Nordisk Matematikkonkurrence. samt Danmarks Matematiklærerforening. Skoleåret Opgaver ved semifinalen

Størrelse: px
Starte visningen fra side:

Download "Nordisk Matematikkonkurrence. samt Danmarks Matematiklærerforening. Skoleåret 2008 2009 Opgaver ved semifinalen"

Transkript

1 Opgave 1 Opdeling af figur I har fået udleveret et ark med syv regulære sekskanter. Inddel dem i 6 6 på syv forskellige måder. Det er kun tilladt at bruge rette linjer. Nedenfor kan I se en af måderne sekskanten kan deles på:

2 Opgave 2 Magisk heksagon (sekskant) I en magisk sekskant er tallene fra 1 til 19 placeret i cellerne sådan at summen af tallene langs hver diagonal og summen af tallene i de lodrette kolonner er den samme. Hvad er den magiske sum? Hvordan er tallene placeret? _3 _ 16 _7 _ 10 _4 _5 _8 _15

3 Opgave 3 Rektangel og talmønstre Figurerne herunder indeholder henholdsvis et, tre og seks rektangler: a) Hvor mange rektangler er der i denne figur? b) Hvor mange rektangler er der i denne figur?

4 c) Hvor mange rektangler er der i en række sat sammen af n rektangler? (Find en formel) d) Find et tilsvarende mønster for disse figurer ved at tælle rektanglerne. Find en formel for antal rektangler i figuren som er sat sammen af 2 x n rektangler.

5 Opgave 4 Ligebenede trekanter Herunder ser I et gitter som består af 9 prikker. Det svarer til de frie pinde på de sømbrætter I har fået udleveret. Hvor mange ligebenede trekanter kan I lave med tre af punkterne som hjørner?

6 Opgave 5 Tyven Guldsmykkerne er blevet borte! Tyven var enten butleren, stuepigen eller kokken. Under efterforskningen sagde hver af dem følgende: Butleren: Stuepigen har stjålet guldsmykkerne Stuepigen: Det er sandt! Kokken: Jeg stjal ikke guldet. Vi ved at mindst en af dem talte sandt og mindst en af dem løj. Hvem stjal guldsmykkerne? NB! I skal forklare hvordan I har tænkt og argumentere for at det er logisk og rigtigt.

7 Opgave 6 Opgaverne der blev væk En lærer har rettet 5 elevers prøver. Desværre kom læreren til at smide de fem prøver væk efter at han havde rettet dem, så han var usikker på hvor mange point han havde givet i hver af disse fem prøver. Han havde imidlertid noteret at: - Typetallet (den pointsum som forekom flest gange) på de fem prøver var 90 - Medianen (det midterste tal i observationerne når de lægges i rækkefølge) var 85 - Gennemsnittet af prøverne var 83 Pointsummerne for hver prøve var hele tal mellem 0 og 100. Find den laveste pointsum som kan have været i de fem prøver. NB: I skal vise hvordan I har beregnet det og forklare hvordan I har tænkt.

8 Opgave 7 Forholdet mellem brikker Forestil dig at din lærer har en pose der indeholder et ukendt antal brikker hvor den ene side er rød og den anden side er hvid. Læreren hælder alle brikkerne ud på et bord og tæller antallet af røde og hvide brikker. Forholdet mellem de røde og hvide brikker er 3 : 4. Læreren vender nu 23 af de brikker som landede med den hvide side opad og påstår at forholdet mellem de røde og hvide nu er som 4 : 3 Hvor mange af brikkerne havde den hvide side opad før læreren vendte brikkerne? Desværre kan du ikke på noget tidspunkt se hvor mange brikker læreren har, men vi antager at læreren har talt rigtigt. NB: I skal vise hvordan I har beregnet det og forklare hvordan I har tænkt.

9 Opgave 8 En vandtank Det tager fire timer at fylde en vandtank gennem en hane i toppen af beholderen. Vandtanken har en hane i bunden. Når den er åben, kan den fyldte beholder tømmes på fem timer. Hvor lang tid tager det at fylde tanken helt op med vand hvis både hanen i toppen og i bunden er åbne samtidig og en femtedel af beholderen er fyldt med vand når begge haner åbnes? NB: I skal vise hvordan I har beregnet det og forklare hvordan I har tænkt.

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens.

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens. Rapport Bjælken Indledning Vi arbejdede med opgaverne i grupper. En gruppe lavede en tabel, som de undersøgte og fandt en regel. De andre grupper havde studeret tegninger af bjælker med forskellige længder,

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul

Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul Nogle emner fra Deskriptiv Statistik 75 50 25 2011 Karsten Juul Indhold Hvad er deskriptiv statistik?... 1 UGRUPPEREDE OBSERVATIONER Hyppigheder... 1 Det samlede antal observationer... 1 Middeltallet...

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter Arealmomenter af. og. orden side Institut for Matematik, DTU: Gymnasieopgave Arealmomenter Teori: Se lærebøgerne i faget Statiske konstruktionsmodeller og EDB. Se også H&OL bind,., samt bind appendix.3,

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Invarianter. 1 Paritet. Indhold

Invarianter. 1 Paritet. Indhold Invarianter En invariant er en størrelse der ikke ændrer sig, selv om situationen ændrer sig. I nogle kombinatorikopgaver hvor man skal undersøge hvilke situationer der er mulige, er det ofte en god idé

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Ræsonnement og tankegang. DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC

Ræsonnement og tankegang. DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Ræsonnement og tankegang DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Mål og indhold for workshoppen Mål At I kan Indhold opstille og synliggøre læringsmål knyttet til ræsonnement og tankegang på

Læs mere

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene.

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene. Hop videre med Udforskning af opgaverne ne bygger videre på opgaver fra Kænguruen og lægger op til, at klassen sammen kan diskutere og udforske problemstillingerne. Opgavenumrene henviser til de opgaver,

Læs mere

Fraktaler. Vejledning. Et snefnug

Fraktaler. Vejledning. Et snefnug Fraktaler Vejledning Denne note kan benyttes i gymnasieundervisningen i matematik i 1g, eventuelt efter gennemgangen af emnet logaritmer. Min hensigt har været at give en lille introduktion til en anderledes

Læs mere

Kært barn har mange navne

Kært barn har mange navne Kært barn har mange navne 0: Hvilke af funktionsforskrifterne og teksterne herunder 1 y = x y = x y = x : x y = y = 0,5 x y = x y er det halve af x x er det halve af y y er det dobbelte af x 1: Hvilke

Læs mere

International matematikkonkurrence

International matematikkonkurrence Facit til demoopgaver for 6. og 7. klassetrin Navn og klasse 3 point pr. opgave Facit 1 Hvilken figur har netop halvdelen farvet? A B C D E 2 På min paraply fra Australien står der KANGAROO: Hvilket af

Læs mere

Matematisk jul - Naturligvis!

Matematisk jul - Naturligvis! Matematisk jul - Naturligvis! for 4.-6. klasse JULEKALENDER Opgave 1: Hvor længe kan lysene brænde? Hej! Har du hørt om mig? Det er mig som lægger alle ting i julekalenderen i hele Danmark. Jeg er søster

Læs mere

Troldmandens lærling

Troldmandens lærling Distriktsturnering 2014 Troldmandens lærling Troldmanden Sverre optager nye troldmandslærlinge hvert år. I år er I de udvalgte og I er hermed Troldmand Sverres nye lærlinge. Han glæder sig meget til at

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 2013 2. runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 2013 2. runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 2013 2. runde esvarelser som falder uden for de løsninger som ligger til grund for pointskemaerne, bedømmes ved analogi så skridt med tilsvarende

Læs mere

september 2012 Arbejde / Aktivitet: Differentiering/ Variationer: Supplerende akt.: Afslutning:

september 2012 Arbejde / Aktivitet: Differentiering/ Variationer: Supplerende akt.: Afslutning: G-2.57; Byg ens figurer. Faglige mål: Lektionsmål: Arbejdsform: Materialer: Ord, udtryk og symboler: Figurkendskab. Beliggenhed. At SPØRGE og SVARE i, med, om matematik. At omgås SPROG og REDSKABER i matematik.

Læs mere

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer.

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer. Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Matematisk opmærksomhed 1 Længdemål 1

Matematisk opmærksomhed 1 Længdemål 1 Matematisk opmærksomhed 1 Længdemål 1 At vurdere længder og afstande ud fra egen størrelse. At finde frem til en fælles længdeenhed At lære om metersystemet At kende længdemålet 1m At kende længdemålet

Læs mere

Der er felter, og på hvert af disse felter har tårnet træk langs linjen og træk langs rækken.

Der er felter, og på hvert af disse felter har tårnet træk langs linjen og træk langs rækken. SJOV MED SKAK OG TAL Af Rasmus Jørgensen Når man en sjælden gang kører træt i taktiske opgaver og åbningsvarianter, kan det være gavnligt at adsprede hjernen med noget andet, fx talsjov, og heldigvis byder

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

http://192.168.1.217/www.nelostuote.fi/tanska/discoveryregler.html

http://192.168.1.217/www.nelostuote.fi/tanska/discoveryregler.html 1 / 10 25.6.2008 9:03 2 / 10 25.6.2008 9:03 Indhold 2 kort (spilleplader), 2 plastikfolier (benyttes til at lægge over kortet), 1 tjekometer, 28 tjekometer kort, 18 udrustningskort, 210 terræn brikker,

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Lille Georgs julekalender 2010. 1. december

Lille Georgs julekalender 2010. 1. december 1. december I hver af de øverste bokse skal der skrives et af tallene 1, 2, 3,..., 9. Alle tre tal skal være forskellige. I de næste bokse skrives de tal der fremkommer ved at man lægger sammen som vist.

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Statistikkompendium. Statistik

Statistikkompendium. Statistik Statistik INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over

Læs mere

International matematikkonkurrence

International matematikkonkurrence Demoopgaver for 4. og 5. klassetrin 60 minutter Navn og klasse 3 point pr. opgave Hjælpemidler: papir og blyant 1 Astrid skal indsætte cifferet 3 i tallet 2014, så hun får et 5-cifret tal. Hvor skal hun

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

KÆNGURUEN 2015. International matematikkonkurrence. Del 1. 3 point pr. opgave. 2. Erik har 10 ens metalstænger.

KÆNGURUEN 2015. International matematikkonkurrence. Del 1. 3 point pr. opgave. 2. Erik har 10 ens metalstænger. 2015 60 minutter Navn og klasse Del 1 3 point pr. opgave 1. A 6 B 7 C 8 D 10 E 15 2. Erik har 10 ens metalstænger. Han skruer dem sammen to og to og får fem metalstænger. Hvilken stang er længst? A A B

Læs mere

Vejledning til Photofiltre nr. 108 Side 1. Lave visitkort i dankort størelse med eget foto

Vejledning til Photofiltre nr. 108 Side 1. Lave visitkort i dankort størelse med eget foto Side 1 I denne vejledning vises hvordan man kan lave visitkort, på samme måde som der blev lavet bordkort. Vi vil her som baggrund bruge et af vores egne foto. Opsætningen foregår i LibreOffice Draw og

Læs mere

5S-processen - Talspil

5S-processen - Talspil LEANREJSEN - Adobe full screen: Ctrl + L Brugerlicens DI ejer alle rettigheder til denne præsentation For filer i formatet Adobe giver DI en brugerlicens til alle danske virksomheder Brugerlicensen giver

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Invarianter. 1 Paritet. Indhold. Georg Mohr-Konkurrencen

Invarianter. 1 Paritet. Indhold. Georg Mohr-Konkurrencen Invarianter En invariant er en størrelse der ikke ændrer sig, selv om situationen ændrer sig. I nogle kombinatorikopgaver hvor man skal undersøge hvilke situationer der er mulige, er det ofte en god idé

Læs mere

Løsninger til KÆNGURUEN International matematikkonkurrence. Del 1 Løsninger 3 point pr. opgave. 2. Erik har 10 ens metalstænger.

Løsninger til KÆNGURUEN International matematikkonkurrence. Del 1 Løsninger 3 point pr. opgave. 2. Erik har 10 ens metalstænger. Løsninger til 2015 60 minutter Del 1 Løsninger 3 point pr. opgave 1. 2 3 15 A 6 B 7 C 8 D 10 E 15 2. Erik har 10 ens metalstænger. Han skruer dem sammen to og to og får fem metalstænger. Hvilken stang

Læs mere

Mundtlig prøve i Matematik

Mundtlig prøve i Matematik Mundtlig prøve i Matematik Tirsdag d. 9. september 2014 CFU Sjælland Mikael Scheby NTS-Center Øst Dagens indhold Prøvebekendtgørelse highlights Vekselvirkning mellem formalia, oplæg og arbejde med eksempler

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Usædvanlige opgaver Lærervejledning

Usædvanlige opgaver Lærervejledning Mette Hjelmborg Usædvanlige opgaver Lærervejledning Gyldendal Usædvanlige opgaver, lærervejledning af Mette Hjelmborg 008 Gyldendalske boghandel, Nordisk Forlag A/S, København Forlagsredaktion: Stine Kock,

Læs mere

Undervisningsoplæg med henblik på udvikling af ræsonnementskompetence i folkeskolens matematikundervisning

Undervisningsoplæg med henblik på udvikling af ræsonnementskompetence i folkeskolens matematikundervisning Undervisningsoplæg med henblik på udvikling af ræsonnementskompetence i folkeskolens matematikundervisning Fredericia 27-10-2010 Flemming Ejdrup Lars Lindhart Anette Skipper-Jørgensen Kompetence At besidde

Læs mere

Prisen på sort arbejde. Kristian Hedeager Bentsen

Prisen på sort arbejde. Kristian Hedeager Bentsen Prisen på sort arbejde Kristian Hedeager Bentsen arbejdspapir 45 juni 2016 Rockwool Fondens Forskningsenhed Arbejdspapir nr. 45 Prisen på sort arbejde Kristian Hedeager Bentsen København 2016 Prisen på

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

Problembehandling. Progression

Problembehandling. Progression Problembehandling Progression Problemløsning Problemløsning forudsætter at man står overfor et problem som man ikke har en færdig opskrift til at løse. Algoritme Når man har fundet frem til en metode eller

Læs mere

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1. Diskret matematik

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1. Diskret matematik Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1 Diskret matematik Disse noter er en introduktion til skuffeprincippet, grafteori, spilstrategier samt opgaver der kan løses ved farvelægning.

Læs mere

Mundtlig prøve i Matematik

Mundtlig prøve i Matematik Mundtlig prøve i Matematik Mandag d. 9. september 2013 CFU Sjælland Mikael Scheby Dagens indhold Velkomst, præsentation, formål med dagen Vekselvirkning mellem formalia, oplæg og arbejde med eksempler

Læs mere

Talrækker. Aktivitet Emne Klassetrin Side

Talrækker. Aktivitet Emne Klassetrin Side VisiRegn ideer 3 Talrækker Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Talrækker 2-4 Elevaktiviteter til Talrækker 3.1 Talrækker (1) M-Æ 5-9 3.2 Hanoi-spillet

Læs mere

Udforskningsopgaver. Hvor lang kan stangen højst blive, hvis den består af 4 metalstænger?

Udforskningsopgaver. Hvor lang kan stangen højst blive, hvis den består af 4 metalstænger? r 2015 Videre arbejde med opgaverne Udforskning af opgaverne Disse opgaver bygger videre på udvalgte opgaver fra Kænguruen og lægger op til, at klassen sammen kan diskutere og udforske opgaverne. Opgavenumrene

Læs mere

Find flere opgaver i. Sådan laver man en Japansk billedkryds:

Find flere opgaver i. Sådan laver man en Japansk billedkryds: 2 3 2 6 3 1 2 1 1 2 5 2 2 3 2 1 1 3 1 2 1 2 6 1 5 3 5 3 5 3 5 2 2 1 3 2 2 2 1 5 5 1 1 2 1 1 6 1 3 3 2 5 2 16 1 1 11 1 6 5 1 1 5 15 2 13 1 13 6 Sådan laver man en Japansk billedkryds: 6 3 6 2 1 1 2 I en

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Invarianter. 1 Paritet. Indhold

Invarianter. 1 Paritet. Indhold Invarianter En invariant er en størrelse der ikke ændrer sig, selv om situationen ændrer sig. I nogle kombinatorikopgaver hvor man skal undersøge hvilke situationer der er mulige, er det ofte en god idé

Læs mere

Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul

Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul Deskriptiv statistik for C-niveau i hf 75 50 25 2015 Karsten Juul DESKRIPTIV STATISTIK 1.1 Hvad er deskriptiv statistik?...1 1.2 Hvad er grupperede og ugrupperede data?...1 1.21 Eksempel pä ugrupperede

Læs mere

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster?

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Oplæg I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Hvordan ser I mulighederne i at stimulere elevernes tænkning og udvikle deres arbejdsmåde, når de

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

T A L K U N N E N. Datasæt i samspil. Krydstabeller Grafer Mærketal. INFA Matematik - 1999. Allan C

T A L K U N N E N. Datasæt i samspil. Krydstabeller Grafer Mærketal. INFA Matematik - 1999. Allan C T A L K U N N E N 3 Allan C Allan C.. Malmberg Datasæt i samspil Krydstabeller Grafer Mærketal INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et

Læs mere

Matematisk jul - Naturligvis!

Matematisk jul - Naturligvis! Matematisk jul - Naturligvis! for mellemtrin Opgaverne henter inspiration i materialet Matematik Naturligvis, som kobler matematik til aktiv læring. Sådan bruger du julekalenderen Materialet indeholder

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Matematisk opmærksomhed

Matematisk opmærksomhed Tælle og systematisere tal. Tælle i trin på 5 og 10 Kender i nogle tal? Hvor mange forskellige tal kender I? (forskellen på tal og grundtal) Hvad kan I tælle til? Kender I nogle store tal? Kan I tælle

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

ALKOHOL Undervisningsmateriale til mellemtrinnet

ALKOHOL Undervisningsmateriale til mellemtrinnet ALKOHOL Undervisningsmateriale til mellemtrinnet Flere af øvelserne knytter sig til tegnefilmen om alkohol. Vi anbefaler derfor, at klassen sammen ser tegnefilmen og supplerer med de interviewfilm, som

Læs mere

1 byggeplads denne viser 4 felter med plads til bygningsbrikker. Hvert felt hører til en bestemt type valuta.

1 byggeplads denne viser 4 felter med plads til bygningsbrikker. Hvert felt hører til en bestemt type valuta. Alhambra Et spil af Dirk Henn for 2-6 spillere. De bedste bygmestre fra Europa og den arabiske verden vil bevise deres kunstfærdige arkitektur. Du har fået stillet deres bygningsarbejdere til rådighed

Læs mere

Dansk Datalogi Dyst 2015 DDD Runde 2

Dansk Datalogi Dyst 2015 DDD Runde 2 . 19. februar, 2015 linetest DK v1.0 Line Test Sigurd er begyndt i gymnasiet og har lært om linjer på formen f(x) = ax + b. Han har prøvet at tegne nogle linjer på papir for at finde ud af hvilke koordinater

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Introduktion til Calc Open Office med øvelser

Introduktion til Calc Open Office med øvelser Side 1 af 8 Introduktion til Calc Open Office med øvelser Introduktion til Calc Open Office... 2 Indtastning i celler... 2 Formler... 3 Decimaler... 4 Skrifttype... 5 Skrifteffekter... 6 Justering... 6

Læs mere

Errata pr. 1. sept Rettelser til Ypsilon 1. udgave, 1. oplag

Errata pr. 1. sept Rettelser til Ypsilon 1. udgave, 1. oplag Errata pr. 1. sept. 2009 Rettelser til Ypsilon 1. udgave, 1. oplag Rettelserne herunder er foretaget i 2. oplag af bogen. Desuden forekommer der mindre rettelser i 2. oplag, som ikke er medtaget her, da

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

fsa 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem Matematisk problemløsning Folkeskolens Afgangsprøve December 2011

fsa 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem Matematisk problemløsning Folkeskolens Afgangsprøve December 2011 fsa Folkeskolens Afgangsprøve Matematisk problemløsning December 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem 1 På tryk tryk

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

FORMLER OG FUNKTIONER I EXCEL

FORMLER OG FUNKTIONER I EXCEL 1 FORMLER OG FUNKTIONER I EXCEL 1. Indtast flg. data i et regneark: Note: de små grønne markeringer i hjørnet af cellerne i kolonne B betyder, at tallet er formateret som tekst. 2 HVIS Afstand i km fra

Læs mere

Diagrammer visualiser dine tal

Diagrammer visualiser dine tal Diagrammer visualiser dine tal Indledning På de efterfølgende sider vil du blive præsenteret for effektive måder til at indtaste data på i Excel. Vejledningen herunder er vist i Excel 2007 versionen, og

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Ræsonnement og tankegang. DLF-Kursus Ringsted 17.-18.9 2015 Eva Rønn UCC

Ræsonnement og tankegang. DLF-Kursus Ringsted 17.-18.9 2015 Eva Rønn UCC Ræsonnement og tankegang DLF-Kursus Ringsted 17.-18.9 2015 Eva Rønn UCC Vivianis sætning - optakt Vicenzo Viviani (1622-1703) var en italiensk matematiker. Han var elev af Galilei. Denne opgave handler

Læs mere

Ligningsløsning som det at løse gåder

Ligningsløsning som det at løse gåder Ligningsløsning som det at løse gåder Nedenstående er et skærmklip fra en TI-Nspirefil. Vi ser at tre kræmmerhuse og fem bolsjer balancerer med to kræmmerhuse og 10 bolsjer. Spørgsmålet er hvor mange bolsjer,

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Løsninger til kapitel 1

Løsninger til kapitel 1 Opgave. a) observation hyppighed frekvens kum. frekvens 2,25,25 3,875,325 2 3,875,5 3 3,875,6875 4,625,75 5,625,825 6,,825 7 2,25,9375 8,,9375 9,625, Frekvenser illustreres i et pindediagram,2,8,6,4,2,,8,6,4,2

Læs mere

Afgrænsning/filtrering, sortering m.v. i Klienten

Afgrænsning/filtrering, sortering m.v. i Klienten Afgrænsning/filtrering, sortering m.v. i Klienten Afgrænsning/filtrering I det efterfølgende gennemgås de tre standard afgrænsnings-/filtrerings metoder i Prisme Klient: Avanceret filter Er den overordnede

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

Lektion 9 Statistik enkeltobservationer

Lektion 9 Statistik enkeltobservationer Lektion 9 Statistik enkeltobservationer Middelværdi med mere Hyppigheds- og frekvens-tabeller Diagrammer Hvilket diagram er bedst? Boxplot Lektion 9 Side 1 Når man skal holde styr på mange oplysninger,

Læs mere

fsa 1 9.A sælger kaffe 2 9.A bygger en skaterrampe 3 9.A planlægger en turnering 4 9.A sælger kalendere 5 Regneopskrifter 6 Romber

fsa 1 9.A sælger kaffe 2 9.A bygger en skaterrampe 3 9.A planlægger en turnering 4 9.A sælger kalendere 5 Regneopskrifter 6 Romber fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2014 Et bilag er vedlagt til dette opgavesæt 1 9.A sælger kaffe 2 9.A bygger en skaterrampe 3 9.A planlægger en turnering 4 9.A sælger kalendere

Læs mere

Pangea Regler & Instruktioner

Pangea Regler & Instruktioner 1.runde 2016 8. Klasse Pangea Regler & Instruktioner Svarark Fornavn, efternavn og klasse skal udfyldes med blokbogstaver. Du må bruge en kuglepen/blyant til at løse opgaverne (Vi råder deltagerne til

Læs mere

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm KOM-rapporten Prøvevejledning Fælles Mål http://pub.uvm.dk/2002/kom/hel.pdf http://qa.uvm.dk/uddannelser-og-dagtilbud/folkeskolen/afsluttendeproever/om-afsluttende-proever/proevevejledninger

Læs mere

Profilmodel 2012 Højeste fuldførte uddannelse

Profilmodel 2012 Højeste fuldførte uddannelse Profilmodel 12 Højeste fuldførte uddannelse En fremskrivning af en ungdomsårgangs højeste fuldførte uddannelse Profilmodel 12 er en fremskrivning af, hvordan en ungdomsårgang vil uddanne sig i løbet af

Læs mere

Sætte et nyhedsbrev eller julebrev op i Draw Hvor du også bruger Photofiltre 7 side 1

Sætte et nyhedsbrev eller julebrev op i Draw Hvor du også bruger Photofiltre 7 side 1 side 1 Denne vejledning skal vise hvordan man kan lave et julebrev - det kan også være et nyhedsbrev. Fremgangsmåden er den samme Opsætningen foregår i LibreOffice Draw Men hvor man også bruger Photofiltre

Læs mere

Introduktion til EXCEL med øvelser

Introduktion til EXCEL med øvelser Side 1 af 10 Introduktion til EXCEL med øvelser Du kender en almindelig regnemaskine, som kan være til stort hjælp, når man skal beregne resultater med store tal. Et regneark er en anden form for regnemaskine,

Læs mere

Arbejdsplan generel Tema 4: Statistik

Arbejdsplan generel Tema 4: Statistik Arbejdsplan generel Tema 4: Statistik Formål: Eleverne skal få kendskab til og kunne forklare forskellige begreber inden for det statistiske emne. Der bliver alene arbejdet med enkelobservationer. Grupperede

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 08/09 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Sanne Schyum

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

Statistik - supplerende eksempler

Statistik - supplerende eksempler - supplerende eksempler Grupperede observationer: Middelværdi og summeret frekv... 82b Indekstal... 82c Median, kvartil, boksplot... 82e Sumkurver... 82h Side 82a Grupperede observationer: Middelværdi

Læs mere

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Allan C. Malmberg. Terningkast

Allan C. Malmberg. Terningkast Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig

Læs mere