirklen og de trigonometriske Funktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Ligningsløsning som det at løse gåder

Ligningsløsning som det at løse gåder Ligningsløsning som det at løse gåder Nedenstående er et skærmklip fra en TI-Nspirefil. Vi ser at tre kræmmerhuse og fem bolsjer balancerer med to kræmmerhuse og 10 bolsjer. Spørgsmålet er hvor mange bolsjer,

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Projekt 3.1 Pyramidestub og cirkelareal

Projekt 3.1 Pyramidestub og cirkelareal Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Trigonometri. for 8. klasse. Geert Cederkvist

Trigonometri. for 8. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsærker, hor der kræes stor nøjagtighed, er der ofte brug for, at man kan beregne sider og inkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Pythagoras og andre sætninger

Pythagoras og andre sætninger Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,

Læs mere

Ib Michelsen: Matematik C, Geometri 2011 Version 7.1 03-10-11 rettet fejl side 47 sin G:\_nyBog\1-2-trig\nyTrigonometri12.odt

Ib Michelsen: Matematik C, Geometri 2011 Version 7.1 03-10-11 rettet fejl side 47 sin G:\_nyBog\1-2-trig\nyTrigonometri12.odt Trigonometri Vinkel v sin(v) Vinkel v sin(v) Vinkel v sin(v) 0,00 0,00 30,00 0,50 60,00 0,87 1,00 0,02 31,00 0,52 61,00 0,87 2,00 0,03 32,00 0,53 62,00 0,88 3,00 0,05 33,00 0,54 63,00 0,89 4,00 0,07 34,00

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Trigonometri og afstandsbestemmelse i Solsystemet

Trigonometri og afstandsbestemmelse i Solsystemet Trigonometri og afstandsbestemmelse i Solsystemet RT1: fstandsberegning (Fra katederet) 5 RT2: Bold og Glob 6 OT1:Bestemmelse af Jordens radius 9 OT2:Modelafhængighed 11 OT3:fstanden til Månen 12 OT4:Månens

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

GEOMETRI og TRIGONOMETRI del 2

GEOMETRI og TRIGONOMETRI del 2 GEOMETRI og TRIGONOMETRI del x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse COS, SIN, TAN og RETVINKLEDE TREKANTER... 3 Vinkler målt i radianer:... 6 Grundrelationen:... 8 Overgangsformler:...

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekter: Kapitel 8 Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Trigonometrien til beregning af

Læs mere

Matematik A1. Mike Auerbach. c h A H

Matematik A1. Mike Auerbach. c h A H Matematik A1 Mike Auerbach B c h a A b x H x C Matematik A1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Trekantsberegning 25 B. 2009 Karsten Juul

Trekantsberegning 25 B. 2009 Karsten Juul Trekantsberegning 7,0 3 5 009 Karsten Juul ette häfte indeholder den del af trekantsberegningen som skal kunnes på - niveau i gymnasiet (stx) og hf ra sommer 0 kräves mere remstillingen undgår at forudsätte

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

User s guide til cosinus og sinusrelationen

User s guide til cosinus og sinusrelationen User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

M I K E A U E R B A C H. c a

M I K E A U E R B A C H. c a M A T E M A T I K A 1 M I K E A U E R B A C H WWW.MATHEMATICUS.DK B c a h A b C x H Matematik A1 4. udgave, 2017 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

brikkerne til regning & matematik geometri basis+g preben bernitt

brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri, basis+g ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering

Læs mere

Opgave 1 - Eksponentiel funktion/procent og renter

Opgave 1 - Eksponentiel funktion/procent og renter Alle beregninger er, hvis ikke andet angivet, udført med WordMat. Opgave 1 - Eksponentiel funktion/procent og renter Jeg vil nu finde ud af hvor stort et beløb der står på kontoen efter 1 år med en starts

Læs mere

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter, maj 007, Kirsten Rosenkilde 1 Geometrinoter Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, indskrivelige

Læs mere

Matematik A. Bind 1. Mike Auerbach. c h A H

Matematik A. Bind 1. Mike Auerbach. c h A H Matematik A Bind 1 B c h a A b x H x C Mike Auerbach Matematik A, bind 1 1. udgave, 2014 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Pythagoras Sætning. Frank Nasser. 20. april 2011

Pythagoras Sætning. Frank Nasser. 20. april 2011 Pythagoras Sætning Frank Nasser 20. april 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

M A T E M A T I K A 1

M A T E M A T I K A 1 M A T E M A T I K A 1 M I K E A U E R B A C H WWW.MATHEMATICUS.DK B c a h A b C x H Matematik A1 3. udgave, 2016 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

M A T E M A T I K B 1

M A T E M A T I K B 1 M A T E M A T I K B 1 M I K E A U E R B A C H WWW.MATHEMATICUS.DK B c h a A b x H x C Matematik B1 3. udgave, 2016 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

TRIGONOMETRI, 4 UGER, 9.KLASSE.

TRIGONOMETRI, 4 UGER, 9.KLASSE. TRIGONOMETRI, 4 UGER, 9.KLASSE. FRA FÆLLES MÅL Målsætninger for undervisningsforløbet er opsat efter kompetence, færdigheds og vidensmål samt læringsmål i lærersprog. Geometri og måling Fase 3 Geometriske

Læs mere

Korncirkler og matematik

Korncirkler og matematik Korncirkler og matematik I den følgende opgave vil jeg undersøge om korncirkler indeholder matematiske figurer nærmere bestemt det gyldne snit, det gyldne rektangel og den gyldne spiral. Før jeg starter

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

A U E R B A C H. c h A H

A U E R B A C H. c h A H M A T E M A T I K B 1 M I K E A U E R B A C H WWW.MATHEMATICUS.DK B c h a A b x H x C Matematik B1 4. udgave, 2017 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns Tekniske Skole, HTX Vibenhus Uddannelse

Læs mere

Matematik. Formlen for en Kugle: 3 V = 4/3»r *n. Formlen for et Kugleafsnit: Formlen for en Keglestub: 2 2 V =n/3»h»(r + r + R*r)

Matematik. Formlen for en Kugle: 3 V = 4/3»r *n. Formlen for et Kugleafsnit: Formlen for en Keglestub: 2 2 V =n/3»h»(r + r + R*r) Matematik Vi har fået til opgave at bygge en ballon hvis volume mindst må være 1,2 Kubikmeter og max 1,5 kubikmeter. Så for at løse dette problem valgte vi at finde formlerne for en kugle, kugleafsnit

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

1 Løsningsforslag til årsprøve 2009

1 Løsningsforslag til årsprøve 2009 1 Løsningsforslag til årsprøve 009 Opgave 1 Figur 1 viser en tegning af en person der står på en skrænt og smider en sten ud over vandet. Vandet har overflade i t-aksen. Stenen følger grafen for funktionen

Læs mere

fortsætte høj retning benævnelse afstand form kort

fortsætte høj retning benævnelse afstand form kort cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde rundt system rod orden nøjagtig

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2011 Københavns

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Efteruddannelsesudvalget for Bygge/anlæg og industri. Teodolit og totalstation

Efteruddannelsesudvalget for Bygge/anlæg og industri. Teodolit og totalstation Efteruddannelsesudvalget for Bygge/anlæg og industri Teodolit og totalstation Efteruddannelsesudvalget for bygge/anlæg og industri Teodolit og totalstation Undervisningsministeriet. Februar 2009. Materialet

Læs mere

VEUD ekstraopgave Opgave nr. 62-11

VEUD ekstraopgave Opgave nr. 62-11 Opgavens art: Opgaveformulering: Fagområde: Opgavens varighed: Teoretisk Gennemgang af lommeregner Sprøjtestøbning 4 lektioner Niveau, sammenlignet med uddannelsen: Henvisning til hjælpemidler: Grunduddannelse

Læs mere

sprog og arbejdsmetode

sprog og arbejdsmetode brikkerne til regning & matematik sprog og arbejdsmetode F+E+D preben bernitt brikkerne til regning & matematik sprog og arbejdsmetodde F+E+ D ISBN: 978-87-92488-36-7 1. udgave som E-bog til tablets 2012

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Svar på opgave 322 (September 2015)

Svar på opgave 322 (September 2015) Svar på opgave 3 (September 05) Opgave: En sekskant har sidelængder 7 7. Bestem radius i den omskrevne cirkel hvis sekskanten er indskrivelig. Besvarelse: ny version 6/0-05. metode. Antag at sekskanten

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Den Flydende Kran Samson

Den Flydende Kran Samson Den Flydende Kran Samson Formål: Kranen Samson, har en maksimal løfteevne på 900 tons, kranarmen er på 67 meter. Formålet med dette projekt er at løse nogle forskellige opgaver om geometrien for kranen.

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere