GEOMETRI I PLAN OG RUM

Størrelse: px
Starte visningen fra side:

Download "GEOMETRI I PLAN OG RUM"

Transkript

1 LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige polygoner. Side 24 Firkanter med bestemte omkredse og arealer Figuren er også Konstruktion af trekanter De største kaninbure real og omkreds af ligebenede trekanter Figurer og diagonaler Diagonaler i en dragefirkant En model af et legehus Isometrisk tegning Fra projektionstegning til isometrisk tegning Eleverne skal her tegne seks forskellige firkanter, der (i opgave 1) skal have omkredsen 16 cm og (i opgave 2) have arealet 16 cm 2. I stedet for at tegne figurerne på siden kan eleverne evt. bruge et geometriprogram. Siden fokuserer på forskellige typer firkanters definitioner. Eleverne skal afgøre, hvilke typer firkanter der udgør delmængder af andre typer firkanter. De kan evt. indlede arbejdet med at slå definitioner på de forskellige firkanter op, notere dem og diskutere, hvad de betyder. På denne side skal eleverne konstruere trekanter ud fra oplysninger på skitser. emærk, at nogle af konstruktionerne har flere løsninger, andre konstruktioner har netop en løsning, og en enkelt af konstruktionerne har slet ingen løsning. Et byggeri af et kaninbur danner udgangspunkt for to opgaver, der fagligt set handler om sammenhængen mellem en figurs omkreds og areal. Hvilken form giver det største areal, når omkredsen er givet? Eleverne kan arbejde med opgaven på flere forskellige måder de kan prøve sig frem, de kan opstille en ligning, eller de kan fremstille en graf. Denne side er stort set parallel til grundbogens side 27. Her handler det bare ikke om rektangler, men om ligebenede trekanter. Hvilke sidelængder i en ligebenet trekant med omkredsen 72 giver det største areal? På siden foreslås det, at eleverne kan bruge et regneark til arbejdet. emærk, at den noget vanskelige formel, der skal til for at beregne trekantens højde, er angivet i regnearksklippet på siden. Det er også en mulighed, at eleverne tegner, måler og beregner sig frem til løsningerne uden regneark. Eleverne skal her tage stilling til en række udsagn vedrørende diagonalerne i seks forskellige typer firkanter. På siden defineres en dragefirkant som en firkant, hvor siderne to og to er lige lange. Eleverne skal bl.a. undersøge sammenhængen mellem produktet af diagonalernes længder og dragefirkantens areal. Udgangspunktet for opgaverne på siden er elevernes fremstilling af en rumlig model af et legehus i målestoksforholdet 1:100. rbejdet sigter især på, at eleverne skal foretage beregninger, der er forbundet med forståelsen af målestoksforholdet. emærk, at der skal bruges karton, saks og tape. Siden viser seks forskellige figurer, der skal tegnes på isometrisk papir. Derefter skal figurernes rumfang bestemmes. emærk, at figurerne kan tegnes i forskellige målestoksforhold og at rumfangsberegningerne afhænger af disse målestoksforhold. Her skal eleverne læse og forstå seks projektionstegninger, således at de kan tegne isometriske tegninger på grundlag af dem. emærk, at siden findes i farver på den medfølgende pdf-fil. Side 24 Side 24 Side 26 Side 27 Side 27 Side 31 Side 31 Side 32 Side 34 Side GEOMETRI I PLN OG RUM

2 LÆRERVEJLEDNING GEOMETRI I PLN OG RUM En kasse af foldet papir Rumfanget af en pyramide En udfoldning af en pyramide Fremstillingen af en kasse uden låg er omdrejningspunktet for denne side. Hvilken form giver kassen det største rumfang? Eleverne kan arbejde med siden på flere forskellige måder: De kan fremstille kassen konkret og på den måde prøve, måle og beregne sig frem. De kan også opstille en funktionsforskrift, en tabel eller en graf for en funktion, der beskriver sammenhængen mellem kassens højde og dens rumfang. Denne side giver eleverne mulighed for at opnå en forståelse for, hvorfor rumfanget af en pyramide med kvadratisk grundflade og en højde, der svarer til sidelængden i grundfladen, udgør en tredjedel af rumfanget for en kube med samme grundflade. emærk, at det følgende kopiark skal bruges i arbejdet sammen med karton, saks og lim. Skal bruges i forbindelse med kopiarket Rumfanget af en pyramide. Udfoldningen tegnes, kopieres eller limes på karton og klippes ud. Side Side Side GEOMETRI I PLN OG RUM

3 KOPIRK 14 NVNE PÅ FIGURER 1 Skriv navnene fra boksen nederst på de rigtige figurer. Læg mærke til, at nogle af figurerne kan have flere navne, og at ikke alle navnene fra boksen skal bruges. Trekant Ligebenet trekant Ligesidet trekant Retvinklet trekant Femkant Regulær sekskant Spidsvinklet trekant Regulær femkant Syvkant Stumpvinklet trekant Sekskant Regulær syvkant 18 GEOMETRI I PLN OG RUM

4 KOPIRK 15 FIRKNTER MED ESTEMTE OMKREDSE OG RELER 1 Tegn i hvert felt en firkant, der hver har en omkreds på 16 cm. Firkanten skal være af den type, som står i feltet. Kvadrat Rektangel Rombe Parallelogram Trapez Ligebenet trapez 2 Tegn i hvert felt en firkant, der hver har et areal på 16 cm 2. Firkanten skal være af den type, som står i feltet. Kvadrat Rektangel Rombe Parallelogram Trapez Ligebenet trapez 19 GEOMETRI I PLN OG RUM

5 KOPIRK 16 FIGUREN ER OGSÅ 1 Pilen fra kvadratet til rektanglet herunder betyder er også. Pilen kan tegnes, for et kvadrat er også et rektangel. Hvilke andre pile kan der tegnes? Et kvadrat Et rektangel En rombe Et parallelogram Et trapez Et ligebenet trapez 20 GEOMETRI I PLN OG RUM

6 KOPIRK 17 KONSTRUKTION F TREKNTER 1 Konstruer hver trekant ud fra oplysningerne på skitserne. rug evt. et geometriprogram. Skriv efter hver konstruktion, om der kun findes en løsning, eller om der findes flere løsninger. En af trekanterne kan ikke konstrueres. Skriv ved denne trekant, hvorfor den ikke kan konstrueres. a b c 4 cm cm 8 cm cm 60 d e f 5 cm 30 6 cm 7 cm 60 8 cm 4 cm 10 cm g h i cm 40 6 cm 4 cm 4 cm 21 GEOMETRI I PLN OG RUM

7 KOPIRK 18 DE STØRSTE KNINURE ørnene på en skoles SFO skal have bygget to bure til deres kaniner. De har fået 6 m hegn af en forælder. Kaninburene skal have form som to lige store rektangler. De skal være placeret ved siden af hinanden langs en mur som vist på tegningen herunder. mur a a a hegn b b ørnene beder om hjælp til at finde ud af, hvordan de kan få lavet de største kaninbure af de 6 m hegn. 1 Hjælp børnene med at finde de mål for a og b, som giver de største kaninbure. 2 Hvilke mål skulle a og b have, hvis børnene ville bygge de største bure med 9 m hegn? 22 GEOMETRI I PLN OG RUM

8 KOPIRK 19 REL OG OMKREDS F LIGEENEDE TREKNTER 1 Giv mindst tre forskellige eksempler på sidelængderne i en ligebenet trekant, hvis omkreds er 72 cm. 2 Forklar, hvorfor længderne af trekantens ben skal være større end 24 og mindre end eregn arealet af hver af dine ligebenede trekanter fra opgave 1. 4 Undersøg, hvilke sidelængder der giver det største areal i en ligebenet trekant, når omkredsen er 72 cm. rug evt. et regneark som det, der er vist herunder. 5 Hvilke sidelængder giver det største areal, hvis den ligebenede trekants omkreds er a 75 cm? b 78 cm? c 30 cm? d 60 cm? e 600 cm? f n cm? 23 GEOMETRI I PLN OG RUM

9 KOPIRK 20 FIGURER OG DIGONLER 1 Skriv ved hver type figur, hvilke af udsagnene nederst der er sande. Kvadrater Rektangler Romber Parallelogrammer Trapezer Ligebenede trapezer a Diagonalerne er lige lange. b Diagonalerne er ikke lige lange. c Diagonalerne danner fire rette vinkler. d Diagonalerne danner ikke fire rette vinkler. e Diagonalerne har et skæringspunkt, der deler dem i to lige store dele. f Diagonalerne har et skæringspunkt, der deler dem i to dele, som ikke er lige store. 24 GEOMETRI I PLN OG RUM

10 KOPIRK 21 DIGONLER I EN DRGEFIRKNT En dragefirkant er en firkant, hvor siderne to og to er lige lange. 1 Tegn mindst tre forskellige dragefirkanter. Tegn i kvadratnettet herunder, eller brug et geometriprogram. 2 Tegn diagonalerne i dine dragefirkanter fra opgave 1. eskriv, hvad der ser ud til at gælde om diagonalerne. 3 eregn arealet af hver af dine dragefirkanter fra opgave 1. Skriv arealet ved hver figur. 4 Find længden af diagonalerne i hver af dine dragefirkanter fra opgave 1. Gang længderne med hinanden, og skriv resultatet ved hver figur. 3 cm 6 cm Eksempel: 3 cm 6 cm = 18 cm 2 5 Sammenlign arealet af hver dragefirkant med resultatet af gangestykket. Hvad opdager du? 6 Hvorfor gælder din opdagelse fra opgave 5? 25 GEOMETRI I PLN OG RUM

11 KOPIRK 22 EN MODEL F ET LEGEHUS Herunder ses en model af et legehus. Modellen er fremstillet i målestoksforholdet 1: Tegn en model mage til på karton. Klip den ud, fold langs de stiplede linjer, og lim den sammen. 2 eregn legehusets virkelige højde. 3 eregn arealet af legehusets grundplan. Der skal være fire vinduer og en dør i legehuset. Vinduernes og dørens mål kan du se på skitserne herunder. dør dør 1,5 m 1,0 m 0,7 m 1,0 m 4 Tegn døren og de fire vinduer på din model af legehuset. Husets udvendige træværk skal males. 5 Hvor mange kvadratmeter skal males? 26 GEOMETRI I PLN OG RUM

12 KOPIRK 23 ISOMETRISK TEGNING 1 Tegn figurerne herunder på isometrisk papir. a b c d e f 2 Find frem til rumfanget af hver figur, du har tegnet. a b c d e f 27 GEOMETRI I PLN OG RUM

13 KOPIRK 24 FR PROJEKTIONSTEGNING TIL ISOMETRISK TEGNING Fremstil isometriske tegninger af projektionstegningerne. a b c d e f 28 GEOMETRI I PLN OG RUM

14 KOPIRK 25 EN KSSE F FOLDET PPIR Skitsen herunder viser et kvadratisk stykke papir med mål og foldelinjer. Du kan fremstille en kasse af papiret, hvis du klipper kvadrater af hvert hjørne, folder langs linjerne og klistrer sammen med tape. Forestil dig, at du klipper kvadrater på 3 3 af hvert hjørne. 1 Hvor stort bliver kassens rumfang, hvis du folder langs linjerne? Forestil dig, at du klipper kvadrater på x x af hvert hjørne. 2 Find frem til en formel, der kan bruges til at beregne kassens rumfang. 3 Undersøg, hvilken værdi af x der giver kassen det største rumfang. 29 GEOMETRI I PLN OG RUM

15 KOPIRK 26 RUMFNGET F EN PYRMIDE Formlen for rumfanget af en pyramide ligner formlen for rumfanget af en kasse. h: højde G: areal af grundfladen V: rumfang V = h G h: højde G: areal af grundfladen V: rumfang V = 1 3 h G 1 Forestil dig en pyramide og en kasse, som har ens grundflader. Se på formlerne herover, og forklar med dine egne ord, hvad forskellen på pyramidens og kassens rumfang er, når de har ens grundflader. 2 rug kopiark x. Tegn og klip tre udfoldninger af en pyramide på karton. Fold udfoldningerne langs linjerne, og tape hver pyramide sammen. lille tegning her af lim og tape? ctj 3 Sæt de tre pyramider sammen til en kasse. rug lim eller tape. 4 Hvad er kassens rumfang? 5 Hvad er pyramidens rumfang? 6 Kan opgaverne på denne side forklare, hvorfor rumfangsformlen for en kasse og for en pyramide ligner hinanden? Hvorfor? Hvorfor ikke? 30 GEOMETRI I PLN OG RUM

16 KOPIRK 27 EN UDFOLDNING F EN PYRMIDE 5 cm 5 cm 5 cm 5 cm 31 GEOMETRI I PLN OG RUM

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene.

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene. Hop videre med Udforskning af opgaverne ne bygger videre på opgaver fra Kænguruen og lægger op til, at klassen sammen kan diskutere og udforske problemstillingerne. Opgavenumrene henviser til de opgaver,

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2 Opgave 1 Opgave 2 21 000 m 2 B. 125,66 m 2 C. 1200 m 2 D. 185 540 m 2 Opgave 3 Det betyder, at en centimeter på tegningen svarer til 100 cm i virkeligheden B. 22m 2 C. D. E. Hvis længdeforholdet ændres

Læs mere

Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne

Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne Periode Mål Eleverne skal: Tal og enheder arbejde med tal og enheder, som bruges i hverdagen blive bedre til at omregne mellem enheder

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole

Læs mere

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER LÆS OG SKRIV MATEMATIK A1 LÆS MATEMATIK Brug de tre rammer i modellen, når du skal løse en matematikopgave. Det er ikke sikkert, du skal bruge alle punkter i hver ramme til alle opgaver. Find ud af, hvilke

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 4. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier!!!* Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it

16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it 16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it Tanker bag opgaverne Det er min erfaring, at elever umiddelbart vælger at bruge det implicitte funktionsbegreb,

Læs mere

Mattip om. Arealer 1. Tilhørende kopier: Arealer 1, 2 og 3. Du skal lære om: De vigtigste begreber. Arealberegning af et kvadrat eller rektangel

Mattip om. Arealer 1. Tilhørende kopier: Arealer 1, 2 og 3. Du skal lære om: De vigtigste begreber. Arealberegning af et kvadrat eller rektangel Mattip om realer 1 Du skal lære om: De vigtigste begreber Kan ikke Kan næsten Kan realberegning af et kvadrat eller rektangel Tegning/konstruktion af kvadrater og rektangler realberegning af et parallelogram

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Areal og overflade: kunne foretage beregninger af sammensatte arealer og sammensætte formler til beregning af disse.

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

Digitale værktøjer FORHÅNDSVIDEN

Digitale værktøjer FORHÅNDSVIDEN Digitale værktøjer Når du i matematik arbejder med digitale værktøjer, kan det enten være fordi, du benytter et digitalt værktøj som hjælp til at løse et matematisk problem eller fordi, du bruger et digitalt

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Usædvanlige opgaver Lærervejledning

Usædvanlige opgaver Lærervejledning Mette Hjelmborg Usædvanlige opgaver Lærervejledning Gyldendal Usædvanlige opgaver, lærervejledning af Mette Hjelmborg 008 Gyldendalske boghandel, Nordisk Forlag A/S, København Forlagsredaktion: Stine Kock,

Læs mere

matematik grundbog basis preben bernitt

matematik grundbog basis preben bernitt 33 matematik grundbog basis preben bernitt 1 matematik grundbog basis ISBN: 978-87-92488-27-5 2. udgave som E-bog 2010 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

brikkerne til regning & matematik geometri basis+g preben bernitt

brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri, basis+g ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2 Logik Udsagn Reduktion Ligninger Uligheder Regnehistorier I en trekant er den største vinkel 0 større end den næststørste og denne igen 0 større end den mindste. Find vinklernes gradtal. = og Lig med og

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER I oldtiden regnede man med 7 underværker, hvilket var seværdigheder, som man fremhævede på grund af deres størrelse, skønhed og udseende. Kun et enkelt af disse

Læs mere

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen 8 KO L O R I T Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen KOLORIT 8 Gyldendal KOLORIT 8 KOLORIT 8 MATEMATIK KOPIMAPPE 1. udgave, 1. oplag 2011 2011 Gyldendal

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Matematik i 5. klasse

Matematik i 5. klasse Matematik i 5. klasse Igen i år benytter vi os af Faktor i femte. Systemet indeholder en grundbog, hvortil der er supplerende materiale i form af kopiark, som er tilpasset de gennemgåede emner. Grundbogen

Læs mere

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side VisiRegn ideer 5 Eksperimenter med areal og rumfang Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Areal og Rumfang 2 Red burhønsene. Vejledn. 3-7 Største

Læs mere

Geometrisk tegning - Facitliste

Geometrisk tegning - Facitliste Geometrisk tegning - Facitliste Om kapitlet I dette kapitel om geometrisk tegning skal eleverne arbejde med forskellige tegneteknikker og hjælpemidler. De skal gengive og undersøge muligheder og begrænsninger

Læs mere

Indhold. Servicesider. Testsider

Indhold. Servicesider. Testsider Indhold Servicesider Isometrisk papir.................................................... kopiside - Prikpapir............................................................. kopiside - Brøkkort.............................................................

Læs mere

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen: Matematik Årgang: Lærer: 7. årgang Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver

Læs mere

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel FP10 10.-klasseprøven Matematik December 2014 1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel 1 Huspriser

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres.

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres. .01 Trekanter Trekanttypespil En retvinklet trekant med siderne,, og. Kan ikke konstrueres. En trekant, hvor to af vinklerne er 90. En ligesidet trekant med siden. En spidsvinklet trekant hvor den ene

Læs mere

Matematik undervisningsplan 4-6. klassetrin Årsplan 2015 & 2016

Matematik undervisningsplan 4-6. klassetrin Årsplan 2015 & 2016 Materialer Grundbog: kontext Arbejdsbog: kontext Rema Matematik undervisningsplan Matematikmappe til opgaveark, tilpasset elevernes individuelle niveau Tabeltræning og anden basistræning efter behov Supplerende

Læs mere

Årsplan Matematik 5.klasse

Årsplan Matematik 5.klasse Årsplan Matematik 5.klasse Emne Periode Mål Relation til fælles mål Arbejdsform Materialer Evaluering Evaluering Rette forståelses fejl Evaluering prøve MAT 4 MAT 4 Geometri Arbejde med Excel regneark

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema Webinar - Matematik 1. Fælles Mål 2014 2. Relationsmodellen og et forløbsplanlægningsskema 3. Et eksempel på et forløb om areal og omkreds på mellemtrinnet 4. Relationsmodellen som refleksionsmodel Alle

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

5. KLASSE UNDERVISNINGSPLAN MATEMATIK

5. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: SS Forord til faget i klassen Vi vil i matematik arbejde differentieret i hovedemnerne geometri, statistik og sandsynlighed samt tal og algebra. Vi vil i 5. kl. dagligt arbejde med matematisk kommunikation

Læs mere

Lektion 8s Geometri Opgaver

Lektion 8s Geometri Opgaver Matematik på Åbent VU Lektion 8s Geometri Indholdsfortegnelse Sammensatte figurer Kunstruktionsopgaver Trigonometri Lavet af Niels Jørgen ndreasen, VU Århus. Redigeret af Hans Pihl, KVU Lektion 8s Side

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af ligninger og formler... 39 To ligninger med to ubekendte... 44 Formler, ligninger, funktioner og grafer Side 38 Omskrivning af ligninger og formler

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Forlag Malling Beck Best. nr Sigma for syvende

Forlag Malling Beck Best. nr Sigma for syvende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse:

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 2 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 2 ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Facitliste til elevbog

Facitliste til elevbog Facitliste til elevbog Algebra a 8x 4 b 6x c 7x 8 d 0 5x e x 54 f 8x 6 x a x 7x + 4 b 48a 4 + 8a c 56x + x d 6a 4 5a e 4x 80x f 6a 4 4a a 8(x + ) b 5x(4x 7) c 4( a) d 9a ( a) e 4( + 7a ) f 6(x + y) 4 a

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Undervisningsplanlægning Videopræsentationer i matematik.

Undervisningsplanlægning Videopræsentationer i matematik. Undervisningsplanlægning Videopræsentationer i matematik. Overordnede betragtninger - Klassetrin og fag: 4. klasse matematik - Formål: Styrke eleverne i deres repræsentationskompetence. - Stikord til motiverende

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Lektion 8 Geometri Når du bruger denne facitliste skal du være opmærksom på, at: - der kan være enkelte fejl. - nogle af facitterne er udeladt - bl.a. der hvor facitterne er tegninger. - decimaltal kan

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

FP9. Matematisk problemløsning. 9.-klasseprøven. December 2015

FP9. Matematisk problemløsning. 9.-klasseprøven. December 2015 FP9 9.-klasseprøven Matematisk problemløsning December 2015 1 I praktik i en boghandel 2 I praktik som murer 3 I praktik som journalist 4 I praktik som arkitekt 5 Sekskanter 6 Retvinklede og ligesidede

Læs mere

Beregninger Microsoft Excel 2010 Grundforløb Indhold

Beregninger Microsoft Excel 2010 Grundforløb Indhold Indhold Arealberegning... 2 Kvadrat/rektangulær... 2 Rektangel... 2 Kvadrat... 2 Cirkel... 2 Omkredsberegning... 3 Kvadrat/rektangulær... 3 Rektangel... 3 Kvadrat... 3 Cirkel... 3 Rumfangsberegning...

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx121-MATn/A-25052012 Fredag den 25. maj 2012 kl. 09.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve

Læs mere

PLANGEOMETRI OM KAPITLET

PLANGEOMETRI OM KAPITLET PLANGEOMETRI OM KAPITLET I dette kapitel om plangeometri arbejder eleverne med forskellige egenskaber ved plane figurer. I den første del af kapitlet arbejder eleverne med at finde areal af rektangler,

Læs mere

Projekt 3.1 Pyramidestub og cirkelareal

Projekt 3.1 Pyramidestub og cirkelareal Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

brikkerne til regning & matematik geometri trin 2 preben bernitt

brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde t system rod orden nøjagtig præcis

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat6 Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Omkredsspil. Måling. Format 5. Nr. 75. Navn: Klasse: Dato: Kopiark til elevbog side 77

Omkredsspil. Måling. Format 5. Nr. 75. Navn: Klasse: Dato: Kopiark til elevbog side 77 Omkredsspil Nr. 75 Paraktivitet. Kast på skift med to -sidede terninger, og gang øjentallene. Gæt, hvilken figur der har denne omkreds. Mål og udregn omkredsen. Ved rigtigt gæt: Skriv initialer i figuren.

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 5. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet

Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet penge Periode Mål Eleverne skal: Lære at anvende simpel hovedregning gennem leg og praktiske anvende addition og

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering. Fag: Matematik Hold: 27 Lærer: Jesper Svejstrup Pedersen Undervisnings-mål 9 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 32-37 i arbejdet med geometri at benytte

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer

REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer LÆRERVEJLEDNING REELLE TAL Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Danskerne og ketchup Medieforbrug Decimaltal, brøker og procent og 2 Procentregning

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

geometri basis+g brikkerne til regning & matematik preben bernitt

geometri basis+g brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri G ISBN: 978-87-92488-15 2 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk Denne

Læs mere

kilogram (kg) passer isometrisk liter veje kvadratmeter kasse

kilogram (kg) passer isometrisk liter veje kvadratmeter kasse i tredje 3 i anden kilogram (kg) bage forkortelse tusinde (1000) efter bagved foran placering beholder fylde passer ben sds bredde deci centi tiendedel isometrisk centicube stoksforhold prikpar længere

Læs mere