MATEMATIK I HASLEBAKKER 14 OPGAVER
|
|
|
- Oscar Paulsen
- 10 år siden
- Visninger:
Transkript
1 MATEMATIK I HASLEBAKKER 14 OPGAVER
2 Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse, samvær, men også målrettet læring, der kan give oplevelser med større perspektiv. Matematik er i vore dage ikke blot nogle indviklede opgaver og tekster, som man kan blive hørt i. Matematik i anvendelse er et af de fire centrale kundskabs- og færdighedsområder, som eleverne skal arbejde med. En matematikundervisning uden for klasseværelset giver optimale muligheder for, at eleverne får øjnene op for, at matematik bruges overalt i samfundet. De 14 matematikopgaver i Hasle Bakker inddrager ikke alle dele af matematikkens pensum, men de giver eleverne mulighed for at arbejde konkret med matematikken. Arbejdet i bakkerne styrker elevernes matematiske kompetencer, eksempelvis problembehandlings-, modellerings-, ræsonnements-, repræsentations- og kommunikationskompetencen. Det faglige indhold i opgaverne er naturligt centreret om geometrien. Skitseteg-ninger, opmålinger og rentegninger indgår i alle opgaver. Herfra går eleverne så videre til de geometriske beregninger: arealer og omkredse, længder beregnet ved hjælp af den pythagoræiske læresætning samt målestoksforhold. Men også lineære funktioner og trigonometriske funktioner optræder i opgaverne. Arbejdet foregår i 3 faser: 1. Gennem øvelser og samtaler i klassen bliver eleverne fortrolige med den matematik, de får brug for til løsning af de enkelte opgaver. 2. Ude i Hasle Bakker foretager eleverne de nødvendige iagttagelser og opmålinger, tegner skitser til senere brug og noterer vigtige detaljer, som de vil have med i slutfasen. 3. Efterbehandlingen hjemme i klassen består i, at eleverne skriver en rapport, som indeholder de færdige tegninger og resultater af beregnigerne. Desuden skal der være begrundelser for beregningerne og meget gerne personlige kommentarer til opgaven. Rapporten danner baggrund for en mundtlig fremlæggelse i klassen eller eventuelt på et forældremøde. De 14 opgaver varierer i sværhedsgrad og kan frit kombineres, så de passer til den enkelte gruppe. Ved starten indscannes opgavekoderne på mobiltelefonen, hvorefter den indbyggede GPS fører eleverne rundt i området til de enkelte opgaver. Hver gruppe udstyres med en taske med de nødvendige måleredskaber.
3 Opgave 1 (samme som opgave 14, men anden placering) Hvor høj er bakkekammen ved parkeringspladsen? Hjælpemidler: En teodolit, et meterhjul, et langt målebånd. Mål afstanden AB ved hjælp af meterhjulet. Brug teodolitten til at måle vinklen ECD. Punktet D skal vises tydeligt af den- per son, der står på toppen af bakken (B), så det passer til teodolittens højde. Tegn en skitse af bakken. Skriv målene, I har fundet, på skitsen. Hjemme skal I tegne en profil af bakken i et passende målestoksforhold. Find bakkens højde BF ved at måle på tegningen. Bakkens højde kan også beregnes på denne måde: Mål vinkel ECD og længden af AB Beregn BF, som er udtryk for bakkens højde, idet Sin(ECD) = BF/AB
4 Opgave 2 Hvor høj er højspændingsmasten? Hjælpemidler: En teodolit, et meterhjul. I skal måle mastens højde ved hjælp af teodolitten. Markér et punkt (A) på stien, 50 meter fra masten. Brug meterhjul eller målebånd og mål fra mastens centrum, dvs. fra midtpunktet mellem mastens ben. Mål så vidt muligt i lige linie fra masten til A. Når I måler, skal I have bakken på jeres højre side. Stil teodolitten i A Mål højden AD, dvs. teodolittens højde Mål vinklen EDC Hjemme skal I tegne hele figuren i et passende målestoksforhold. Hvor høj er masten? Mastens højde kan også beregnes ved hjælp af en lommeregner med tangensfunktion. Find på lommeregneren tangens til vinklen. Dette tal er det samme som forholdet mellem CE og DE. I kender DE, som jo er lig med AB. Hvor høj er masten?
5 Opgave 3 Affaldsbeholdere på vej mod toppen af Bakkekammen Hjælpemidler: Et målebånd eller en tommestok Rundt i området er der mulighed for et hvil på nogle cylinderformede betonblokke. Men: Som det fremgår af billedet, mangler der mulighed for at man kan komme af med sit affald. Det er nu jeres opgave at komme med forslag til design af to slags affaldsbeholdere. Den ene skal være til almindeligt affald, den anden til hundenes efterladenskaber. Begge beholdere skal passe ind i miljøet. De skal designes sådan, at det er nemt at tømme dem. Sæt jer på betonblokkene og diskutér forskellige ideer til, hvordan affaldsbeholderne kan komme til at se ud. Tegn nogle skitser med mål på. Hjemme skal I udarbejde en arbejdstegning og en model, som skal vise beholderne sådan, at en fabrikant kan gå i gang med at producere dem.
6 Opgave 4 (samme som opgave 15) Perspektivtegning Tag på forskellige steder i området nogle billeder, som egner sig til perspektivtegning. Hjemme på skolen kopierer I billederne i ca. A4-størrelse. Derefter tegner I perspektivlinjer ind på billederne, angiver horisontlinje og forsvindingspunkt(er). Med fotokopierne af billederne som arbejdsgrundlag skal I nu selv tegne motivet.
7 Opgave 5 Hvor stor er søen mellem Bakkekammen og Spiralen? Hjælpemidler: En teodolit, et meterhjul og mindst 2 kegler Søen skal opmåles, så I kan beregne størrelsen tilbage på skolen. Del 1: Søens bredde Søens bredde (HC) findes ved hjælp af trekant ABC. Begynd med at tegne en skitse af trekanten. De mål, I kommer frem til undervejs, markeres på skitsen. Punkterne A og B markeres med kegler, som placeres på stien med 50 meters afstand. A og B vælges, så de ligger nogenlunde som på billedet (se under Intro ). Vælg selv et synligt punkt (C) på søens modsatte bred. Sæt nu teodolitten i punktet A og sigt mod C. Mål vinklen CAB. Sæt herefter teodolitten i punktet B. Sigt nu mod A og mål vinklen CBA. Del 2: Søens længde Søens længde (FG) findes ved hjælp af firkant DEFG. Tegn en skitse af firkanten. Opmål en 80 meter lang linje (DE) på stien op ad Spiralen. Punkterne D og E markeres med kegler. Punkterne G og F udgør søens ender. Vælg her noget synligt at sigte efter. Brug nu teodolitten til at måle vinklerne GDF, GDE, DEF og GED. Hjemme på skolen skal I tegne de to geometriske figurer i et passende målestoksforhold. Find ved hjælp af tegningerne længden FG i firkanten og højden CH i trekanten. Begrund ved hjælp af tegningerne og målene, at søens areal er ca. én ha
8 Opgave 6 Spiralen Hjælpemidler.: Meterhjul og stopur Gå op ad den ene sti og ned ad den anden. Hvor lang er turen? Hvor lang tid tog det at komme op på toppen af bakken? Hvor lang tid tog det at gå ned? Beregn de to hastigheder i km/time. Her kan turen begynde
9 Opgave 7 To højspændingsmaster, set fra Plateauet Hjælpemidler: En teodolit, et langt målebånd eller meterhjul, 2 kegler I skal finde afstanden mellem to af de højspændingsmaster, I kan se fra Plateauet. Plateauet er den flade bakke, I befinder jer på. På stien, der vender ud mod masterne, placeres to kegler med 50 meters afstand. Keglerne markerer liniestykket AB. Det er ikke så afgørende præcis hvor på stien, keglerne står. Der skal blot være 50 m mellem dem. Masten bag den blågrønne bygning ( til højre for vandtårnet) kaldes C. Masten tættest på jer, neden for den store bakke, kaldes D. Sæt teodolitten i A. Mål vinklerne DAB og CAB. Sæt teodolitten i B og mål vinklerne CBA og DBA. Notér målene på en skitse. Hjemme skal I tegne figuren i et passende målestoksforhold. Bestem følgende afstande ved hjælp af tegningen: AD, BC og CD.
10 Opgave 8 Regulære geometriske figurer (1) Hjælpemiddel: Et målebånd Ved krydset mellem cykelstien og grusstien står denne betonklods. Mål cirklens diameter og kvadratets side. Skriv målene ind på en skitse. Hjemme på skolen skal I tegne cirklen og kvadratet i et passende målestoksforhold. Beregn arealet af cirklen og kvadratet. Angiv arealforholdet mellem kvadratet og cirklen.
11 Opgave 9 Den cirkelformede plads Hjælpemidler: et meterhjul, et langt målebånd Mål cirklens omkreds og diameter. Hvor mange brosten er der lagt ned i kanten af cirklen? Hjemme skal I beregne cirklens areal, både ved hjælp af jeres mål for om-kredsen og ved hjælp af cirklens diameter. Hvorfor kommer I frem til forskellige resultater? Hvordan fandt I frem til antallet af sten i kanten af cirklen? Det er nu jeres opgave at foreslå en udnyttelse eller forskønnelse af pladsen. Det kunne være et solur midt på pladsen. Det kunne være et springvand midt på pladsen. Det kunne være en eller flere geometriske skulpturer på pladsen. Det kunne også være noget helt andet, som I foreslår. Jeres forslag skal vises på en geometrisk tegning i et passende målestoksforhold og på en model. Det skal ledsages af matematiske forklaringer
12 Opgave 10 En siddeplads Hjælpemidler: Et målebånd, tavlekridt, tommestok, tegnetrekant. Tegn en skitse af klodsen. Afsæt på skitsen målene for cylinderens højde og diameter. Prøv at finde cirklens centrum ved hjælp af to korder. Hjemme skal I beregne rumfanget og vægten af den del af klodsen, som er over jorden. Betons massefylde kan sættes til 2,3. Desuden skal I på en tegning vise, hvordan I fandt cirklens centrum. Sæt mål på tegningen.
13 Opgave 11 Trapperne ved Edwin Rahrsvej Hjælpemidler: Et målebånd grund stigning Begynd med at gå nogle ture op og ned ad trappen. Tænk på, hvad forholdet mellem stigning og grund betyder for, om trappen er bekvem at gå på. Giv den karakter efter, hvor bekvem den er at gå på. Brug denne skala: 4: meget bekvem 3: bekvem 2: nogenlunde bekvem 1: ubekvem Mål trappens stigning og grund. Notér antallet af trappetrin. Hjemme på skolen skal I tegne et tværsnit af mindst 5 trin af trappen i et passende målestoks-forhold. Husk at vise målene på stigning og grund. Husk også at anføre, om trappen er bekvem at gå på ud fra karakterskalaen. Derefter skal I bruge matematikken til at undersøge, om trappen er anlagt sådan, at den er bekvem at gå på. Der findes nemlig en formel for den bekvemme trappe: 2s + g = 63, hvor s er trappetrinnets stigning og g er dybden af et trappetrin, kaldet trappens grund. Alle mål er i cm. De 63 cm svarer til et gammelt mål, en alen. En alen = 2 fod = 24 tommer, og en tomme er ca. = 2,6 cm. Sæt jeres mål for trappens stigning og grund ind i formlen. Hvor godt passer denne trappes mål ind i formlen? Hvordan svarer beregningerne til den karakter, I gav trappen ude på stedet? Hvor høj er bakken på det sted, hvor trappen er anlagt?
14 Opgave 12 Skulpturen på hjørnet af Lenesvej og Edwin Rahrsvej Hjælpemidler: Målebånd, en stor vinkelmåler Tegn en skitse af skulpturen set fra siden (som på billedet ovenfor). Tag de nødvendige mål: AB, AD og vinkel EDC. Hvilken geometrisk figur er ABCD? Mål også længder og vinkler på en af skulpturens blokke. Skriv alle mål ind på skitsen. Læg mærke til de figurer, der ses på blokkene. Tegn en skitse af cirklen. Tegn de fire ødelagte lampesteder ind på skitsen. Tag de nødvendige mål, så I kan finde cirklens omkreds og areal samt placeringen af lampestederne. Hvor mange brosten ligger der i cirklens periferi (kanten af cirklen)? Hvor mange sten ligger der inde i cirklen? Beskriv jeres optællingsmetode.. Hjemme skal I tegne skulpturen set frontalt i et passende målestoksforhold. Beregn hvor høj skulpturen vil blive, hvis man forlænger den med endnu en betonklods ved C? Beskriv de figurer, der ses på betonklodserne
15 Opgave 13 En shelter Hjælpemidler: et målebånd, en vinkelmåler Tegn en skitse af shelterens gavl. Skriv de nødvendige mål på skitsen, både længdemål og vinkelmål. Mål også GH samt længden af taget, FG. Punktet F er ikke på tegningen, så det skal I selv finde. Hjemme skal I tegne shelterens gavl i et passende målestoksforhold. Beregn også arealet af tagfladen.
16 Opgave 14 (samme som opgave 1, men anden placering) Hvor høj er bakkekammen? Hjælpemidler: En teodolit, et meterhjul, et langt målebånd. Mål afstanden AB ved hjælp af meterhjulet. Brug teodolitten til at måle vinklen ECD. Punktet D skal vises tydeligt af den- per son, der står på toppen af bakken (B), så det passer til teodolittens højde. Tegn en skitse af bakken. Skriv målene, I har fundet, på skitsen. Hjemme skal I tegne en profil af bakken i et passende målestoksforhold. Find bakkens højde BF ved at måle på tegningen. Bakkens højde kan også beregnes på denne måde: Mål vinkel ECD og længden af AB Beregn BF, som er udtryk for bakkens højde, idet Sin(ECD) = BF/AB
17 Opgave 15 (samme som opgave 4, men anden placering) Perspektivtegning Tag på forskellige steder i området nogle billeder, som egner sig til perspektivtegning. Hjemme på skolen kopierer I billederne i ca. A4-størrelse. Derefter tegner I perspektivlinjer ind på billederne, angiver horisontlinje og forsvindingspunkt(er). Med fotokopierne af billederne som arbejdsgrundlag skal I nu selv tegne motivet.
18 Opgave 16 Regulære geometriske figurer (2) Hjælpemiddel: Et målebånd Ved den cirkelformede plads står denne betonklods, som er forsynet med 6 skruer. Skruerne danner en regulær geometrisk figur. Mål cirklens diameter og afstanden mellem skruerne. Skriv målene ind på en skitse. Hjemme på skolen skal I tegne cirklen og figu-ren i et passende målestoksforhold. Beregn arealet af cirklen og den regulære figur. Angiv arealforholdet mellem den regulære figur og cirklen
MATEMATIK I HASLEBAKKER 13 OPGAVER
MATEMATIK I HASLEBAKKER 13 OPGAVER Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse,
MATEMATIK I HASLEBAKKER 14 OPGAVER
MATEMATIK I HASLEBAKKER 14 OPGAVER Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse,
MATEMATIK I KÆREHAVE SKOV
MATEMATIK I KÆREHAVE SKOV Matematik for øvede, 7.-9. klassetrin, 12 opgaver Lærervejledning Matematik for øvede Primær målgruppe elever i 7.-9. klasse 12 opgaver i Kærehave Skov Forløbet er tilrettelagt
Geometri i plan og rum
INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af
Tegn med GPS 1 - Vejledning
Tegn med GPS 1 - Vejledning Lærerforberedelse: Det er altid en god ide at afprøve opgaven selv, inden eleverne sættes i gang. Inden forløbet skal læreren have materialerne til posten klar og klargøre GPS
En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden.
En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden. Når man tegner perspektivtegninger, er der forskellige finter til at lave de rigtige størrelsesforhold. Nedenfor
Geometri Følgende forkortelser anvendes:
Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien
Trigonometri. Store konstruktioner. Måling af højde
Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er
Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse
Lærervejledning Matematik i Hasle Bakker 4.-6. klasse Lærervejledning I Matematik for 4.-6. klasse sendes eleverne gruppevis ud i for at løse matematikopgaver med direkte afsæt i både natur og menneskeskabte
F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade
F-dag om geometri Fremstilling og beskrivelse af stiliserede blade I foråret fejrede Canada at landet havde eksisteret som nation i 150 år. I den anledning blev der fremstillet et logo, der tog afsæt i
Grønland. Matematik A. Højere teknisk eksamen
Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres
bruge en formel-samling
Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber
Matematik interne delprøve 09 Tesselering
Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der
1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.
Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt
Vejledende årsplan for matematik 5.v 2009/10
Vejledende årsplan for matematik 5.v 2009/10 Uge Emne Formål Opgaver samt arbejdsområder 33-36 Geometri 1 Indlæring af geometriske navne Figurer har bestemte egenskaber Lære at måle vinkler med vinkelmåler
geometri trin 1 brikkerne til regning & matematik preben bernitt
brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er
Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014
Sæt 05 Geometri 01 Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Rettes: Karakter: Rettes ikke: Set og godkendt: Samlet elevtid: 165 min. = 2,75 time
Matematik. Meteriske system
Matematik Geometriske figurer 1 Meteriske system Enheder: Når vi arbejder i længder, arealer og rummål er udgangspunktet metersystemet: 2 www.ucholstebro.dk. Døesvej 70 76. 7500 Holstebro. Telefon 99 122
Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema
Webinar - Matematik 1. Fælles Mål 2014 2. Relationsmodellen og et forløbsplanlægningsskema 3. Et eksempel på et forløb om areal og omkreds på mellemtrinnet 4. Relationsmodellen som refleksionsmodel Alle
Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling
Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg
Faglige delmål og slutmål i faget Matematik. Trin 1
Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,
16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it
16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it Tanker bag opgaverne Det er min erfaring, at elever umiddelbart vælger at bruge det implicitte funktionsbegreb,
LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin
LÆRERVEJLEDNING Matematik -6. klase Hasle bakker 4.-6.klassetrin Lærervejledningen Forord: Hasle bakker forløbet er et nyskabende undervisningsmateriale hvor teknologien, i form af mobiltelefonen og dens
Øvelser i Begynderklassen.
Øvelser i Begynderklassen. 1 Her starter banen! Tidtagningen begynder, når dommeren kommanderer "Fremad". 2 Banen er slut - Tidtagningen stoppes 3* Højre sving. 90 skarp drejning til højre. Som ved normal
Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -
2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...
Matematiske færdigheder opgavesæt
Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas
Natur/teknologi i 6 klasse affald og affaldshåndtering, rumfang, målestok og matematik
Natur/teknologi i 6 klasse affald og affaldshåndtering, rumfang, målestok og matematik Dette er en beskrivelse af et samspil mellem fagene Natur/Teknologi og matematik i to 6. klasser på Tingkærskolen
Rally Lydighed Øvelsesvejledning
Det primære i øvelserne er markeret med fed og kursiv. Begynderklassen 1 Her starter banen! Hunden behøver ikke at sidde inden start, men skal være i pladspositionen. Tidtagningen starter på dommerens
Årsplan for matematik i 1. klasse 2010-11
Årsplan for matematik i 1. klasse 2010-11 Vanløse den 6. juli 2010 af Musa Kronholt Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden
Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:
Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave
Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009
Årsplan 2013/2014 6. ÅRGANG: MATEMATIK FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at
GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2
GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve
Årsplan/aktivitetsplan for matematik i 6.c 2012-2013
Årsplan/aktivitetsplan for matematik i 6.c 2012-2013 Undervisere: Marianne Kvist (MKV) & Asger Poulsen (APO) Omfang: mandag kl. 10 00 11 20, onsdag kl. 10 00 11 20 4 lektioner pr. uge Matematikken i 6.c
Matematik på ældste trin Odense Congress Center 26. April 2018
Matematik på ældste trin Odense Congress Center 26. April 2018 Kirsten Helborg Drews Finn Egede Rasmussen Prøveoplæg til den mundtlige del af Folkeskolens Afgangsprøve 2004. Elsted Skole, 9.a og 9.b. Prøveoplæggene
matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1
33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er
areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt
brikkerne til regning & matematik areal og rumfang trin 2 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 2 ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk
Undersøgelser af trekanter
En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,
I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:
INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en
Kvadrant - instrumentbeskrivelse og virkemåde
Kvadrant instrumentbeskrivelse og virkemåde Kvadrant - instrumentbeskrivelse og virkemåde Kvadranterne i instrumentpakken fra geomat.dk er kopier af et instrument lavet af Georg Hartman i 1547. Originalen
Det tilstræbte matematikindhold og teknologi spiller det sammen?
75 K O M M E N TA R E R Det tilstræbte matematikindhold og teknologi spiller det sammen? Henrik Bang Center for Computerbaseret Matematikundervisning, CMU Claus Larsen Center for Computerbaseret Matematikundervisning,
Matematik Delmål og slutmål
Matematik Delmål og slutmål Ferritslev friskole 2006 SLUTMÅL efter 9. Klasse: Regning med de rationale tal, såvel som de reelle tal skal beherskes. Der skal kunne benyttes og beherskes formler i forbindelse
Fraktaler. Vejledning. Et snefnug
Fraktaler Vejledning Denne note kan benyttes i gymnasieundervisningen i matematik i 1g, eventuelt efter gennemgangen af emnet logaritmer. Min hensigt har været at give en lille introduktion til en anderledes
Matematik Naturligvis. Matematikundervisning der udfordrer alle.
Matematikundervisning der udfordrer alle. Læring i bevægelse Matematikkompetencerne i spil Læringsstile Dialog og samarbejde i uderummet Matematik Naturligvis Hvorfor lære matematik i det fri? Ved at arbejde
Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.
6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle
Opgaver hørende til undervisningsmateriale om Herons formel
Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og
Tegning. Arbejdstegning og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn fra tre synsvinkler
Tegning Arbejds og isometrisk Ligedannede figurer Målestoksforhold Konstruktion Perspektiv Kassens højde Bundens bredde dybde Hullets diameter Afstand mellem hul og bund Højde over jorden Musvit 30 10
Kommentarer til matematik B-projektet 2015
Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver
STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA
STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.
Matematikprojekt Belysning
Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang
Matematik A. Studentereksamen
Matematik A Studentereksamen Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven med hjælpemidler består af opgave 7-14 med i alt 19 spørgsmål.
Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.
Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler
Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO
Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede
8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:
8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse
Undervisningsplan for faget matematik. Ørestad Friskole
Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2
Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015
Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5
MATEMATIK. Formål for faget
MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede
Geometriske eksperimenter
I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor
Mattip om. Geometri former og figurer. Du skal lære: Kan ikke Kan næsten Kan. At finde og tegne former og figurer
Mattip om Geometri former og figurer Du skal lære: At finde og tegne former og figurer Kan ikke Kan næsten Kan At beregne omkreds og areal af figurer Om forskellige typer trekanter At finde højde og grundlinje
Eksamensspørgsmål: Trekantberegning
Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8
Ligedannede trekanter
Ib Michelsen: Matematik C, Geometri, 1. kapitel 2011 Version 7.1 22-08-11 Rettet: tempel.png inkorporeret / minioverskrift rettet D:\Appserv260\www\2011\ligedannedeTrekanter2.odt Arven fra Grækenland Arven
Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?.
Hvor høj er skolens flagstang? Undersøgelsesbaseret matematik 8.a på Ankermedets Skole i Skagen Marts 2012 Klassen deltog for anden gang i Fibonacci Projektet, og der var afsat ca. 8 lektioner, fordelt
www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: [email protected]
www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: [email protected] Årsplan for matematik i 8.klasse I timerne vil vi bruge bogen matematiktak 8.klasse, programmer
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler
Finde midtpunkt. Flisegulv. Lygtepæle
Finde midtpunkt Flisegulv Lygtepæle Antal diagonaler Vinkelsum Vinkelstørrelse Et lille geometrikursus Forudsætninger (aksiomer): Parallelle linjer skærer ikke hinanden uanset hvor meget man forlænger
Matematik på Humlebæk lille Skole
Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder
Folkeskolens prøver. Prøven uden hjælpemidler. Tirsdag den 5. december 2017 kl Der må ikke benyttes medbragte hjælpemidler.
Matematik FP9 Folkeskolens prøver Prøven uden hjælpemidler Tirsdag den 5. december 2017 kl. 9.00-10.00 Der må ikke benyttes medbragte hjælpemidler. Elevens UNI-Login: Opgaven findes som: 1. Papirhæfte
Bjørn Grøn. Euklids konstruktion af femkanten
Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen
Matematik C Højere forberedelseseksamen
Matematik C Højere forberedelseseksamen Hæfte: August 2014 Kl. 9.00-12.00 Copyright Anders og Mark Kommentar til opgaven: Lilla farve - angiver formlen. Rød farve - angiver ophævelsen af en ligning. Matematik
Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.
Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) August 2015- juni 2017 ( 1 og 2. År) Rybners HTX Matematik B
Netopgaver. Kapitel 4 At tilpasse kurver til punkter
1 Netopgaver Nogle af Omegas opgaver og et enkelt bevis er lagt her på nettet. Idéen til dette opstod, da vi kunne se, at sidetallet i Omega skulle holdes nede for at give en bekvem og håndterbar bog.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2009 Institution Herningsholm Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B og A (1.år)
Matematik C. Højere forberedelseseksamen
Matematik C Højere forberedelseseksamen 2hf103-MAT/C-10122010 Fredag den 10. december 2010 kl. 9.00-12.00 Opgavesættet består af 8 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved
Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)
Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog
GEOMETRI I PLAN OG RUM
LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige
Trekants- beregning for hf
Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel
GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB
GUX Matematik B-Niveau Fredag den 29. maj 2015 Kl. 9.00-13.00 Prøveform b GUX151 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.
matematik grundbog basis preben bernitt
33 matematik grundbog basis preben bernitt 1 matematik grundbog basis ISBN: 978-87-92488-27-5 2. udgave som E-bog 2010 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk
REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer
LÆRERVEJLEDNING REELLE TAL Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Danskerne og ketchup Medieforbrug Decimaltal, brøker og procent og 2 Procentregning
Matematik i 5. klasse
Matematik i 5. klasse Igen i år benytter vi os af Faktor i femte. Systemet indeholder en grundbog, hvortil der er supplerende materiale i form af kopiark, som er tilpasset de gennemgåede emner. Grundbogen
Årsplan for matematik 2.b (HSØ)
Årsplan for matematik 2.b (HSØ) Bøger, supplerende materiale og andet relevant I undervisningen bruger vi Kolorit. Der suppleres med kopiark fra den tilhørende kopimappe + andre kopiark, som passer til
MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål
MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig
Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.
4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter
MATEMATIK I KÆREHAVE SKOV. Matematik for indskoling 1.-3. klassetrin, 10 opgaver. Lærervejledning
MATEMATIK I KÆREHAVE SKOV Matematik for indskoling 1.-3. klassetrin, 10 opgaver Lærervejledning Matematik for indskoling Primær målgruppe elever i 1.-3. klasse 10 opgaver i Kærehave Skov Med udgangspunkt
geometri trin 2 brikkerne til regning & matematik preben bernitt
brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er
MATEMATIK I KÆREHAVE SKOV. Matematik for mellemtrin, 4.-6. klasse, 12 opgaver. Lærervejledning
MATEMATIK I KÆREHAVE SKOV Matematik for mellemtrin, 4.-6. klasse, 12 opgaver Lærervejledning Matematik for mellemtrin Primær målgruppe elever i 4.-6. klasse 12 opgaver i Kærehave Skov Forløbet er tilrettelagt
Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering
Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen
Vejledende Matematik A
Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes
Fra tilfældighed over fraktaler til uendelighed
Fra tilfældighed over fraktaler til uendelighed Tilfældighed Hvor tilfældige kan vi være? I skemaet ved siden af skal du sætte 0 er og 1-taller, ét tal i hvert felt. Der er 50 felter. Du skal prøve at
Årsplan for 5. klasse, matematik
Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget
brikkerne til regning & matematik geometri trin 2 preben bernitt
brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....
cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty
cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11
Eksempler på temaopgaver i matematik indenfor geometri
Eksempler på temaopgaver i matematik indenfor geometri Med udgangspunkt i begrebsafklaringen fra dokumentet Matematik og den ny skriftlighed gives her fem eksempler på, hvordan de forskellige opgavetyper,
Rally Lydighed Oversigt 2014
Det primære i øvelserne er markeret med fed og kursiv. Nr. Skilt 1 2 3* 4* 5* 6* 7* 8* 9 10 11 Øvelse Begynderklassen Start. Her starter banen! Hunden behøver ikke at sidde inden start, men skal være i
Folkeskolens Afgangsprøve. Matematisk problemløsning. maj 2007. Som bilag til dette opgavesæt er vedlagt et svarark
Folkeskolens Afgangsprøve Matematisk problemløsning maj 2007 Som bilag til dette opgavesæt er vedlagt et svarark Mursten De første danske bygninger af mursten blev opført omlaing år 1160. I 1.1 I Hvor
