Supplerende noter til Kursus i brug af SAS

Størrelse: px
Starte visningen fra side:

Download "Supplerende noter til Kursus i brug af SAS"

Transkript

1 Supplerende noter til Kursus i brug af SAS Søren Højsgaard Biometry Research Unit Danish Institute of Agricultural Sciences Research Centre Foulum DK 8830 Tjele Flemming Skjøth Dansk Kvæg Landbrugets Rådgivningscenter DK 8200 Århus N i

2 Indhold 1 Introduktion til SAS systemet og dets opbygning Mit første SAS program Hvad er et datasæt Hvad er en procedure? PROC SORT PROC PRINT PROC CONTENTS PROC GPLOT Øvelser Indlæsning og lagring af data Indlæsning af data fra Excel regneark Indlæsning af data fra en tekstfil Filename Tilføjelse af Labels og Formats Lagring af data - Libname SAS datasæt i forskellige versioner Øvelser PROC MEANS - en udvidet lommeregner og ODS PROC SUMMARY og PROC MEANS ODS Øvelser Byt om med PROC TRANSPOSE og få HJÆLP! Proc Transpose Få hjælp til SAS Øvelser Datahåndtering Beregninger samtidig med indlæsning Betingelser, løkker, sammensætning og udeladelse af data Betingelser Ens behandling af flere variabler Beregninger på tværs af observationer Udeladelse af data Sammensætning af data ii

3 5.8 Øvelser Grafik med SAS PROC GPLOT PROC GCHART Øvelser Statistiske analyser med SAS Variansanalyse Monofaktorielt blokforsøg Split-plot forsøg Ufuldstændigt blokforsøg Regressionsanalyse Simpel regression Polynomial regression (multipel regression) Modelkontrol - PROC UNIVARIATE Øvelser Øvelser til Variansanalyse Øvelser til regressionsanalyse Tabellering af data PROC TABULATE Tilføjelse af gennemsnit m.v. til tabellen LABELS og KEYLABELS Kontrol af cellebredde med FORMAT PROC FREQ Øvelser Andre emner Organisering af data i dette kursusmateriale Oversigt over datamaterialet ROER: Så- og optagningstider i sukkerroer EVITCU: Fodringsforsøg med svin Øvrige datasæt Options i SAS systemet Konvertering af mellem dataformater Andre Statistikprogrammer Valg af navne iii

4 Forord Dette notesæt giver en simpel indføring i brugen af SAS systemet. Notesættet er udarbejdet med henblik på et kursus af 3 dages varighed. Der forudsættes ingen forudgående kendskab til SAS. Notesættet anvendes som supplement til bogen Elementær indføring i SAS af Andersen, A.T., Bedsted, T.V., Feilberg, M., Jakobsen, R.B. og Milhøj, A., Akademisk Forlag Der henvises til forlagets hjemmeside for yderligere informationer, hvorfra de datasæt der benyttes i bogen også kan hentes. Det datamateriale, samt de SAS programmer, der anvendes i dette notesæt kan hentes fra En beskrivelse af datamaterialet samt organiseringen heraf findes i afsnittene 9.1 og 9.2. Det anbefales, at man indledningsvis læser disse afsnit. Notesættet indeholder en del opgaver, som man opfordres til at arbejde med. I tillæg hertil forslås det at man i SAS hjælpefunktionen går ind under punktet Sample SAS Programs and Applications. Herunder finder man, som navnet antyder, en række eksempler. Der opfordres til at man afprøver disse eksempler, og prøver at modificere dem efter eget ønske. Kapitel 7 forudsætter et vist kendskab til statistiske metoder (variansanalyse, analyse af split plot forsøg, analyse af blok forsøg, simpel regressionsanalyse og multipel regressionsanalyse). Søren Højsgaard og Flemming Skjøth November 2002 iv

5 Kapitel 1 Introduktion til SAS systemet og dets opbygning 1.1 Mit første SAS program Et eksempel på et meget simpelt SAS program er følgende: /* Mit første SAS program */ /* 0: En kommentar */ DATA eksempel; /* 1: Start på DATATRIN */ a = "En tekst"; /* 2: danner en tekst variabel a */ x = 3.17; /* 3: danner en numerisk variabel x */ /* 4: Afslutter datatrin */ TITLE Mit første SAS program ; /* 5: En lille tekst som overskrift */ PROC PRINT DATA=eksempel; /* 6: Print data i output vinduet */ /* 7: Udfør ovenstående */ Eksemplet illustrerer, hvoledes SAS programmer generelt er bygget op af to slags komponenter: Datatrin: Datatrin hvori data kan indlæses og manipuleres. Proceduretrin: Proceduretrin hvori der foregår en behandling af data. Linierne i eksemplet skal læses som følger: /* 0 */ Dette er en kommentar. Tekst angivet mellem /* og */ ignoreres af SAS /* 1 */ Et datatrin starter med ordet DATA og datasættet hedder EKSEMPEL /* 2 */ Tekst variablen skal hedde a /* 3 */ Tal variablene skal hedde x /* 4 */ afslutter et datatrin 1

6 /* 5 */ PROC PRINT... fortæller at SAS datasættet EKSEMPEL skal skrives ud på skærmen. /* 7 */ fortæller at SAS skal udføre kommandoen specificeret med PROC PRINT 1.2 Hvad er et datasæt For at procedurer i SAS skal kunne foretage beregninger på data, skal disse være lagret i et såkaldt SAS-datasæt. I et SAS-datasæt er data lagret binært i et bestemt format sammen med visse følgeoplysninger. Som bruger kan man betragte et SAS-datasæt som en navngiven tabel med et antal rækker og søjler. Hver søjle kaldes en variabel og indeholder alle data fra en bestemt egenskab, f.eks. en faktors betegnelse, et bloknummer o.s.v. En variabel har et entydigt navn og kan være enten numerisk eller alfanumerisk (character). Hver række i et SAS-datasæt kaldes en observation og indeholder typisk data fra en bestemt parcel, en bestemt plante eller et bestemt dyr. I praksis har man ofte gemt data på en fil. Dette kan f.eks. enten være som som en almindelig tekstfil, også kaldet en ASCII fil, eller som et Excel regneark. 1.3 Hvad er en procedure? En af SAS-systemets hovedbestanddele er procedurene. En procedure er et programmodul, som kan at udføre en bestemt opgave. Nogle af de ting man bruger procedurer til, ville man også kunne programmere selv i et datatrin, men det ville kræve megen programmering. Man kan opfatte SAS-procedurer som Et kraftfuldt programmeringssprog som med meget få kommandoer kan udføre komplicerede opgaver. Prisen for dette kraftfulde sprog, som muliggør at man med få ordrer kan få tegnet grafer, udskrevet tabeller og udført komplicerede statistiske beregninger, er at man skal overholde nogle temmelig stive regler. Det gælder først og fremmest med hensyn til det datasæt, der arbejdes med. Næsten alle procedurer accepterer kun et SAS-datasæt som input. Det er her samspillet mellem DATA-trin og PROCEDURE-trin kommer ind: Med DATA-trinnet omformer man rådata til data som kan anvedes af SAS-procedurene. I proceduretrinet behandler vi disse data på forskellige måder. Der vil ofte være mulighed for at komme med yderligere specifikationer, såkaldte options, efter procedurenavnet. Specifikationerne afhænger af, hvilken type procedure 2

7 man anvender. En specifikation som kan anvendes i næsten alle procedure er dog: DATA=datasætnavn. PROC PRINT DATA=sashelp.class; Specificerer man ikke DATA= vil SAS anvende det senest oprettede datasæt. Af hensyn til læseligheden af sit SAS program anbefales det at man specifcerer DATA=... ;. Der kan derefter følge et antal linier med andre kommandoer, som giver yderligere specifikationer til proceduren. Disse specifikationer kan enten være valgfrie, optional, eller nødvendige, required, for at proceduren kan udføres PROC SORT PROC SORT sorterer datasæt efter værdien af angivne variabler. Der kræves altid et BYstatement sammen med PROC SORT, der angiver de variabler, som datasættet skal sorteres efter. Sammen med PROC SORT kan der v.h.a. DATA=datasæt angives inputdatasæt, og v.h.a. OUT=datasæt kan der angives, hvor det sorterede datasæt skal anbringes. Hvis der ikke angives noget OUT=datasæt bliver det sorterede datasæt anbragt i det datasæt, der blev brugt som inputdatasæt. TITLE PROC SORT - Data sorteret efter "køn (sex)" ; PROC SORT DATA=sashelp.class OUT=a; BY sex; PROC PRINT DATA=a; Med BY-statement er det muligt, at angive flere variable, som datasættet skal sorteres efter. Den første variabel, der angives bliver det primære sorteringskriterium; den anden det sekundære kriterium o.s.v. Hvis datasættet ønskes sorteret i omvendt rækkefølge for en bestemt variabel skal nøgleordet DESCENDING angives før den pågældende variabel. TITLE PROC SORT - Data sorteret efter "køn (sex)" ; TITLE2 og faldende værdi af "alder (age)" ; PROC SORT DATA=sashelp.class OUT=a; BY sex DESCENDING age; PROC PRINT DATA=A; I ovenstående eksempel bliver datasættet sorteret efter stigende værdi af optagn som det primære kriterium og faldende værdi af saatid som det sekundære kriterium. 3

8 1.3.2 PROC PRINT PROC PRINT bruges, som vi tidligere har set, til udskrivning af datasæt. Sammen med PROC PRINT-ordren kan der angives forskellige options, f.eks. hvilket datasæt der ønskes udskrevet ved angivelse af DATA=datasætnavn. TITLE Demo af PROC PRINT ; PROC PRINT DATA=sashelp.class; En anden vigtig option, der kan angives sammen med PROC PRINT, er LABEL, som bevirker, at variabelbeskrivelserne, der blev angivet ved datasættets oprettelse, fremkommer som kolonneoverskrifter. Med VAR-statement kan man udvælge en liste af variable, som ønskes udskrevet. Variablerne udskrives i den rækkefølge, de nævnes i VAR-ordren. TITLE Demo af PROC PRINT med VAR ; PROC PRINT DATA=sashelp.class LABEL; VAR name age; Med BY-ordren angives, at datasættet skal skrives ud efter værdien af en bestemt variabel. Når BY-ordren benyttes kræves det generelt, at datasættet i forvejen er sorteret efter den variabel, der benyttes i BY-ordren. TITLE Demo af PROC PRINT med BY-ordren ; PROC SORT DATA=sashelp.class OUT=a; BY sex; PROC PRINT DATA=a; VAR name age; BY sex; Demo af PROC PRINT 1 Obs Name Sex Age Height Weight 1 Alfred M Alice F Barbara F Carol F Henry M James M Jane F Janet F Jeffrey M John M

9 11 Joyce F Judy F Louise F Mary F Philip M Robert M Ronald M Thomas M William M Demo af PROC PRINT med BY-ordren Sex=F Obs Name Age 1 Alice 13 2 Barbara 13 3 Carol 14 4 Jane 12 5 Janet 15 6 Joyce 11 7 Judy 14 8 Louise 12 9 Mary Sex=M Obs Name Age 10 Alfred Henry James Jeffrey John Philip Robert Ronald Thomas William PROC CONTENTS For at få en oversigt over hvilke variable der indgår i et datasæt kan man benytte procedure PROC CONTENTS, der køres som i følgende eksempel: PROC CONTENTS DATA=sashelp.class; 5

10 1.3.4 PROC GPLOT PROC GPLOT bruges til grafisk afbildning af en variabel mod en anden. De dannede grafer kommer i GRAPH-vinduet. PROC GPLOT kan anvendes på følgende måde: TITLE Demo af PROC GPLOT ; PROC GPLOT DATA=sashelp.class; SYMBOL I=r1 V=dot C=blue; PLOT heigth * age; Her afbildes height som funktion af age. Med PLOT-statement angives altså, hvilke variable, der ønskes plottet mod hinanden. PLOT-ordren kan for eksempel anvendes på disse måder: PLOT Y*X; *markerer observationer som punkter på grafen; PLOT Y*X=variabel; *viser grafen med forskellige symboler svarende til ; *værdien af variablen, der står på højre side af ; *lighedstegnet. ; BY-ordren kan som i andre procedurer også anvendes sammen med PROC GPLOT. TITLE Demo af PROC PLOT med BY-ordren ; PROC SORT DATA=sashelp.class OUT=a; BY sex; PROC GPLOT DATA=A; PLOT height * age; BY sex; Der bliver ved anvendelse af BY-ordren dannet et plot for hver værdi af BY-variablen. Som sædvanligt kræves datasættet sorteret efter BY-variablen. 1.4 Øvelser Opgave 1 Gennemgå Skærmøvelse 2.3 i Elementær inføring i SAS. Opgave 2 I denne opgave skal SAS datasættet class, der ligger i sashelp, sorteres med sex som primært sorteringskriterium og name som sekundært kriterium. Det sorterede datasæt skal anbringes i et datasæt der skal hedde klasse. 6

11 Opgave 3 Udskriv datasættet klasse dannet i opgave 2: 1. så kun variablerne name age weigth udskrives. 2. sæt danske label på ved hjælp af View Columns i Explorer vinduet. 3. udskriv så der kommer labels over kolonnerne. Opgave 4 Tag igen udgangspunkt i datasættet klasse 1. Lav et plot med alder ud ad x-aksen og vægt op ad y-aksen. 2. Lav dernæst et plot for hver køn med de samme variable. 3. Lav et plot, hvor vægt plottes mod alder med køn som symbol. 7

12 Kapitel 2 Indlæsning og lagring af data 2.1 Indlæsning af data fra Excel regneark Ofte har man sine data gemt som et Excel regneark. Man kan oprette et SAS datasæt ud fra Excel-filen ROER.xls ved hjælp af proceduren PROC IMPORT. Et eksempel der importerer arket ARK1 fra Excel regneark ROER.xls er gengivet nedenfor. PROC IMPORT OUT=work.roer DATAFILE= "c:\saskursus\raadata\roer.xls" DBMS=EXCEL2000 REPLACE; RANGE="Ark1$"; GETNAMES=YES; Dette kan man med fordel gemme og genbruge hvis man skal indlæse mange Excel regneark. Alternativt kan man benytte sig af de makroer der omtales i Afsnit??. En anden måde, der involverer lidt mere klikkeri er som følger: 1. I SAS, gå til Filer og herfra til Import 2. Ved pilen vælg Excel 97/2000 spreadsheet. Klik derefter på Next 3. Klik på Browse for at finde Excelfilen roer.xls. Denne fil ligger i mappen C: SASKURSUS RAADATA. 4. Klik eventuelt på Options for at sikre at SAS har valgt det rigtige ark i regnearket. Klik derefter på Next 5. I feltet Member skrives det navn man ønsker datasættet skal have i SAS. Klik derefter på Finish. 6. Gå nu til loggen for at sikre at datasættet faktisk er importeret. 8

13 Bemærk: Hvis regnearket stadig er åbent i Excel vil man få problemer med at importere regnearket. Man kan nu se indholdet af det importede datasæt ved at køre programstumpen: PROC PRINT DATA=roer; 2.2 Indlæsning af data fra en tekstfil For at få data fra en tekstfil omdannet til et SAS-datasæt, skal vi give forskellige oplysninger: 1. Hvad skal datasættet hedde? 2. Hvad hedder tekstfilen? 3. Hvilke variabelnavne vil vi benytte? 4. Hvordan læses disse fra tekstfilen? Der er mange muligheder for indlæsning af data af denne type i SAS. Vi skal her beskrive nogle af de simpleste. Data fra et forsøg med sukkerroer (se afsnit 9.2.1) kan indlæses med følgende 3 sætninger (statements): TITLE Simpel indlæsning ; DATA roer; /* 1 */ INFILE c:\saskursus\raadata\roer.txt FIRSTOBS=6; /* 2 */ INPUT optagn $ blok $ saatid $ kg pct_sukk; /* 3 */ /* 4 */ PROC PRINT DATA=roer; Disse linier læses som følger (idet der refereres til kommentarerne angivet i /*... */): /* 1 */: Her starter et datatrin og SAS-datasættet skal hedde ROER. /* 2 */: Her angives navnet på den fil, der skal læses, dvs. den tekstfil hvori data ligger. Intruktionen FIRSTOBS specificerer at data først kommer i den 6. linie i filen (de første 5 linier er kommentarer). /* 3 */: Her specificeres de 5 navne vi ønsker variablerne i datasættet skal have. Endvidere specificeres at variablerne der ønskes kaldt optagn, blok og saatid skal være tekststrenge (dette gøres ved at sætte et $-tegn efter navnet). Variablerne kg og PCT SUKK skal begge være talvariable, hvilket de automatisk bliver når der ikke er sat et $-tegn efter hver af dem. 9

14 /* 4 */: Kommandoen fortæller at nu er datatrinnet slut. Den sidste linie, PROC PRINT...; har intet med datatrinnet at gøre men tjener alene til at printe data i output vinduet. Såvel et SAS datasæt som variablene i et sådant skal tildeles navne efter følgende regler: 1. Navnet skal starte med et bogstav (A-Z) eller understregningstegnet ( ). 2. De efterfølgende tegn kan bestå af et bogstav (A-Z), understregningstegnet ( ) eller et ciffer (0-9). 3. Der skelnes ikke mellem store og små bogstaver. 4. I SAS 8 kan navne højst være 32 tegn lange. I version 6.12 og tidligere versioner er grænsen 8 tegn. Som det fremgår af tekstfilen ROER.txt er udbyttet KG angivet i Kilogram * 10 og sukkerindholdet PCT SUKK i sukkerprocent * 10. Der er flere måder at få SAS til at læse data ind på således at tallene får den rigtige betydning. Dette vil vi komme ind på i kapitel Filename Man kan bruge FILENAME til at referere til en bestemt tekstfil med. Dette kan være hensigtsmæssigt i store programmer. Et eksempel på brugen af FILENAME ved indlæsning af tekstfilen roer.txt er følgende: FILENAME indfil c:\saskursus\raadata\roer.txt ; /* 1 */ TITLE Brug af filename ; DATA roer; INFILE indfil FIRSTOBS=6; /* 2 */ INPUT optagn $ blok $ saatid $ kg pct_sukk; PROC PRINT DATA=roer; /* 1 */: Der specificeres at SAS ved navnet INDFIL skal forstå filen c:\saskursus\raadata\roer.txt. /* 2 */: Ovenstående udnyttes her, hvor der blot refereres til INDFIL. SAS ved så hvad dette betyder. Dette er relevant hvis man i samme SAS program flere gange skal have fat i samme fil, eller hvis SAS programmet er meget stort. 10

15 Det anbefales at FILENAME sætninger sættes i starten af SAS programmet. 2.4 Tilføjelse af Labels og Formats Alle variabler i et datasæt kan tildeles ekstra oplysninger med sætningerne LABEL og FORMAT i et datatrin. Labels bruges til at få mere læsevenlige udskrifter med, mens formater bruges til at specificere hvorledes variablene skal udskrives. Man kan også angive en LABEL til selve datasættet. TITLE Tilføjelse af labels og formater ; FILENAME indfil c:\saskursus\raadata\roer.txt ; DATA roer(label= Data fra forsøg med roer ); INFILE indfil FIRSTOBS=6; INPUT optagn $ blok $ saatid $ kg pct_sukk; LABEL OPTAGN = Optagningstid BLOK = Bloknummer SAATID = Såtid KG = Optagne roer i kg/parcel PCT_SUKK = Sukkerprocent ; /* 1 */ FORMAT OPTAGN BLOK SAATID $6. KG 4. PCT_SUKK 4.1; /* 2 */ PROC PRINT DATA=roer LABEL; /* 3 */ /* 1 */: Med LABEL-sætningen tildeles alle variable beskrivelser. Disse kan være op til 40 tegn lange, og må indeholde alle tegn (dog er der særlige regler for at få apostroffer ind i teksten). Brugen af labels øger læseligheden af udskrifter fra SAS. /* 2 */: Med FORMAT-sætningen tildeles KG et felt på 4 tegn (og afrundes til hele kg), mens PCT SUKK udskrives med 1 decimal i et felt på 4 tegn. Bemærk: FORMAT-sætningen får ikke decimaler til at forsvinde fra datasættet. Det har udelukkende virkninger for det man ser i sine udskrifter, og har således ingen betydning for den præcision hvormed SAS foretager sine beregninger. De øvrige tekstvariable får tildelt 6 felter. /* 3 */: Ved at tilføje ordet LABEL i kaldet af PRINT proceduren, opnås at det bliver variablenes labels der printes, i stedet for deres navne. 11

16 Formater Formater anvendes til at bestemme, hvordan data skal indlæses/udskrives. SAS Systemet arbejder med to typer af formater: Indformater og udformater. Indformater fortæller SAS Systemet, hvordan værdier skal opfattes, når disse indlæses. Udformater fortæller SAS systemet, hvordan værdier skal udskrives, fx. i en rapport. Her er en kort oversigt over nogle af de mange formater der er tilrådighed. Karakterformat Et karakterformat bestemmer, hvordan karakterværdier skal behandles. En karaktervariabel hvor værdierne kun antager værdier med 3 bogstaver, f.eks. værdien HEL kan gives formatet $3. : $-tegnet angiver, at formatet er et karakterformat. 3 angiver variablens længde. Dermed bruges mindst mulig plads i datasættet til at opbevare datene, samt til at skrive dem ud. Punktummet er altid en del af et formatnavn. Numerisk format Et numerisk format bestemmer, hvordan numeriske værdier skal behandles. Som standard anvender SAS Systemet formatet w.d, dvs. ingen tusindeadskillelse og punktum foran decimaler. Værdien ,00 har formatet COMMAX10.2. COMMAX er et format, hvor værdierne vises med europæisk kommatering, dvs. punktum for tusinder og komma foran decimaler. 10 angiver variablens totale længde inkl. punktum og komma og 2 angiver decimalantallet. Værdien ,00 vist med andre formater: w.d samlet bredde.antal decimaler Eksempel: 9.2 viser COMMAw.d amerikansk format Eksempel: COMMA10.2 viser 131, COMMAXw.d europæisk format Eksempel: COMMAX10.2 viser ,00 Zw.d foranstiller nuller Eksempel: Z11.2 viser Datoformat SAS Systemet gemmer datoværdier som tal. Dette letter bl.a. beregning af antallet af dage mellem to datoer. Et dato-indformat bestemmer, hvordan SAS Systemet indlæser datoværdier. Disse omregnes til det antal dage, der er gået siden den 1. januar Formatet DATE7. omregner datoen, som brugeren indtaster, fx. 03MAR91, til tallet Et dato-udformat bestemmer, hvordan datoværdier udskrives. DATE7. omregner tallet til datoen 03MAR91 og udskriver denne, fx. i en rapport. Værdien vist med andre formater: 12

17 DDMMYYw. DDMMYY (dato, måned og år som tal) Eksempel: DDMMYY8. viser 03/03/91 DATEw. DDmånedsnavnÅÅ Eksempel: DATE7. viser 03MAR91 WORDDATXw. DD månedsnavn ÅÅÅÅ Eksempel: WORDATX18. viser 3 March 1991 TlMEw. timer:minutter:sekunder Eksempel: TIME8. viser 11:15:00 Et format kan f.eks. bruges i forbindelse med udskrifter: PROC PRINT DATA=.. ; VAR xdato y x; FORMAT y x COMMAX10.1 xdato DDMMYY8.; 2.5 Lagring af data - Libname Ovenfor har vi set hvorledes man kan danne SAS-datasæt ved navn roer ved enten at indlæse en tekstfil eller et Excel-regneark. SAS-datasættet roer er rent fysisk gemt på harddisken i et specielt katalog under SAS-programmet. Når man lukker SAS slettes indholdet af dette katalog. Det betyder at SAS-datasættet roer ikke vil være tilgængeligt næste gang man starter SAS. Man siger derfor at roer er et midlertidigt datasæt eller temporært datasæt. Hvis man senere skal benytte de samme data igen, vil det være en fordel at slippe for at indlæse og evt. omregne sine data igen. Et SAS-datasæt kan derfor også gemmes som et permanent datasæt som man har liggende på sin harddisk ligesom alle andre filer. Som med alle andre filer er det hensigtsmæssigt at organisere sine SAS-datasæt. Således vil vi igennem dette notesæt gemme alle permanente SAS-datasæt i biblioteket C: SASKURSUS SASDATA At gemme og åbne et SAS datasæt foregår på en speciel måde der IKKE ligner det man er vant til fra andre programmer, f.eks. Excel, hvor man direkte 1. åbner et regneark, 2. gør noget og 3. gemmer det igen. Den hensigtsmæssige måde at gemme et datasæt permanent på er følgende. Med sætningen LIBNAME tildeles biblioteket C: SASKURSUS SASDATA et navn som vi selv kan vælge vi har valgt navnet MSAS, men kunne ligeså godt have kaldt det SVENDIB, PRO- JEKT eller lignende. Dernæst startes et datatrin, hvor der på datasættets plads står et to-delt navn: 13

18 Den første del af navnet, er det valgte navn på biblioteket (her MSAS). Den anden del er selve datasættets navn (her ROER). LIBNAME msas c:\saskursus\sasdata ; DATA msas.roer; SET roer; PROC PRINT DATA=msas.roer; Sætningen SET angiver, at det permanente datasæt msas.roer skal dannes ud fra det midlertidige datasæt roer. Der herefter to ens datasæt: Datasættet roer der ligger i C: SASKURSUS SASDATA og datasættet roer der ligger i et andet katalog hvis indhold slettes når SAS lukkes. (Alternativt kunne man have dannet det permanente datasæt msas.roer straks uden først at danne et midlertidigt SAS-datasæt. Overvej selv hvordan!) Kaldet af PROC PRINT tjener alene til at sikre at det ønskede permanente datasæt er dannet. Næste gang man starter SAS-programmet, så har man adgang til det permanente SASdatasæt msas.roer med følgende programstump: LIBNAME msas c:\saskursus\sasdata ; PROC PRINT DATA=msas.roer; Man bør bemærke sig følgende: Som det ses skal man altså ikke åbne et datasæt på samme måde som man skal med et Excel-regneark. Man har umiddelbart adgang til et SAS-datasæt i det øjeblik man med et LIBNAME har fortalt SAS hvor det ligger. Når man starter SAS op på ny, skal man altså køre LIBNAME linien. Dette behøver man kun gøre een gang i en SAS session. Det anbefales at LIBNAME sætninger sættes i starten af programmet. Libnames er meget bekvemme og fleksible at arbejde med. Hvis man beslutter sig for at alle sine SAS datasæt skal flyttes fra eet katalog til et andet, så skal man kun ændre een linie, idet man blot skal angive det nye katalog som data er flyttet til. Det skal understreges at man kan have flere forskellige Libnames, der refererer til det samme bibliotek, samt at selve navnet på et libname blot er noget der findes internt i SAS. Eksempelvis kan man skrive: 14

19 LIBNAME LIBNAME minedata c:\saskursus\sasdata ; msas c:\saskursus\sasdata ; PROC PRINT PROC PRINT DATA=minedata.roer; DATA=msas.roer; Resultatet af de to PRINT sætninger er det samme idet minedata og msas begge refererer til det samme katalog på harddisken nemlig C: SASKURSUS SASDATA. 2.6 SAS datasæt i forskellige versioner I skrivende stund er SAS version 8.2 den seneste SAS version. Man vil imidlertid ofte komme ud for at skulle arbejde med SAS data gemt i en tidligere version af SAS, eksempelvis SAS Dette er der ikke nogen problemer i, idet SAS 8.2 sagtens kan læse data gemt i SAS 6.12, mens SAS 6.12 ikke kan læse datasæt gemt i version 8.2. Dog skal man være opmærksom på følgende: Antage at vi har brugt LIBNAME sætningen som beskrevet ovenfor. Hvis der i C: SASKURSUS SASDATA alene ligger data gemt i version 6.12 og man laver et nyt datasæt som man også forsøger at gemme i C: SASKURSUS SASDATA, så er vil dette nye datasæt også blive gemt som værende i version Skulle man nu i det nye datasæt have lavet en variabel med et navn på mere end 8 tegn, så vil SAS komme med en meddelelse om at det kan man ikke. Omvendt, dersom C: SASKURSUS SASDATA indeholder mindst eet datasæt gemt i version 8.2 så vil efterfølgende datasæt også blive gemt i version 8.2. Dette kan være uheldigt hvis man skal videregive datasættet til en kollega, der kun har version Løsningen på disse problemer er angivet nedenfor, hvor det i LIBNAME sætningerne angives i hvilket format data skal gemmes: LIBNAME msas6 v612 c:\kursus\sasdata ; LIBNAME msas8 v8 c:\kursus\sasdata ; DATA msas6.roer6; SET roer; DATA msas8.roer8; SET roer; Datsættet ROER6 er nu i version 6.12 formatet mens ROER8 er i version 8.2 formatet. 2.7 Øvelser Opgave 5 Tag udgangspunkt i datasættet sashelp.class vi tidligere har set på. 15

20 1. Lav en midlertidig version kaldet klasse og udvid programmet så der sættes passende beskrivelser på og tilføj formater på højde og vægt så de udskrives uden decimaler. 2. Lad også programmet fremstille et permanent SAS-datasæt, som placeres i biblioteket C: SASKURSUS SASDATA 3. Gem programmet igen. Opgave 6 1. I filen KEPA-NAVNE.XLS findes data fra Opgave 1 som et Excel regneark. 2. Importer dette regneark til SAS, og giv datasættet navnet KEPAEXC. 3. Lav et program der gemmer datasættet KEPAEXC i et permanent SAS-datasæt, som placeres i biblioteket C: SASKURSUS SASDATA 4. Importer igen regnearket, men nu således at kun rækkerne 6 til 10 indlæses (Tip: se skærmøvelse 3.7 i Elementær indføring i SAS. Opgave 7 Prøv med udgangspunkt i følgende eksempel DATA a1; INPUT dato DATE9. tekst & $ 30. Note $; FORMAT dato DDMMYY.; CARDS; 04jan1999 Den 4. januar 1999 Tirsdag ; PROC PRINT DATA=a1; at eksperimentere med nogle af de datoformater og numeriske formater, der er omtalt på side 12, prøv også at flytte FORMAT instruktionen ned til PROC PRINT instruktionen. Prøv også at fjerne & -tegnet i INPUT ordren. 16

21 Kapitel 3 PROC MEANS - en udvidet lommeregner og ODS 3.1 PROC SUMMARY og PROC MEANS PROC MEANS beregner beskrivende statistik (middelværdi, median, standardafvigelse o.s.v.) på numeriske variabler i et SAS datasæt og udskriver som standard resultatet i et nyt SASdatasæt. Proceduren PROC SUMMARY er identisk med PROC MEANS med undtagelse af, at den som standard ikke udskriver resultatet til skærmen. I begge procedurer kan man ændre standard udskrivningsmåden. Et simpelt eksempel på brugen af PROC MEANS er følgende: PROC MEANS DATA=saskurs.roer; VAR kg pct_sukk; Man angiver, at man vil benytte PROC MEANS proceduren ved at skrive dette først, derefter angiver man det datasæt, der skal benyttes (medmindre man vil benytte det sidst oprettede - ( LAST ). NOPRINT optionen angives for at undgå at få skrevet resultatet ud på skærmen. Endelig angives i VAR ordren hvilke variable man vil regne på. I dette eksempel har vi ikke specifikt angivet hvilke beregninger vi vil have udført, så PROC MEANS udskriver som standard for hver variabel i VAR ordren: N, navn på variablen, minimum værdi, maximum værdi, middelværdi og spredning. Vil man bestemme, hvilke beregninger man vil have, angives de ønskede beregninger ved hjælp af nøgleord. Udskrives til skærmen skal nøgleordene skrives i PROC MEANS ordren. Ønsker vi f.eks. beregnet middelværdi, spredning, sum og variationskoefficient får vi følgende program: PROC MEANS DATA=saskurs.roer PRINT MEAN STD SUM CV; VAR kg pct_sukk; 17

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

SAS systemet SAS. SAS vinduer. 2012 Janne Petersen

SAS systemet SAS. SAS vinduer. 2012 Janne Petersen SAS systemet SAS 2012 Janne Petersen February 7, 2012 Styrken i SAS er dets evne til at håndtere store datasæt. Det er hurtigt og har mange statistiske og ikke-statistiske muligheder. Kan "alt", så det

Læs mere

ØVELSE 2B. Formål Det primære formål med denne øvelse er at prøve nogle vigtige procedurer til statistisk og grafisk analyse.

ØVELSE 2B. Formål Det primære formål med denne øvelse er at prøve nogle vigtige procedurer til statistisk og grafisk analyse. ØVELSE 2B I denne øvelse gennemgår vi: Udskrivning ved hjælp af PUT. Procedurerne FREQ, UNIVARIATE og CORR. Overførsel af procedure-uddata til et datasæt. Fremstilling af histogrammer og XY-plots. Formål

Læs mere

Hvorfor SAS Kort intro til SAS

Hvorfor SAS Kort intro til SAS Hvorfor SAS Kort intro til SAS Efterår 2015 Janne Petersen Judith L Jacobsen Lene Theil Skovgaard Kan alt Alle ph.d. studerende har gratis adgang Fra universitetet eller hospitalerne Kode --- hjælp fra

Læs mere

PROC TRANSPOSE. SAS-tabellen - hensigtsmæssig lagring af data. Copyright 2011 SAS Institute Inc. All rights reserved.

PROC TRANSPOSE. SAS-tabellen - hensigtsmæssig lagring af data. Copyright 2011 SAS Institute Inc. All rights reserved. PROC TRANSPOSE SAS-tabellen - hensigtsmæssig lagring af data Copyright 2011 SAS Institute Inc. All rights reserved. Transponerede tabeller Brede eller smalle? Hvad: Brede tabeller har mange kolonner med

Læs mere

Kort intro til SAS. Efterår 2015. Janne Petersen Judith L Jacobsen Lene Theil Skovgaard

Kort intro til SAS. Efterår 2015. Janne Petersen Judith L Jacobsen Lene Theil Skovgaard Kort intro til SAS Efterår 2015 Janne Petersen Judith L Jacobsen Lene Theil Skovgaard 1 Hvorfor SAS Kan alt Alle ph.d. studerende har gratis adgang Fra universitetet eller hospitalerne Kode --- hjælp fra

Læs mere

Deltag i en quiz: Test din viden i SAS -programmering

Deltag i en quiz: Test din viden i SAS -programmering Deltag i en quiz: Test din viden i SAS -programmering Georg Morsing, uddannelsesdirektør Copyright 2011 SAS Institute Inc. All rights reserved. Test din SAS -programmering 12 spørgsmål 4 svarmuligheder

Læs mere

INTRODUKTION TIL dele af SAS

INTRODUKTION TIL dele af SAS INTRODUKTION TIL dele af SAS Der er flere forskellige angrebsvinkler ved statistiske analyser i SAS. Vi skal her kun beskæftige os med to af disse, nemlig Direkte programmering. Brug af SAS ANALYST Hvilken

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

Introduktion til SPSS

Introduktion til SPSS Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger

Læs mere

En Introduktion til SAS

En Introduktion til SAS En Introduktion til SAS Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Februar 2005 6. udgave i FORORD til 1. udgave Denne introduktion til SAS til brug ved kurset Statistik

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

SAS formater i Danmarks Statistik

SAS formater i Danmarks Statistik Danmarks Statistik, Forskningsservice og Kundecenter 9. januar 2012 SAS formater i Danmarks Statistik 1. Indledning... 1 2. Hvor findes formater og øvrige datafiler?... 2 3. Hvordan bruges formater i SAS-programmet?...

Læs mere

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Indledning. På de følgende sider vises, primært i tegneserieform, lidt om mulighederne i PC-AXIS for Windows.

Indledning. På de følgende sider vises, primært i tegneserieform, lidt om mulighederne i PC-AXIS for Windows. Indledning PC-AXIS for Windows er et talbehandlingsprogram, der kan håndtere store mængder statistisk materiale. PC-AXIS giver mulighed for at arbejde videre med det statistiske materiale i egne programmer

Læs mere

PUT og INPUT funktionerne

PUT og INPUT funktionerne PUT og INPUT funktionerne Af: Peter Kellberg Danmarks Statistik Sejrøgade 11 DK-2100 København Ø pke@dst.dk PUT og INPUT-funktionerne Denne artikel er foranlediget af en henvendelse til vores interne SAS

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Easy Guide i GallupPC

Easy Guide i GallupPC Easy Guide i GallupPC Version. 6.00.00 Gallup A/S Masnedøgade 22-26 DK 2100 København Ø Telefon 39 27 27 27 Fax 39 27 50 80 Indhold SÅDAN KOMMER DU I GANG MED AT ANVENDE GALLUPPC... 2 TILFØJELSE AF UNDERSØGELSER

Læs mere

Appelsiner, bananer og citroner

Appelsiner, bananer og citroner Appelsiner, bananer og citroner Af: Peter Kellberg Danmarks Statistik Sejrøgade DK-00 København Ø pke@dstdk SAS og øvrige SAS Institute Inc-produkter samt navngivne serviceydelser er registrerede varemærker

Læs mere

SPAM-mails. ERFA & Søren Noah s A4-Ark 2010. Køber varer via spam-mails. Læser spam-mails. Modtager over 40 spam-mails pr. dag. Modtager spam hver dag

SPAM-mails. ERFA & Søren Noah s A4-Ark 2010. Køber varer via spam-mails. Læser spam-mails. Modtager over 40 spam-mails pr. dag. Modtager spam hver dag SPAM-mails Køber varer via spam-mails Læser spam-mails Modtager over 40 spam-mails pr. dag Modtager spam hver dag 0 10 20 30 40 50 60 70 80 90 ERFA & Søren Noah s A4-Ark 2010 Datapræsentation: lav flotte

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Arbejd videre med statistik

Arbejd videre med statistik Danmarks Statistik databanker@dst.dk Arbejd videre med statistik Vejledning i PC-AXIS og Statistikbanken Danmarks Statistik juni 2003 1 www.dst.dk www.statistikbanken.dk Indholdsfortegnelse INDHOLDSFORTEGNELSE...2

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet

Læs mere

Tips og tricks til Proc Means. Per Andersen

Tips og tricks til Proc Means. Per Andersen Tips og tricks til Proc Means Capgemini gruppen Grundlagt 1967 i Paris, startet i Danmark 1984 Omsætning på verdensplan i 2008 8,7 milliader euro 91.600 medarbejdere på verdensplan, heraf 300 i Danmark

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

GIS indlæsning af kreditorer og betalingsform. Brugervejledning 1.0

GIS indlæsning af kreditorer og betalingsform. Brugervejledning 1.0 GIS indlæsning af kreditorer og betalingsform Brugervejledning 1.0 Indhold 1 Indledning... 5 2 Opsætning af GIS grænseflade til kreditor indlæsning... 5 2.1 Oprettelse af en datastrøm... 7 2.2 Filsystem...

Læs mere

HOFTEALLOPLASTIK - DATAUDTRÆK OG IMPORT TIL EXCEL

HOFTEALLOPLASTIK - DATAUDTRÆK OG IMPORT TIL EXCEL HOFTEALLOPLASTIK - DATAUDTRÆK OG IMPORT TIL EXCEL Når man er logget på KMS systemet, vælges Dataudtræk under punktet Vælg modul, hvorefter der klikkes på Gå til: På næste side klikkes på knappen Opret:

Læs mere

SPSS introduktion Om at komme igang 1

SPSS introduktion Om at komme igang 1 SPSS introduktion Om at komme igang 1 af Henrik Lolle, oktober 2003 Indhold Indledning 1 Indgang til SPSS 2 Frekvenstabeller 3 Deskriptive statistikker gennemsnit, standardafvigelse, median osv. 4 Søjlediagrammer

Læs mere

TILLÆG TIL MANUAL Excel-indlæsning i Vvskatalogets administrationssystem

TILLÆG TIL MANUAL Excel-indlæsning i Vvskatalogets administrationssystem 3456.78 123456 TILLÆG TIL MANUAL Excel-indlæsning i Vvskatalogets administrationssystem 30. juli 2015 Indhold Indledning Side 3 Sådan kommer du i gang Side 4 Oprette nye varer Side 5 Ændre eksisterende

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Klog på SAS seminar, december 2013 Hvordan skjules password i loggen ved brug af macro, Svend Bang, Københavns Universitet

Klog på SAS seminar, december 2013 Hvordan skjules password i loggen ved brug af macro, Svend Bang, Københavns Universitet Klog på SAS seminar, december 2013 Hvordan skjules password i loggen ved brug af macro, Svend Bang, Københavns Universitet Baggrund: I et frugtbart samarbejde mellem Danmarks Statistik, Forskningsservice,

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Introduktion til SAS. Faculty of Health Sciences

Introduktion til SAS. Faculty of Health Sciences Faculty of Health Sciences Introduktion til SAS Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Eksempel: Blodtryk og fedme OBESE: vægt/idealvægt,

Læs mere

KURSUS I ANALYSEPORTALEN (AP) DANSK PALLIATIV DATABASE 3 1. ÅBNING AF ANALYSEPORTALEN 3 2. OPRETTELSE AF EN RAPPORT DVS. START AF DATAANALYSE 4

KURSUS I ANALYSEPORTALEN (AP) DANSK PALLIATIV DATABASE 3 1. ÅBNING AF ANALYSEPORTALEN 3 2. OPRETTELSE AF EN RAPPORT DVS. START AF DATAANALYSE 4 KURSUS I ANALYSEPORTALEN (AP) DANSK PALLIATIV DATABASE 3 1. ÅBNING AF ANALYSEPORTALEN 3 2. OPRETTELSE AF EN RAPPORT DVS. START AF DATAANALYSE 4 3. VALG AF DATA 5 4. BEHANDLING OG VISNING AF DATA 7 1 Liste

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Peter Kellberg. Rundt om Danmarks Statistiks makroer. Design, Standardisering, Teknik

Peter Kellberg. Rundt om Danmarks Statistiks makroer. Design, Standardisering, Teknik Peter Kellberg Rundt om Danmarks Statistiks makroer Design, Standardisering, Teknik SAS Forum 2009 Ét makrobibliotek ca 50 makroer, vi selv har lavet mange andre fx CLAN Autocall makroer en makro er et

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

INTRODUKTION TIL SAS

INTRODUKTION TIL SAS INTRODUKTION TIL SAS MOGENS RING PETERSEN August 2010 INDHOLDSFORTEGNELSE SAS SOM PROGRAMMERINGSSPROG... 4 Programstrukturen i SAS... 4 SAS's hjælpesystem... 5 Eksempler på SAS-programmer... 5 Datatyper...

Læs mere

How to do in rows and columns 8

How to do in rows and columns 8 INTRODUKTION TIL REGNEARK Denne artikel handler generelt om, hvad regneark egentlig er, og hvordan det bruges på et principielt plan. Indholdet bør derfor kunne anvendes uden hensyn til, hvilken version

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

DANSK SKOLEDATA APS. Tlf. 86 44 80 99 E-mail DSD@skoledata.dk DSA-Ventelisten

DANSK SKOLEDATA APS. Tlf. 86 44 80 99 E-mail DSD@skoledata.dk DSA-Ventelisten Indholdsfortegnelse Overordnet beskrivelse af programmets funktioner... 2 Log på... 2 Manuel oprettelse af elev.... 3 Optagelse af elever... 3 1 Gruppering og sortering af elever... 3 2 Udvælg aspiranter...

Læs mere

Afdeling for Teoretisk Statistik August 2004 Institut for Matematisk fag Aarhus Universitet. Jørgen Granfeldt INTRODUKTION TIL SAS 1

Afdeling for Teoretisk Statistik August 2004 Institut for Matematisk fag Aarhus Universitet. Jørgen Granfeldt INTRODUKTION TIL SAS 1 Afdeling for Teoretisk Statistik August 2004 Institut for Matematisk fag Aarhus Universitet Jørgen Granfeldt INTRODUKTION TIL SAS 1 1 Eksempler baseret på SAS 9.1 for Windows Indholdsfortegnelse INDHOLDSFORTEGNELSE................................

Læs mere

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016 Faculty of Health Sciences Basal Statistik Begreber. Parrede sammenligninger. Lene Theil Skovgaard 6. september 2016 1 / 88 APPENDIX Programbidder svarende til diverse slides: Indlæsning af vitamin D datasæt,

Læs mere

Tips og tricks til Proc Means. Per Andersen Senior IM Consultant Dong Energy, Group IT, Trading IT, Analytics

Tips og tricks til Proc Means. Per Andersen Senior IM Consultant Dong Energy, Group IT, Trading IT, Analytics Tips og tricks til Proc Means Per Andersen Senior IM Consultant Dong Energy, Group IT, Trading IT, Analytics ENERGI I FORANDRING Marts 2012 DONG Energy er en af Nordeuropas førende energikoncerner med

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

Restsaltmængdernes afhængighed af trafikken,

Restsaltmængdernes afhængighed af trafikken, Restsaltmængdernes afhængighed af trafikken, Thomas Glue, marts 2. Trafikintensitet...2 Indledende definitioner...2 Regressionsanalyser på trafikintensiteten...6 Justering af restsaltmængder i henhold

Læs mere

EVALUERING I SURVEYXACT TRIN FOR TRIN

EVALUERING I SURVEYXACT TRIN FOR TRIN EVALUERING I SURVEYXACT TRIN FOR TRIN LÆR AT TACKLE 2015 KOMITEEN FOR SUNDHEDSOPLYSNING 1 INDLEDNING Komiteen for Sundhedsoplysning stiller SurveyXact et internetbaseret redskab til kvalitetssikring til

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

En Introduktion til SAS. Kapitel 6.

En Introduktion til SAS. Kapitel 6. En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

PC-Logging System MTD-Log. for. NS-Proces-Alarm. ninasoft

PC-Logging System MTD-Log. for. NS-Proces-Alarm. ninasoft PC-Logging System MTD-Log for NS-Proces-Alarm. ninasoft PC-Logging System for NS-Proces-Alarm. Side 1 Generelt PC-Logging Systemet er et dataopsamlings system, der kun kan benyttes sammen med NS-Proces-Alarmen.

Læs mere

IDAP manual Emission

IDAP manual Emission IDAP manual Emission Dato: 08-06-2005 16:32:35 Indhold INDHOLD... 1 1 EMISSION... 2 1.1 KURVER... 2 1.2 RAPPORTER... 5 1.3 DATA REDIGERING... 6 1.3.1 Masse redigering... 7 1.3.2 Enkelt redigering... 10

Læs mere

Indholdsfortegnelse. Indholdsfortegnelse.. side 2. Adgang til webgraf 3. Opslag adresse... 4. Styring af layout.. 5. Zoom funktioner..

Indholdsfortegnelse. Indholdsfortegnelse.. side 2. Adgang til webgraf 3. Opslag adresse... 4. Styring af layout.. 5. Zoom funktioner.. Indholdsfortegnelse Indholdsfortegnelse.. side 2 Adgang til webgraf 3 Opslag adresse... 4 Styring af layout.. 5 Zoom funktioner.. 6 Panorere på skærmen. 7 Information om grafikken.... 8-10 Print et udsnit.....

Læs mere

ninasoft Micro Temp. Vandtæt miniature temperatur datalogger.

ninasoft Micro Temp. Vandtæt miniature temperatur datalogger. ninasoft Micro Temp. Vandtæt miniature temperatur datalogger. Betjeningsvejledning Micro Temp. Datalogger. Side 1. Micro Temp. er en 1 kanals temperatur datalogger, der leveres i et vandtæt rustfrit kabinet,

Læs mere

IDAP manual Analog modul

IDAP manual Analog modul IDAP manual Analog modul Dato: 15-06-2005 11:01:06 Indledning Til at arbejde med opsamlede og lagrede analoge data i IDAP portalen, findes en række funktions områder som brugeren kan anvende. Disse områder

Læs mere

Grupperede observationssæt Deskriptiv statistik: Middelværdi, frekvensfordeling, sumkurve, kvartilsæt, boxplot

Grupperede observationssæt Deskriptiv statistik: Middelværdi, frekvensfordeling, sumkurve, kvartilsæt, boxplot Grupperede datasæt: Middelværdi, intervalfrekvens og kumuleret frekvens. Bilbestandens alder i 2005 fremgår af følgende tabel. Alder i år ]0;4] ]4;8] ]8;12] ]12;16] ]16;20] ]20;24] Antal i tusinde 401

Læs mere

EVALUERING I SURVEYXACT TRIN FOR TRIN

EVALUERING I SURVEYXACT TRIN FOR TRIN EVALUERING I SURVEYXACT TRIN FOR TRIN LÆR AT TACKLE 2015 KOMITEEN FOR SUNDHEDSOPLYSNING 1 INDLEDNING Komiteen for Sundhedsoplysning stiller SurveyXact et internetbaseret redskab til kvalitetssikring til

Læs mere

VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj 2001 Inge B. Larsen (ibl@dpu.dk) Juni 2001

VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj 2001 Inge B. Larsen (ibl@dpu.dk) Juni 2001 VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj 2001 Inge B. Larsen (ibl@dpu.dk) Juni 2001 I det følgende gives et forslag til, hvordan en elev i 9. klasse med programmet VisiRegn til

Læs mere

Indhold. Evalueringsvejledning. En undersøgelse fra start til slut involverer 4 programmer: - SurveyXact - Excel - E-learn - SiteCore

Indhold. Evalueringsvejledning. En undersøgelse fra start til slut involverer 4 programmer: - SurveyXact - Excel - E-learn - SiteCore Evalueringsvejledning En undersøgelse fra start til slut involverer 4 programmer: - SurveyXact - Excel - E-learn - SiteCore Indhold 1 - Respondentgruppe hentes... 2 2 Undersøgelsen oprettes i SX... 4 3.

Læs mere

Installationsvejledning Family Tree Maker

Installationsvejledning Family Tree Maker Side 1 af 10 Først og fremmest tillykke med din nye version, oversat til dansk af undertegnede. Håber du bliver lige så glad for alle dens muligheder, som så mange over hele verden er blevet det. Installation

Læs mere

Undervisning i Dansk Palliativ Database

Undervisning i Dansk Palliativ Database Undervisning i Dansk Palliativ Database - AnalysePortalen og mulighederne for at anvende egne data Undervisning i Dansk Palliativ Database - AnalysePortalen og mulighederne for at anvende egne data Dagens

Læs mere

INTRODUKTION TIL DIAGRAMFUNKTIONER I EXCEL

INTRODUKTION TIL DIAGRAMFUNKTIONER I EXCEL INTRODUKTION TIL DIAGRAMFUNKTIONER I EXCEL I denne og yderligere at par artikler vil jeg se nærmere på diagramfunktionerne i Excel, men der er desværre ikke plads at gennemgå disse i alle detaljer, dertil

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Phd-kursus i Basal Statistik, Opgaver til 2. uge

Phd-kursus i Basal Statistik, Opgaver til 2. uge Phd-kursus i Basal Statistik, Opgaver til 2. uge Opgave 1: Sædkvalitet Filen oeko.txt på hjemmesiden indeholder datamateriale til belysning af forskellen i sædkvalitet mellem SAS-ansatte og mænd, der lever

Læs mere

Excel - begynderkursus

Excel - begynderkursus Excel - begynderkursus 1. Skriv dit navn som undertekst på et Excel-ark Det er vigtigt når man arbejder med PC er på skolen at man kan få skrevet sit navn på hver eneste side som undertekst.gå ind under

Læs mere

Programmering C RTG - 3.3 09-02-2015

Programmering C RTG - 3.3 09-02-2015 Indholdsfortegnelse Formål... 2 Opgave formulering... 2 Krav til dokumentation af programmer... 3 ASCII tabel... 4 Værktøjer... 5 Versioner af ASCII tabel... 6 v1.9... 6 Problemer og mangler... 6 v2.1...

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark IMM Statistical Consulting Center Technical University of Denmark ISCC Brugervejledning til beregningsmodul til robust estimation af nugget effect Endelig udgave til Eurofins af Christian Dehlendorff 15.

Læs mere

matematik Demo excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk

matematik Demo excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk matematik excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk matematik excel 2 1. udgave som E-bog 2007 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale

Læs mere

Vejledning i brug af imastra

Vejledning i brug af imastra Vejledning i brug af imastra af Daniel Kristian Carlsen 01.06.2010 1 Indholdsfortegnelse 1 Kom i gang... 3 1.1 Åbn imastra... 3 1.2 Skift adgangskode... 3 2 Oprettelse af kryds... 4 2.1 Før vi går i gang...

Læs mere

Sammenknytning af listedata fra MUD til tabel i MapInfo (SVM-eksempel)

Sammenknytning af listedata fra MUD til tabel i MapInfo (SVM-eksempel) Sammenknytning af listedata fra MUD til tabel i MapInfo (SVM-eksempel) Indhold Introduktion...1 Eksport og tilpasning af tabeldata MUD...1 Direkte til Excel...1 Via Rapport i Word-format til Excel...1

Læs mere

Først skal du oprette dig i systemet, d. v. s. du skal have en såkaldt Googlekonto bestående af en mailadresse og et kodeord.

Først skal du oprette dig i systemet, d. v. s. du skal have en såkaldt Googlekonto bestående af en mailadresse og et kodeord. Gmail Indhold Indhold...1 Introduktion...2 Opret dig i systemet...2 At skrive mails...5 Sende en mail til flere personer...8 Vedhæfte en fil...9 Kladde...10 Signatur...11 Modtagne mails...12 Stjernemarkering...14

Læs mere

Binært LAS-format Denne indstilling import Laser scan datafiler, i LAS format.

Binært LAS-format Denne indstilling import Laser scan datafiler, i LAS format. Kvadratnetsmodel - Import af Laser Scan Datafiler Funktionen til at oprette kvadratnetsmodeller er nu blevet udvidet og omfatter nu også en funktion til at importere laser scanning datafiler. Metoden bag

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Åbn Paint, som er et lille tegne- og billedbehandlingsprogram der findes under Programmer i mappen Tilbehør. Åbn også Word.

Åbn Paint, som er et lille tegne- og billedbehandlingsprogram der findes under Programmer i mappen Tilbehør. Åbn også Word. 75 Paint & Print Screen (Skærmbillede med beskæring) Åbn Paint, som er et lille tegne- og billedbehandlingsprogram der findes under Programmer i mappen Tilbehør. Åbn også Word. 1. Minimer straks begge

Læs mere

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium Man kan nemt lave χ 2 -test i GeoGebra både goodness-of-fit-test og uafhængighedstest. Den følgende vejledning bygger på GeoGebra version

Læs mere

Kom godt i gang med I-bogen

Kom godt i gang med I-bogen Kom godt i gang med I-bogen At åbne bogen Det allerførste, du skal gøre, for at kunne arbejde med i-bogen, er at aktivere den. Det gøres ved at oprette en konto på systime.dk og derefter aktivere bogen

Læs mere

Microsoft Excel - en kort introduktion. Grundlag

Microsoft Excel - en kort introduktion. Grundlag Microsoft Excel - en kort introduktion Grundlag Udover menuer og knapper - i princippet som du kender det fra Words eller andre tekstbehandlingsprogrammer - er der to grundlæggende vigtige størrelser i

Læs mere

FORMATERING AF REGNEARK

FORMATERING AF REGNEARK FORMATERING AF REGNEARK Indtil nu har vi set på, hvordan du kan udføre beregninger i dit regneark, og hvordan du kan redigere i regnearket, for hurtigt at få opstillet modellerne. Vi har derimod overhovedet

Læs mere

Manual til Groupcare: Indhold, formål og brug

Manual til Groupcare: Indhold, formål og brug Manual til Groupcare: Indhold, formål og brug Indledning Groupcare er en elektronisk, internetbaseret kommunikationsform som vi bruger i forbindelse med din DOL-uddannelse. Grundlæggende set er Groupcare

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Indlæsning af prisfiler fra grossist

Indlæsning af prisfiler fra grossist Indlæsning af prisfiler fra grossist I Mamut Stellar 7 er det muligt at indlæse prisfiler fra Grossistmodulet. Det er ikke alle filformater der indeholder de samme data, men i denne vejledning beskrives

Læs mere

Stolpediagrammer for kategoriske data med -catplot-

Stolpediagrammer for kategoriske data med -catplot- Stolpediagrammer for kategoriske data med -catplot- [Revideret 4. oktober 2013] Kim Mannemar Sønderskov Institut for Statskundskab, Aarhus Universitet ks@ps.au.dk Denne note gennemgår, hvordan resultaterne

Læs mere

Elevskema. Med modulet Elevskema kan du fordele eleverne på kurser og danne individuelle elevskemaer.

Elevskema. Med modulet Elevskema kan du fordele eleverne på kurser og danne individuelle elevskemaer. Elevskema Med modulet Elevskema kan du fordele eleverne på kurser og danne individuelle elevskemaer. Forudsætningen for at arbejde med modulet Elevskema er, at der i Untis er oprettet elever, som er tilknyttet

Læs mere