MATEMATIK I HASLEBAKKER 14 OPGAVER

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "MATEMATIK I HASLEBAKKER 14 OPGAVER"

Transkript

1 MATEMATIK I HASLEBAKKER 14 OPGAVER

2 Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse, samvær, men også målrettet læring, der kan give oplevelser med større perspektiv. Matematik er i vore dage ikke blot nogle indviklede opgaver og tekster, som man kan blive hørt i. Matematik i anvendelse er et af de fire centrale kundskabs- og færdighedsområder, som eleverne skal arbejde med. En matematikundervisning uden for klasseværelset giver optimale muligheder for, at eleverne får øjnene op for, at matematik bruges overalt i samfundet. De 14 matematikopgaver i Hasle Bakker inddrager ikke alle dele af matematikkens pensum, men de giver eleverne mulighed for at arbejde konkret med matematikken. Arbejdet i bakkerne styrker elevernes matematiske kompetencer, eksempelvis problembehandlings-, modellerings-, ræsonnements-, repræsentations- og kommunikationskompetencen. Det faglige indhold i opgaverne er naturligt centreret om geometrien. Skitseteg-ninger, opmålinger og rentegninger indgår i alle opgaver. Herfra går eleverne så videre til de geometriske beregninger: arealer og omkredse, længder beregnet ved hjælp af den pythagoræiske læresætning samt målestoksforhold. Men også lineære funktioner og trigonometriske funktioner optræder i opgaverne. Arbejdet foregår i 3 faser: 1. Gennem øvelser og samtaler i klassen bliver eleverne fortrolige med den matematik, de får brug for til løsning af de enkelte opgaver. 2. Ude i Hasle Bakker foretager eleverne de nødvendige iagttagelser og opmålinger, tegner skitser til senere brug og noterer vigtige detaljer, som de vil have med i slutfasen. 3. Efterbehandlingen hjemme i klassen består i, at eleverne skriver en rapport, som indeholder de færdige tegninger og resultater af beregnigerne. Desuden skal der være begrundelser for beregningerne og meget gerne personlige kommentarer til opgaven. Rapporten danner baggrund for en mundtlig fremlæggelse i klassen eller eventuelt på et forældremøde. De 14 opgaver varierer i sværhedsgrad og kan frit kombineres, så de passer til den enkelte gruppe. Ved starten indscannes opgavekoderne på mobiltelefonen, hvorefter den indbyggede GPS fører eleverne rundt i området til de enkelte opgaver. Hver gruppe udstyres med en taske med de nødvendige måleredskaber.

3 Opgave 1 (samme som opgave 14, men anden placering) Hvor høj er bakkekammen ved parkeringspladsen? Hjælpemidler: En teodolit, et meterhjul, et langt målebånd. Mål afstanden AB ved hjælp af meterhjulet. Brug teodolitten til at måle vinklen ECD. Punktet D skal vises tydeligt af den- per son, der står på toppen af bakken (B), så det passer til teodolittens højde. Tegn en skitse af bakken. Skriv målene, I har fundet, på skitsen. Hjemme skal I tegne en profil af bakken i et passende målestoksforhold. Find bakkens højde BF ved at måle på tegningen. Bakkens højde kan også beregnes på denne måde: Mål vinkel ECD og længden af AB Beregn BF, som er udtryk for bakkens højde, idet Sin(ECD) = BF/AB

4 Opgave 2 Hvor høj er højspændingsmasten? Hjælpemidler: En teodolit, et meterhjul. I skal måle mastens højde ved hjælp af teodolitten. Markér et punkt (A) på stien, 50 meter fra masten. Brug meterhjul eller målebånd og mål fra mastens centrum, dvs. fra midtpunktet mellem mastens ben. Mål så vidt muligt i lige linie fra masten til A. Når I måler, skal I have bakken på jeres højre side. Stil teodolitten i A Mål højden AD, dvs. teodolittens højde Mål vinklen EDC Hjemme skal I tegne hele figuren i et passende målestoksforhold. Hvor høj er masten? Mastens højde kan også beregnes ved hjælp af en lommeregner med tangensfunktion. Find på lommeregneren tangens til vinklen. Dette tal er det samme som forholdet mellem CE og DE. I kender DE, som jo er lig med AB. Hvor høj er masten?

5 Opgave 3 Affaldsbeholdere på vej mod toppen af Bakkekammen Hjælpemidler: Et målebånd eller en tommestok Rundt i området er der mulighed for et hvil på nogle cylinderformede betonblokke. Men: Som det fremgår af billedet, mangler der mulighed for at man kan komme af med sit affald. Det er nu jeres opgave at komme med forslag til design af to slags affaldsbeholdere. Den ene skal være til almindeligt affald, den anden til hundenes efterladenskaber. Begge beholdere skal passe ind i miljøet. De skal designes sådan, at det er nemt at tømme dem. Sæt jer på betonblokkene og diskutér forskellige ideer til, hvordan affaldsbeholderne kan komme til at se ud. Tegn nogle skitser med mål på. Hjemme skal I udarbejde en arbejdstegning og en model, som skal vise beholderne sådan, at en fabrikant kan gå i gang med at producere dem.

6 Opgave 4 (samme som opgave 15) Perspektivtegning Tag på forskellige steder i området nogle billeder, som egner sig til perspektivtegning. Hjemme på skolen kopierer I billederne i ca. A4-størrelse. Derefter tegner I perspektivlinjer ind på billederne, angiver horisontlinje og forsvindingspunkt(er). Med fotokopierne af billederne som arbejdsgrundlag skal I nu selv tegne motivet.

7 Opgave 5 Hvor stor er søen mellem Bakkekammen og Spiralen? Hjælpemidler: En teodolit, et meterhjul og mindst 2 kegler Søen skal opmåles, så I kan beregne størrelsen tilbage på skolen. Del 1: Søens bredde Søens bredde (HC) findes ved hjælp af trekant ABC. Begynd med at tegne en skitse af trekanten. De mål, I kommer frem til undervejs, markeres på skitsen. Punkterne A og B markeres med kegler, som placeres på stien med 50 meters afstand. A og B vælges, så de ligger nogenlunde som på billedet (se under Intro ). Vælg selv et synligt punkt (C) på søens modsatte bred. Sæt nu teodolitten i punktet A og sigt mod C. Mål vinklen CAB. Sæt herefter teodolitten i punktet B. Sigt nu mod A og mål vinklen CBA. Del 2: Søens længde Søens længde (FG) findes ved hjælp af firkant DEFG. Tegn en skitse af firkanten. Opmål en 80 meter lang linje (DE) på stien op ad Spiralen. Punkterne D og E markeres med kegler. Punkterne G og F udgør søens ender. Vælg her noget synligt at sigte efter. Brug nu teodolitten til at måle vinklerne GDF, GDE, DEF og GED. Hjemme på skolen skal I tegne de to geometriske figurer i et passende målestoksforhold. Find ved hjælp af tegningerne længden FG i firkanten og højden CH i trekanten. Begrund ved hjælp af tegningerne og målene, at søens areal er ca. én ha

8 Opgave 6 Spiralen Hjælpemidler.: Meterhjul og stopur Gå op ad den ene sti og ned ad den anden. Hvor lang er turen? Hvor lang tid tog det at komme op på toppen af bakken? Hvor lang tid tog det at gå ned? Beregn de to hastigheder i km/time. Her kan turen begynde

9 Opgave 7 To højspændingsmaster, set fra Plateauet Hjælpemidler: En teodolit, et langt målebånd eller meterhjul, 2 kegler I skal finde afstanden mellem to af de højspændingsmaster, I kan se fra Plateauet. Plateauet er den flade bakke, I befinder jer på. På stien, der vender ud mod masterne, placeres to kegler med 50 meters afstand. Keglerne markerer liniestykket AB. Det er ikke så afgørende præcis hvor på stien, keglerne står. Der skal blot være 50 m mellem dem. Masten bag den blågrønne bygning ( til højre for vandtårnet) kaldes C. Masten tættest på jer, neden for den store bakke, kaldes D. Sæt teodolitten i A. Mål vinklerne DAB og CAB. Sæt teodolitten i B og mål vinklerne CBA og DBA. Notér målene på en skitse. Hjemme skal I tegne figuren i et passende målestoksforhold. Bestem følgende afstande ved hjælp af tegningen: AD, BC og CD.

10 Opgave 8 Regulære geometriske figurer (1) Hjælpemiddel: Et målebånd Ved krydset mellem cykelstien og grusstien står denne betonklods. Mål cirklens diameter og kvadratets side. Skriv målene ind på en skitse. Hjemme på skolen skal I tegne cirklen og kvadratet i et passende målestoksforhold. Beregn arealet af cirklen og kvadratet. Angiv arealforholdet mellem kvadratet og cirklen.

11 Opgave 9 Den cirkelformede plads Hjælpemidler: et meterhjul, et langt målebånd Mål cirklens omkreds og diameter. Hvor mange brosten er der lagt ned i kanten af cirklen? Hjemme skal I beregne cirklens areal, både ved hjælp af jeres mål for om-kredsen og ved hjælp af cirklens diameter. Hvorfor kommer I frem til forskellige resultater? Hvordan fandt I frem til antallet af sten i kanten af cirklen? Det er nu jeres opgave at foreslå en udnyttelse eller forskønnelse af pladsen. Det kunne være et solur midt på pladsen. Det kunne være et springvand midt på pladsen. Det kunne være en eller flere geometriske skulpturer på pladsen. Det kunne også være noget helt andet, som I foreslår. Jeres forslag skal vises på en geometrisk tegning i et passende målestoksforhold og på en model. Det skal ledsages af matematiske forklaringer

12 Opgave 10 En siddeplads Hjælpemidler: Et målebånd, tavlekridt, tommestok, tegnetrekant. Tegn en skitse af klodsen. Afsæt på skitsen målene for cylinderens højde og diameter. Prøv at finde cirklens centrum ved hjælp af to korder. Hjemme skal I beregne rumfanget og vægten af den del af klodsen, som er over jorden. Betons massefylde kan sættes til 2,3. Desuden skal I på en tegning vise, hvordan I fandt cirklens centrum. Sæt mål på tegningen.

13 Opgave 11 Trapperne ved Edwin Rahrsvej Hjælpemidler: Et målebånd grund stigning Begynd med at gå nogle ture op og ned ad trappen. Tænk på, hvad forholdet mellem stigning og grund betyder for, om trappen er bekvem at gå på. Giv den karakter efter, hvor bekvem den er at gå på. Brug denne skala: 4: meget bekvem 3: bekvem 2: nogenlunde bekvem 1: ubekvem Mål trappens stigning og grund. Notér antallet af trappetrin. Hjemme på skolen skal I tegne et tværsnit af mindst 5 trin af trappen i et passende målestoks-forhold. Husk at vise målene på stigning og grund. Husk også at anføre, om trappen er bekvem at gå på ud fra karakterskalaen. Derefter skal I bruge matematikken til at undersøge, om trappen er anlagt sådan, at den er bekvem at gå på. Der findes nemlig en formel for den bekvemme trappe: 2s + g = 63, hvor s er trappetrinnets stigning og g er dybden af et trappetrin, kaldet trappens grund. Alle mål er i cm. De 63 cm svarer til et gammelt mål, en alen. En alen = 2 fod = 24 tommer, og en tomme er ca. = 2,6 cm. Sæt jeres mål for trappens stigning og grund ind i formlen. Hvor godt passer denne trappes mål ind i formlen? Hvordan svarer beregningerne til den karakter, I gav trappen ude på stedet? Hvor høj er bakken på det sted, hvor trappen er anlagt?

14 Opgave 12 Skulpturen på hjørnet af Lenesvej og Edwin Rahrsvej Hjælpemidler: Målebånd, en stor vinkelmåler Tegn en skitse af skulpturen set fra siden (som på billedet ovenfor). Tag de nødvendige mål: AB, AD og vinkel EDC. Hvilken geometrisk figur er ABCD? Mål også længder og vinkler på en af skulpturens blokke. Skriv alle mål ind på skitsen. Læg mærke til de figurer, der ses på blokkene. Tegn en skitse af cirklen. Tegn de fire ødelagte lampesteder ind på skitsen. Tag de nødvendige mål, så I kan finde cirklens omkreds og areal samt placeringen af lampestederne. Hvor mange brosten ligger der i cirklens periferi (kanten af cirklen)? Hvor mange sten ligger der inde i cirklen? Beskriv jeres optællingsmetode.. Hjemme skal I tegne skulpturen set frontalt i et passende målestoksforhold. Beregn hvor høj skulpturen vil blive, hvis man forlænger den med endnu en betonklods ved C? Beskriv de figurer, der ses på betonklodserne

15 Opgave 13 En shelter Hjælpemidler: et målebånd, en vinkelmåler Tegn en skitse af shelterens gavl. Skriv de nødvendige mål på skitsen, både længdemål og vinkelmål. Mål også GH samt længden af taget, FG. Punktet F er ikke på tegningen, så det skal I selv finde. Hjemme skal I tegne shelterens gavl i et passende målestoksforhold. Beregn også arealet af tagfladen.

16 Opgave 14 (samme som opgave 1, men anden placering) Hvor høj er bakkekammen? Hjælpemidler: En teodolit, et meterhjul, et langt målebånd. Mål afstanden AB ved hjælp af meterhjulet. Brug teodolitten til at måle vinklen ECD. Punktet D skal vises tydeligt af den- per son, der står på toppen af bakken (B), så det passer til teodolittens højde. Tegn en skitse af bakken. Skriv målene, I har fundet, på skitsen. Hjemme skal I tegne en profil af bakken i et passende målestoksforhold. Find bakkens højde BF ved at måle på tegningen. Bakkens højde kan også beregnes på denne måde: Mål vinkel ECD og længden af AB Beregn BF, som er udtryk for bakkens højde, idet Sin(ECD) = BF/AB

17 Opgave 15 (samme som opgave 4, men anden placering) Perspektivtegning Tag på forskellige steder i området nogle billeder, som egner sig til perspektivtegning. Hjemme på skolen kopierer I billederne i ca. A4-størrelse. Derefter tegner I perspektivlinjer ind på billederne, angiver horisontlinje og forsvindingspunkt(er). Med fotokopierne af billederne som arbejdsgrundlag skal I nu selv tegne motivet.

18 Opgave 16 Regulære geometriske figurer (2) Hjælpemiddel: Et målebånd Ved den cirkelformede plads står denne betonklods, som er forsynet med 6 skruer. Skruerne danner en regulær geometrisk figur. Mål cirklens diameter og afstanden mellem skruerne. Skriv målene ind på en skitse. Hjemme på skolen skal I tegne cirklen og figu-ren i et passende målestoksforhold. Beregn arealet af cirklen og den regulære figur. Angiv arealforholdet mellem den regulære figur og cirklen

MATEMATIK I HASLEBAKKER 13 OPGAVER

MATEMATIK I HASLEBAKKER 13 OPGAVER MATEMATIK I HASLEBAKKER 13 OPGAVER Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse,

Læs mere

MATEMATIK I HASLEBAKKER 14 OPGAVER

MATEMATIK I HASLEBAKKER 14 OPGAVER MATEMATIK I HASLEBAKKER 14 OPGAVER Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse,

Læs mere

MATEMATIK I KÆREHAVE SKOV

MATEMATIK I KÆREHAVE SKOV MATEMATIK I KÆREHAVE SKOV Matematik for øvede, 7.-9. klassetrin, 12 opgaver Lærervejledning Matematik for øvede Primær målgruppe elever i 7.-9. klasse 12 opgaver i Kærehave Skov Forløbet er tilrettelagt

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse

Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse Lærervejledning Matematik i Hasle Bakker 4.-6. klasse Lærervejledning I Matematik for 4.-6. klasse sendes eleverne gruppevis ud i for at løse matematikopgaver med direkte afsæt i både natur og menneskeskabte

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Tegn med GPS 1 - Vejledning

Tegn med GPS 1 - Vejledning Tegn med GPS 1 - Vejledning Lærerforberedelse: Det er altid en god ide at afprøve opgaven selv, inden eleverne sættes i gang. Inden forløbet skal læreren have materialerne til posten klar og klargøre GPS

Læs mere

F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade

F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade F-dag om geometri Fremstilling og beskrivelse af stiliserede blade I foråret fejrede Canada at landet havde eksisteret som nation i 150 år. I den anledning blev der fremstillet et logo, der tog afsæt i

Læs mere

En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden.

En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden. En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden. Når man tegner perspektivtegninger, er der forskellige finter til at lave de rigtige størrelsesforhold. Nedenfor

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Vejledende årsplan for matematik 5.v 2009/10

Vejledende årsplan for matematik 5.v 2009/10 Vejledende årsplan for matematik 5.v 2009/10 Uge Emne Formål Opgaver samt arbejdsområder 33-36 Geometri 1 Indlæring af geometriske navne Figurer har bestemte egenskaber Lære at måle vinkler med vinkelmåler

Læs mere

LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin

LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin LÆRERVEJLEDNING Matematik -6. klase Hasle bakker 4.-6.klassetrin Lærervejledningen Forord: Hasle bakker forløbet er et nyskabende undervisningsmateriale hvor teknologien, i form af mobiltelefonen og dens

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Sæt 05 Geometri 01 Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Rettes: Karakter: Rettes ikke: Set og godkendt: Samlet elevtid: 165 min. = 2,75 time

Læs mere

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema Webinar - Matematik 1. Fælles Mål 2014 2. Relationsmodellen og et forløbsplanlægningsskema 3. Et eksempel på et forløb om areal og omkreds på mellemtrinnet 4. Relationsmodellen som refleksionsmodel Alle

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Faglige delmål og slutmål i faget Matematik. Trin 1

Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,

Læs mere

16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it

16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it 16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it Tanker bag opgaverne Det er min erfaring, at elever umiddelbart vælger at bruge det implicitte funktionsbegreb,

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

Øvelser i Begynderklassen.

Øvelser i Begynderklassen. Øvelser i Begynderklassen. 1 Her starter banen! Tidtagningen begynder, når dommeren kommanderer "Fremad". 2 Banen er slut - Tidtagningen stoppes 3* Højre sving. 90 skarp drejning til højre. Som ved normal

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

Årsplan/aktivitetsplan for matematik i 6.c 2012-2013

Årsplan/aktivitetsplan for matematik i 6.c 2012-2013 Årsplan/aktivitetsplan for matematik i 6.c 2012-2013 Undervisere: Marianne Kvist (MKV) & Asger Poulsen (APO) Omfang: mandag kl. 10 00 11 20, onsdag kl. 10 00 11 20 4 lektioner pr. uge Matematikken i 6.c

Læs mere

Natur/teknologi i 6 klasse affald og affaldshåndtering, rumfang, målestok og matematik

Natur/teknologi i 6 klasse affald og affaldshåndtering, rumfang, målestok og matematik Natur/teknologi i 6 klasse affald og affaldshåndtering, rumfang, målestok og matematik Dette er en beskrivelse af et samspil mellem fagene Natur/Teknologi og matematik i to 6. klasser på Tingkærskolen

Læs mere

Rally Lydighed Øvelsesvejledning

Rally Lydighed Øvelsesvejledning Det primære i øvelserne er markeret med fed og kursiv. Begynderklassen 1 Her starter banen! Hunden behøver ikke at sidde inden start, men skal være i pladspositionen. Tidtagningen starter på dommerens

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 2 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 2 ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Det tilstræbte matematikindhold og teknologi spiller det sammen?

Det tilstræbte matematikindhold og teknologi spiller det sammen? 75 K O M M E N TA R E R Det tilstræbte matematikindhold og teknologi spiller det sammen? Henrik Bang Center for Computerbaseret Matematikundervisning, CMU Claus Larsen Center for Computerbaseret Matematikundervisning,

Læs mere

Årsplan for matematik i 1. klasse 2010-11

Årsplan for matematik i 1. klasse 2010-11 Årsplan for matematik i 1. klasse 2010-11 Vanløse den 6. juli 2010 af Musa Kronholt Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden

Læs mere

Matematik Naturligvis. Matematikundervisning der udfordrer alle.

Matematik Naturligvis. Matematikundervisning der udfordrer alle. Matematikundervisning der udfordrer alle. Læring i bevægelse Matematikkompetencerne i spil Læringsstile Dialog og samarbejde i uderummet Matematik Naturligvis Hvorfor lære matematik i det fri? Ved at arbejde

Læs mere

Matematik Delmål og slutmål

Matematik Delmål og slutmål Matematik Delmål og slutmål Ferritslev friskole 2006 SLUTMÅL efter 9. Klasse: Regning med de rationale tal, såvel som de reelle tal skal beherskes. Der skal kunne benyttes og beherskes formler i forbindelse

Læs mere

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2

GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2 GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2013/2014 6. ÅRGANG: MATEMATIK FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering. Fag: Matematik Hold: 27 Lærer: Jesper Svejstrup Pedersen Undervisnings-mål 9 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 32-37 i arbejdet med geometri at benytte

Læs mere

INFA-Småtryk 1996-1. Allan C. Malmberg. Matematisk kunnen gennem brug af edb

INFA-Småtryk 1996-1. Allan C. Malmberg. Matematisk kunnen gennem brug af edb INFA-Småtryk 1996-1 Allan C. Malmberg Matematisk kunnen gennem brug af edb INFA Matematik - 1996 1 INFA-Småtryk 1996-1 Allan C. Malmberg Matematisk kunnen gennem brug af edb Indholdsfortegnelse Matematisk

Læs mere

Af jord er vi kommet

Af jord er vi kommet Evaluering af Matematik for 5 og 6 kl.: Af jord er vi kommet Heden, Samsø, Ulla Fredsøe Undervisningsplan Emne: Af jord er vi kommet Fag: Matematik 6. kl. Forløbsperiode: August September 2013 Begrundelse

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

Matematik i 5. klasse

Matematik i 5. klasse Matematik i 5. klasse Igen i år benytter vi os af Faktor i femte. Systemet indeholder en grundbog, hvortil der er supplerende materiale i form af kopiark, som er tilpasset de gennemgåede emner. Grundbogen

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven med hjælpemidler består af opgave 7-14 med i alt 19 spørgsmål.

Læs mere

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Matematik på Humlebæk lille Skole

Matematik på Humlebæk lille Skole Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder

Læs mere

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10. Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.

Læs mere

Ligedannede trekanter

Ligedannede trekanter Ib Michelsen: Matematik C, Geometri, 1. kapitel 2011 Version 7.1 22-08-11 Rettet: tempel.png inkorporeret / minioverskrift rettet D:\Appserv260\www\2011\ligedannedeTrekanter2.odt Arven fra Grækenland Arven

Læs mere

Netopgaver. Kapitel 4 At tilpasse kurver til punkter

Netopgaver. Kapitel 4 At tilpasse kurver til punkter 1 Netopgaver Nogle af Omegas opgaver og et enkelt bevis er lagt her på nettet. Idéen til dette opstod, da vi kunne se, at sidetallet i Omega skulle holdes nede for at give en bekvem og håndterbar bog.

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) August 2015- juni 2017 ( 1 og 2. År) Rybners HTX Matematik B

Læs mere

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

Årsplan for matematik 2.b (HSØ)

Årsplan for matematik 2.b (HSØ) Årsplan for matematik 2.b (HSØ) Bøger, supplerende materiale og andet relevant I undervisningen bruger vi Kolorit. Der suppleres med kopiark fra den tilhørende kopimappe + andre kopiark, som passer til

Læs mere

Matematik C Højere forberedelseseksamen

Matematik C Højere forberedelseseksamen Matematik C Højere forberedelseseksamen Hæfte: August 2014 Kl. 9.00-12.00 Copyright Anders og Mark Kommentar til opgaven: Lilla farve - angiver formlen. Rød farve - angiver ophævelsen af en ligning. Matematik

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2009 Institution Herningsholm Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B og A (1.år)

Læs mere

Kvadrant - instrumentbeskrivelse og virkemåde

Kvadrant - instrumentbeskrivelse og virkemåde Kvadrant instrumentbeskrivelse og virkemåde Kvadrant - instrumentbeskrivelse og virkemåde Kvadranterne i instrumentpakken fra geomat.dk er kopier af et instrument lavet af Georg Hartman i 1547. Originalen

Læs mere

MATEMATIK I KÆREHAVE SKOV. Matematik for mellemtrin, 4.-6. klasse, 12 opgaver. Lærervejledning

MATEMATIK I KÆREHAVE SKOV. Matematik for mellemtrin, 4.-6. klasse, 12 opgaver. Lærervejledning MATEMATIK I KÆREHAVE SKOV Matematik for mellemtrin, 4.-6. klasse, 12 opgaver Lærervejledning Matematik for mellemtrin Primær målgruppe elever i 4.-6. klasse 12 opgaver i Kærehave Skov Forløbet er tilrettelagt

Læs mere

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK) Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog

Læs mere

Teknisk. Matematik FACITLISTE. Preben Madsen. 4. udgave

Teknisk. Matematik FACITLISTE. Preben Madsen. 4. udgave Teknisk Preben Madsen Matematik 4. udgave FACITLISTE Indhold TAL OG ALGEBRA... LIGNINGER OG ULIGHEDER... GEOMETRI... 4 TRIGONOMETRI... 5 CIRKLEN... 5 6 OVERFLADER UDFOLDNINGER... 5 7 RUMFANG... 8 8 ANALYTISK

Læs mere

Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?.

Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?. Hvor høj er skolens flagstang? Undersøgelsesbaseret matematik 8.a på Ankermedets Skole i Skagen Marts 2012 Klassen deltog for anden gang i Fibonacci Projektet, og der var afsat ca. 8 lektioner, fordelt

Læs mere

MATEMATIK I KÆREHAVE SKOV. Matematik for indskoling 1.-3. klassetrin, 10 opgaver. Lærervejledning

MATEMATIK I KÆREHAVE SKOV. Matematik for indskoling 1.-3. klassetrin, 10 opgaver. Lærervejledning MATEMATIK I KÆREHAVE SKOV Matematik for indskoling 1.-3. klassetrin, 10 opgaver Lærervejledning Matematik for indskoling Primær målgruppe elever i 1.-3. klasse 10 opgaver i Kærehave Skov Med udgangspunkt

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer

REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer LÆRERVEJLEDNING REELLE TAL Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Danskerne og ketchup Medieforbrug Decimaltal, brøker og procent og 2 Procentregning

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB GUX Matematik B-Niveau Fredag den 29. maj 2015 Kl. 9.00-13.00 Prøveform b GUX151 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Eksempler på temaopgaver i matematik indenfor geometri

Eksempler på temaopgaver i matematik indenfor geometri Eksempler på temaopgaver i matematik indenfor geometri Med udgangspunkt i begrebsafklaringen fra dokumentet Matematik og den ny skriftlighed gives her fem eksempler på, hvordan de forskellige opgavetyper,

Læs mere

Matematik Færdigheds- og vidensmål (Geometri og måling )

Matematik Færdigheds- og vidensmål (Geometri og måling ) Matematik Færdigheds- og vidensmål (Geometri og måling ) Kompetenceområde Klassetrin Faser 1 Eleven kan kategorisere Efter klassetrin Eleven kan anvende geometriske begreber og måle Eleven kan kategorisere

Læs mere

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Link Mål Kompetence mål: Modellering Færdighedsmål Eleven kan vurdere egne og andres modelleringsprocesser Videns mål Eleven har viden om

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: kontor@aalborg-friskole.dk

www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: kontor@aalborg-friskole.dk www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: kontor@aalborg-friskole.dk Årsplan for matematik i 8.klasse I timerne vil vi bruge bogen matematiktak 8.klasse, programmer

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Vejledende Matematik A

Vejledende Matematik A Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen: Matematik Årgang: Lærer: 7. årgang Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver

Læs mere

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 376 + 2489 = 2. 367 120 = 3. 16 40 = 4. 216 : 12 = Løs ligningen 14. x - 6 = 4 x = 15. 3x = 24 x = Afrund til nærmeste hele tal 5. 21,88 6. 3 3 1 16. 17. 1 4 + 6 6

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på

Læs mere

Projekt 3.4 Introduktion til geometri med TI-Nspire

Projekt 3.4 Introduktion til geometri med TI-Nspire Projekt 3.4 Introduktion til geometri med TI-Nspire 1. Introduktion til geometriværktøjerne i TI-Nspire cas... 2 1.2. Åben en geometriapplikation... 2 1.2. Klik-Flyt-Klik... 2 Eksempel: Tegn en cirkel...

Læs mere

Andreas Nielsen Kalbyrisskolen 2009

Andreas Nielsen Kalbyrisskolen 2009 Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten.

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten. Perspektiv tegning Hjælp til perspektivtegning. Illustrationerne er købt fra Perspektivtegning - Matematik i Billedkunst, billedkunst i matematik. - en kopimappe som er lavet af Jørgen Skourup og Ole Stærkjær.

Læs mere