MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

Størrelse: px
Starte visningen fra side:

Download "MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL"

Transkript

1 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

2 DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x = 9 4x + 3 = 2x x = 13 5 = 1 x 2(x + 5) = 4 KLASSE PRINTARK GYLDENDAL 2

3 DIGITALE VÆRKTØJER A1.2 SORTER LIGNINGER 2x + 24 = 8x 15 2x = 7x 3 2 x x 3 4 = 15 2x + x 2 5 = x x 2 = 2x + 3 x + 5 = x 25 7 KLASSE PRINTARK GYLDENDAL 3

4 DIGITALE VÆRKTØJER A2 HVORDAN LØSER DU BEDST OPGAVEN? A Tegn et kvadrat med sidelængden 7. B Mål længden af diagonalen. C Find omkredsen. D Find arealet. A Tegn en skitse med mål af et værelse, som har form som et rektangel, og som måler 3,2 meter i længden og 2,4 meter i bredden. B Find arealet af værelset. A Tegn et parallelogram som har arealet 24. B Find omkredsen af parallelogrammet. A Tegn en retvinklet trekant med sidelængderne 3, 4 og 5. B Find omkredsen af trekanten. C Find arealet af trekanten. D Mål vinklernes størrelse. A Tegn en ligesidet trekant med sidelængden 10. B Tegn en cirkel, som går gennem trekantens hjørner. C Find omkredsen af cirklen. A Tegn en skitse af en terning, som er klippet op, så man kan se alle seks kvadratiske grundflader, som terningen består af. Der behøver ikke være mål på din skitse A Tegn en skitse med mål af en kasse set forfra, fra siden og oppefra. Kassen måler 75 cm i længden, 35 cm i bredden og 40 cm i højden. B Find kassens rumfang. A Tegn en cirkel med et areal mellem 40 og 45 cm 2. B Hvad er længden af radius? C Hvor stor er cirklens omkreds? A Tegn et rektangel, hvor længden af en diagonal er 5 cm. B Hvor lange er siderne i rektanglet? C Hvad er rektanglets areal? A Tegn en skitse med mål af, hvordan en palle set oppefra kan pakkes med fladskærmstv. En palle måler 120 cm x 80 cm. Fladskærmstv er i papkasser, som måler 100 cm i længden, 10 cm i bredden og 58 cm i højden. KLASSE PRINTARK GYLDENDAL 4

5 PLANGEOMETRI AX BEGREBER OG GIVNING A Tegn en stump-, spids- og retvinklet trekant, der alle har arealet 27. B Tegn to forskellige højder i hver trekant. A Undersøg, om man kan tegne en retvinklet og ligesidet trekant. ligebenet trekant. B Forklar forskellen på en ligesidet og en ligebenet trekant. A Hvad er gradtallet for vinkel A, B og C i trekant ABC, hvor b = 4? B Forklar forskellen på en ligesidet og en ligebenet trekant. A Tegn en DEF, hvor D = 135 og E = 18,5. B Tegn en ny trekant, der er kongruent med DEF. C Tegn en ny trekant, der er ligedannet, men ikke kongruent med DEF. A Tegn mindst fem forskellige polygoner. Bestem vinkelsummen for hver figur. B Hvad er vinkelsummen i en n-kant? A Tegn en trekant, og tegn dens medianer. B Beskriv, hvad en median i en trekant er. A Tegn en trekant, og tegn dens midtpunktstransversaler. B Beskriv, hvad en midtpunktstransversal er. A Undersøg, om to trekanter altid er ligedannede, hvis de er ligesidede. ligebenede. har samme omkreds. har samme vinkler. KLASSE PRINTARK GYLDENDAL 5

6 PLANGEOMETRI UX SØMBRÆTPAPIR KLASSE PRINTARK GYLDENDAL 6

7 PLANGEOMETRI UX.1 FIRKANTER OG TESSELERING KLASSE PRINTARK GYLDENDAL 7

8 PLANGEOMETRI UX.2 FIRKANTER OG TESSELERING KLASSE PRINTARK GYLDENDAL 8

9 PLANGEOMETRI AX.1 HØJDEMÅLINGER Find to forskellige ting, som I i gruppen ønsker at finde højden på, fx træ, husmur, flagstang, elmast eller lignende. Del jer i to mindre grupper, hvor hver gruppe finder højden på de to genstande med to forskellige metoder. Det vil sige, at de to genstande måles ved hjælp af alle fire metoder. I kan evt. filme, hvordan I foretog målingerne. Metode 1: Brug solen I kan kun bruge denne metode, når solen skinner. Det skal ligeledes være muligt at se, hvor fx træets skygge rammer. Sæt en pind eller en tommestok lodret i jorden og mål længden. Mål derefter længden på skyggen af den lodrette pind. Til slut måles længden på skyggen fra træet. Nu kan træets højde beregnes ved at bruge ligedannede trekanter. Metode 2: Brug jeres højde Den ene person lægger sig på jorden og kigger præcist hen over hovedet på en kammerat og op på toppen af træet. Kamme ratens højde, afstanden fra træet til kammeraten og afstanden fra den liggende persons øje. Med disse informationer kan træets højde beregnes ved at bruge de to ligedannede trekaner. KLASSE PRINTARK GYLDENDAL 9

10 PLANGEOMETRI AX.2 HØJDEMÅLINGER Metode 3: Brug et klinometer I kan bestemme højden af fx et træ ved at bruge et klinometer og et målebånd eller tommestok. Et klinometer er et instrument, der kan måle vinklen mellem vandret og et sigtepunkt. Klinometeret holdes i hånden mens I sigter på træets top og aflæser sigtevinklen v. I skal måle den lodrette højde fra klinometeret til jorden og den vandrette afstand fra klinometeret til træet. Så kan I tegne situationen i et bestemt længdeforhold og måle højden af træet på tegningen. Metode 4: Brug en målepind I skal bruge en pind, der har mindst samme længde som armen på den, der måler. Pinden holdes lodret ud i strakt arm, så det lodrette stykke på pinden har samme længde som armen. Stå foran træet, så pinden (toppen af pinden og lige over, hvor hånden holder i pinden) netop dækker træet. Mål afstanden fra den der måler og hen til træet, så har I højden på træet. I nogle af metoderne kan I finde højden ud fra jeres målinger, og i andre er I nødt til, efter I har foretaget jeres målinger, at lave en tegning i et bestemt målestoksforhold, og derefter ved at måle på tegningen finde frem til, hvor højt fx træet er. KLASSE PRINTARK GYLDENDAL 10

11 PLANGEOMETRI EX.1 BEGREBER OG FAGORD PLANGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Topvinkler Ligedannethed Pythagoras læresætning Matematisk bevis KLASSE PRINTARK GYLDENDAL 11

12 PLANGEOMETRI EX.2 BEGREBER OG FAGORD PLANGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Ensliggende vinkler Pythagoræiske tripler Kongruens KLASSE PRINTARK GYLDENDAL 12

13 PLANGEOMETRI EX.3 EGENSKABER VED KVADRAT ABCD A F C I O P G M J H N L K B E D KLASSE PRINTARK GYLDENDAL 13

14 RUMGEOMETRI AX.1 RUMLIGE FIGURER A B C D E F G H I KLASSE PRINTARK GYLDENDAL 14

15 RUMGEOMETRI AX.2 RUMLIGE FIGURER J K L M N O KLASSE PRINTARK GYLDENDAL 15

16 RUMGEOMETRI UX.1 CIRKELUDSNIT KLASSE PRINTARK GYLDENDAL 16

17 RUMGEOMETRI UX.2 CIRKELUDSNIT KLASSE PRINTARK GYLDENDAL 17

18 RUMGEOMETRI UX.3 CIRKELUDSNIT KLASSE PRINTARK GYLDENDAL 18

19 RUMGEOMETRI EX.1 BEGREBER OG FAGORD RUMGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Massefylde Udfoldninger Rumdiagonaler KLASSE PRINTARK GYLDENDAL 19

20 RUMGEOMETRI EX.2 BEGREBER OG FAGORD RUMGEOMETRI Begreber og fagord Eksempel eller tegning Min egen forståelse af fagordet/begrebet Rumfang Overfladeareal Pythagoras KLASSE PRINTARK GYLDENDAL 20

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Plangeometri FORHÅNDSVIDEN. I dette kapitel skal du arbejde med plangeometri. Plangeometri handler om figurer og egenskaber ved figurer i en plan.

Plangeometri FORHÅNDSVIDEN. I dette kapitel skal du arbejde med plangeometri. Plangeometri handler om figurer og egenskaber ved figurer i en plan. Plangeometri I dette kapitel skal du arbejde med plangeometri. Plangeometri handler om figurer og egenskaber ved figurer i en plan. I den første del af kapitlet skal du arbejde med trekanter, hvor du skal

Læs mere

I denne opgave arbejder vi med følgende matematiske begreber:

I denne opgave arbejder vi med følgende matematiske begreber: I denne opgave arbejder vi med følgende matematiske begreber: En meter: 1 m. En kvadratmeter: 1 m. 1 m 2 1 m. En kubikmeter: 1 m 3 Radius-beregning af træet Find omkredsen af træet, mål i brysthøjde. Ca.

Læs mere

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER LÆS OG SKRIV MATEMATIK A1 LÆS MATEMATIK Brug de tre rammer i modellen, når du skal løse en matematikopgave. Det er ikke sikkert, du skal bruge alle punkter i hver ramme til alle opgaver. Find ud af, hvilke

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Plangeometri BEGREBER OG NAVNGIVNING. FORHÅNDSVIDEN Du skal bruge et digitalt værktøj til nogle af opgaverne på dette opslag. PLANGEOMETRI 79 OPGAVE 2

Plangeometri BEGREBER OG NAVNGIVNING. FORHÅNDSVIDEN Du skal bruge et digitalt værktøj til nogle af opgaverne på dette opslag. PLANGEOMETRI 79 OPGAVE 2 Plangeometri KTIVITT OPGV 2 PLNGOMTRI 79 GRR OG NVNGIVNING I en ligesidet trekant er siderne 6 m. realet af trekanten er 1,6 m 2. I dette kapitel skal du arejde med ktivitet for to til tre personer. eregn

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Den pythagoræiske læresætning

Den pythagoræiske læresætning Den pythagoræiske læresætning 1. Udfyld skemaet herunder dvs. find den manglende hypotenuse ved a 2 + b 2 = c 2 : 1 20 21 2 12 35 3 28 45 4 56 33 5 119 120 6 168 95 7 52 165 8 207 224 9 315 572 10 627

Læs mere

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2 Opgave 1 Opgave 2 21 000 m 2 B. 125,66 m 2 C. 1200 m 2 D. 185 540 m 2 Opgave 3 Det betyder, at en centimeter på tegningen svarer til 100 cm i virkeligheden B. 22m 2 C. D. E. Hvis længdeforholdet ændres

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

brikkerne til regning & matematik geometri basis+g preben bernitt

brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri, basis+g ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering

Læs mere

Geometrisk tegning - Facitliste

Geometrisk tegning - Facitliste Geometrisk tegning - Facitliste Om kapitlet I dette kapitel om geometrisk tegning skal eleverne arbejde med forskellige tegneteknikker og hjælpemidler. De skal gengive og undersøge muligheder og begrænsninger

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Lektion 8 Geometri Når du bruger denne facitliste skal du være opmærksom på, at: - der kan være enkelte fejl. - nogle af facitterne er udeladt - bl.a. der hvor facitterne er tegninger. - decimaltal kan

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Areal og overflade: kunne foretage beregninger af sammensatte arealer og sammensætte formler til beregning af disse.

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

geometri basis+g brikkerne til regning & matematik preben bernitt

geometri basis+g brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri G ISBN: 978-87-92488-15 2 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk Denne

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

GeomeTricks Windows version

GeomeTricks Windows version GeomeTricks Windows version Elevarbejdsark MI 130 En INFA-publikation - 1998 GeomeTricks - Elevarbejdsark Viggo Sadolin 16 september 1997 Oversigt over elevarbejdsarkene Klassetrin Type ark 3 4 5 6 7 8

Læs mere

Matematik Færdigheds- og vidensmål (Geometri og måling )

Matematik Færdigheds- og vidensmål (Geometri og måling ) Matematik Færdigheds- og vidensmål (Geometri og måling ) Kompetenceområde Klassetrin Faser 1 Eleven kan kategorisere Efter klassetrin Eleven kan anvende geometriske begreber og måle Eleven kan kategorisere

Læs mere

7 Trekanter. Faglige mål. Trekanter. Linjer i trekanter. Pythagoras. Areal

7 Trekanter. Faglige mål. Trekanter. Linjer i trekanter. Pythagoras. Areal 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Trekanter: kende navne for sider og vinkelspidser i trekanter, kunne konstruere bestemte trekanter ud fra givne betingelser

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 4. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier!!!* Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Opgave 1 -Tages kvadrat

Opgave 1 -Tages kvadrat Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker

Læs mere

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger.

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger. Matematik for malere praktikopgaver 3 Tilhører: Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger 2 Indhold: Tegneopgave... side 4 Ligninger... side 8 Areal...

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Løsningsforslag til Geometri 1.-6. klasse

Løsningsforslag til Geometri 1.-6. klasse 1 Løsningsforslag til Geometri 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser *HRPHWUL PHG *HRPH7ULFNV q2nodvvh - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser INFA 1998 1 Forord I den nye læseplan for matematik og i den tilhørende undervisningsvejledning

Læs mere

Kvadrant - instrumentbeskrivelse og virkemåde

Kvadrant - instrumentbeskrivelse og virkemåde Kvadrant instrumentbeskrivelse og virkemåde Kvadrant - instrumentbeskrivelse og virkemåde Kvadranterne i instrumentpakken fra geomat.dk er kopier af et instrument lavet af Georg Hartman i 1547. Originalen

Læs mere

GEOMETRI og TRIGONOMETRI del 1

GEOMETRI og TRIGONOMETRI del 1 GEOMETRI og TRIGONOMETRI del 1 x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse EUKLIDS ELEMENTER... 3 Euklids sætninger fra 1. bog... 11 TREKANTER: Egenskaber og notation... 15 LIGEDANNEDE FIGURER...

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene.

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene. Hop videre med Udforskning af opgaverne ne bygger videre på opgaver fra Kænguruen og lægger op til, at klassen sammen kan diskutere og udforske problemstillingerne. Opgavenumrene henviser til de opgaver,

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE I den midtengelske by Liverpool ligger bydelen Sefton med Sefton Park - et parkanlæg, der bl.a. er kendt for det ottekantede palmehus, hvor man kan

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Projekt 2.4 Euklids konstruktion af femkanten

Projekt 2.4 Euklids konstruktion af femkanten Projekter: Kapitel Projekt.4 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære femkant. 0. Forudsætninger, definitioner og

Læs mere

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Link Mål Kompetence mål: Modellering Færdighedsmål Eleven kan vurdere egne og andres modelleringsprocesser Videns mål Eleven har viden om

Læs mere

Forlag Malling Beck Best. nr Sigma for syvende

Forlag Malling Beck Best. nr Sigma for syvende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse:

Læs mere

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel FP10 10.-klasseprøven Matematik December 2014 1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel 1 Huspriser

Læs mere

Ligedannede trekanter

Ligedannede trekanter Ib Michelsen: Matematik C, Geometri, 1. kapitel 2011 Version 7.1 22-08-11 Rettet: tempel.png inkorporeret / minioverskrift rettet D:\Appserv260\www\2011\ligedannedeTrekanter2.odt Arven fra Grækenland Arven

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen 8 KO L O R I T Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen KOLORIT 8 Gyldendal KOLORIT 8 KOLORIT 8 MATEMATIK KOPIMAPPE 1. udgave, 1. oplag 2011 2011 Gyldendal

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering MULTI 7 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Læs og skriv matematik Eleven kan kommunikere mundtligt og skriftligt med og om matematik

Læs mere

INFA-Småtryk 1996-1. Allan C. Malmberg. Matematisk kunnen gennem brug af edb

INFA-Småtryk 1996-1. Allan C. Malmberg. Matematisk kunnen gennem brug af edb INFA-Småtryk 1996-1 Allan C. Malmberg Matematisk kunnen gennem brug af edb INFA Matematik - 1996 1 INFA-Småtryk 1996-1 Allan C. Malmberg Matematisk kunnen gennem brug af edb Indholdsfortegnelse Matematisk

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse Inspirationsforløb i faget matematik i 7.- 9. klasse Trekanter et inspirationsforløb om geometri i 8. klasse Indhold Indledning 2 Undervisningsforløbet 3 Mål for forløbet 3 Relationsmodellen 3 Planlægningsfasen

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 5. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

TRIGONOMETRI, 4 UGER, 9.KLASSE.

TRIGONOMETRI, 4 UGER, 9.KLASSE. TRIGONOMETRI, 4 UGER, 9.KLASSE. FRA FÆLLES MÅL Målsætninger for undervisningsforløbet er opsat efter kompetence, færdigheds og vidensmål samt læringsmål i lærersprog. Geometri og måling Fase 3 Geometriske

Læs mere

PLANGEOMETRI OM KAPITLET

PLANGEOMETRI OM KAPITLET PLANGEOMETRI OM KAPITLET I dette kapitel om plangeometri arbejder eleverne med forskellige egenskaber ved plane figurer. I den første del af kapitlet arbejder eleverne med at finde areal af rektangler,

Læs mere

MATEMATIK I HASLEBAKKER 13 OPGAVER

MATEMATIK I HASLEBAKKER 13 OPGAVER MATEMATIK I HASLEBAKKER 13 OPGAVER Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse,

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åbent VU Lektion 8 Geometri Omregning af længdemål... Omkreds og areal af rektangler og kvadrater... Omkreds og areal af andre figurer... rbejdstegninger og sammensatte figurer... Symmetrier

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

************************************************************************

************************************************************************ Projektet er todelt: Første del har fokus på Euklids system og består af introduktionen, samt I og II. Anden del har fokus på Hilberts system fra omkring år 1900 og består af III sammen med bilagene. Man

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb

8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb 8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb Kaffepause 10:00-10:15 Frokost 12:15-13:00 Kaffepause 13:45-14:00 SPROGLIG UDVIKLING

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

matematik grundbog basis preben bernitt

matematik grundbog basis preben bernitt 33 matematik grundbog basis preben bernitt 1 matematik grundbog basis ISBN: 978-87-92488-27-5 2. udgave som E-bog 2010 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk

Læs mere

FP9. Matematisk problemløsning. 9.-klasseprøven. December 2015

FP9. Matematisk problemløsning. 9.-klasseprøven. December 2015 FP9 9.-klasseprøven Matematisk problemløsning December 2015 1 I praktik i en boghandel 2 I praktik som murer 3 I praktik som journalist 4 I praktik som arkitekt 5 Sekskanter 6 Retvinklede og ligesidede

Læs mere

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Geometriske begreber: kunne sætte matematiske begreber ind i en matematisk kontekst samt kende den visuelle betydning

Læs mere

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side

Eksperimenter med areal og rumfang. Aktivitet Emne Klassetrin Side VisiRegn ideer 5 Eksperimenter med areal og rumfang Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Areal og Rumfang 2 Red burhønsene. Vejledn. 3-7 Største

Læs mere

Korncirkler og matematik

Korncirkler og matematik Korncirkler og matematik I den følgende opgave vil jeg undersøge om korncirkler indeholder matematiske figurer nærmere bestemt det gyldne snit, det gyldne rektangel og den gyldne spiral. Før jeg starter

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende

Forslag til løsninger til opgaver i. Matematik En grundbog for lærerstuderende Forslag til løsninger til opgaver i Matematik En grundbog for lærerstuderende Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave Vi skal tegne alle de linjestykker, der forbinder

Læs mere

Mattip om. Arealer 1. Tilhørende kopier: Arealer 1, 2 og 3. Du skal lære om: De vigtigste begreber. Arealberegning af et kvadrat eller rektangel

Mattip om. Arealer 1. Tilhørende kopier: Arealer 1, 2 og 3. Du skal lære om: De vigtigste begreber. Arealberegning af et kvadrat eller rektangel Mattip om realer 1 Du skal lære om: De vigtigste begreber Kan ikke Kan næsten Kan realberegning af et kvadrat eller rektangel Tegning/konstruktion af kvadrater og rektangler realberegning af et parallelogram

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt

brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt brikkerne til regning & matematik areal og rumfang,f ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering

Læs mere