Faktorforsøg. Antag at X i, i I, er uafhængige reelle variable og at. for alle i I. En faktor er en afbildning. hvor F er en mængde af labels.

Størrelse: px
Starte visningen fra side:

Download "Faktorforsøg. Antag at X i, i I, er uafhængige reelle variable og at. for alle i I. En faktor er en afbildning. hvor F er en mængde af labels."

Transkript

1 Faktorforsøg Antag at X i, i I, er uafhængige reelle variable og at X i N (ξ i, σ 2 ) for alle i I En faktor er en afbildning f : I F hvor F er en mængde af labels. En faktor deler observationerne ind i en række grupper, med én gruppe per label: {i I f(i) = j} for hvert j F.. p.1/52

2 Etsidet variansanalyse Fundamental antagelse: homogenitet indenfor grupperne. Præcise formulering af modellen: lad ξ = (ξ i ) i I. ξ L F hvor L F = {(x i ) i I hvis f(i) = f(i ) så er x i = x i } Sædvanlig fokus: er der homogenitet mellem grupperne? ξ L 1. p.2/52

3 Etsidet variansanalyse - resultater Dimension: dim L F = antallet af brugte labels Hvis faktoren er surjektiv, er dim L F = F Længde af projektion: P F X 2 = j F n F (j) 1 n F (j) i I : f(i)=j X i 2. p.3/52

4 Tosidet variansanalyse Betegner situationen hvor vi på en gang forholder os til to faktorer på en gang: b : I B t : I T Produktfaktor: Additiv model b t : I B T i (b(i), t(i)) R I L B T L B + L T L B L T L 1.. p.4/52

5 Vekselvirkning En etsidet variansanalyse ud fra B T kaldes en vekselvirkningsmodel: Opdeling efter Mouth Assesment closed open pointy Eyes round Vekselvirkning: niveauforskel for de røde punkter, ikke for de sorte.. p.5/52

6 Ingen vekselvirkning Den additive model B + T kaldes en model uden vekselvirkning: Opdeling efter Mouth Assesment closed open pointy Eyes round Ingen vekselvirkning: parallele forløb for de røde og de sorte punkter.. p.6/52

7 Vanskeligheder med den additive model Find dimensionen af L B + L T Find projektionen P B+T ned på L B + L T.. p.7/52

8 Designgraf Punkter: labels for B og labels for T. Kanter: for hver observation i I afsættes en kant b(i) t(i) A B C D B T Sammenhængende design: kun én komponent. p.8/52

9 Simpelt dimensionsresultat Sætning Hvis B og T udgør et sammenhængende design, så er L B L T = L 1 Korollar Hvis B og T udgør et sammenhængende design, så er dim L B + L T = B + T 1. p.9/52

10 Geometrisk ortogonalitet V er et vektorrum med indre produkt,,. L 1 og L 2 er to underrum. Sæt L 0 = L 1 L 2. Definition: L 1 og L 2 er geometrisk ortogonale hvis L 1 L 0 L 2 L 0 Vi skriver i påkommende tilfælde L 1 G L 2. p.10/52

11 Geometrisk ortogonalitet L 1 g replacements V L 2 L 0 L0 L 1 L 0 L 2 Står de to røde linier vinkelret på hinanden?. p.11/52

12 Eksempler på geometrisk ortogonalitet Hvis L 1 L 2 så er L 1 G L 2 Hvis L 1 L 2 så er L 1 G L 2 Væggene i et hus er geometrisk ortogonale.. p.12/52

13 Kommuterende projektioner V er et vektorrum med indre produkt,,. L 1 og L 2 er to underrum. Sæt L 0 = L 1 L 2. Projektionerne er p 1, p 2 og p 0. Sætning: Følgende betingelser er ækvivalente: L 1 og L 2 er geometrisk ortogonale p 1 p 2 = p 2 p 1 (projektionerne kommuterer) p 1 p 2 = p 0. p.13/52

14 Sum af ortogonale rum V er et vektorrum med indre produkt,,. L 1 og L 2 er to underrum. Projektionerne er p 1 og p 2. Sætning: Hvis L 1 L 2, så er projektionen ned i L 1 + L 2 givet som p 1+2 (x) = p 1 (x) + p 2 (x) for alle x V og p 1+2 (x) 2 = p 1 (x) 2 + p 2 (x) 2. p.14/52

15 Sum af geometrisk ortogonale rum V er et vektorrum med indre produkt,,. L 1 og L 2 er to underrum. Sæt L 0 = L 1 L 2. Projektionerne er p 1, p 2 og p 0. Sætning: Hvis L 1 G L 2, så er projektionen ned i L 1 + L 2 givet som p 1+2 (x) = p 1 (x) + p 2 (x) p 0 (x) for alle x V og p 1+2 (x) 2 = p 1 (x) 2 + p 2 (x) 2 p 0 (x) 2. p.15/52

16 Geometrisk ortogonale faktorer To faktorer B og T på indeksmængden I er geometrisk ortogonale hvis L B G L T Sætning: Lad B og T udgøre et sammenhængende design. Da er faktorerne geometrisk ortogonale hvis og kun hvis n B T (j, k) = n B(j) n T (k) I for alle j B, k T (balanceligningen). p.16/52

17 Eksempel Hvis alle B T -celler indeholder det samme antal observationer, er designet balanceret. A B C = , så B og T er geometrisk ortogonale.. p.17/52

18 Tosidet variansanalyse Sætning: Antag at B og T udgør et sammenhængende design, og at de to faktorer er geometrisk ortogonale. Da er dim L B+T = B + T 1 Endvidere er P B+T X = P B X + P T X P 1 X Specielt er P B+T X 2 = P B X 2 + P T X 2 P 1 X 2. p.18/52

19 Sammenligning af faktorer Definition: B er finere end T, eller T er grovere end B, skrevet T B hvis ethvert i s T -gruppe kan aflæses fra dets B-gruppe. Alternativ formulering: hvis enhver B-gruppe er indeholdt i en T -gruppe. Formelt: b(i) = b(i ) t(i) = t(i ). p.19/52

20 Sammenligningseksempel Tre målinger på hver af fem personer. I = {1,..., 15} Person 1 og 2 er mænd. Person 3, 4 og 5 er kvinder. To naturlige faktorer Person (med værdier 1, 2, 3, 4, 5) Køn (med værdier mand og kvinde ). p.20/52

21 Sammenligningseksempel Observationer: Person-grupper: Køn-grupper: Vi ser at Køn Person.. p.21/52

22 Sammenligning af faktorer Eksempler: B B T og T B T 1 F I Konvention: Hvis B T og T B, så identificeres B og T. Sætning: T B L T L B. p.22/52

23 Minimum Der findes en faktor B T (minimum af B og T ) så og B T B, B T T G B, G T G B T Eksempel: Hvis T B, så er B T = T. Sætning: L B L T = L B T. p.23/52

24 Konstruktion af minimum Sammenhængskomponenter i designgrafen for B og T : C 1,..., C r Symbolerne C 1,..., C r er labels for B T. En observation i I tilordnes et af disse labels, alt efter hvilken sammenhængskomponent befinder sig i. b(i) t(i). p.24/52

25 Konstruktion af minimum C1 C A B C D B T. p.25/52

26 Geometrisk ortogonale faktorer Sammenhængskomponenter i designgrafen for B og T : C 1,..., C r Sætning: B og T er geometrisk ortogonale hvis og kun hvis det for l = 1,..., r gælder at n B T (j, k) = n B(j) n T (k) n B T (l) for de j og k, der begge ligger i C l. (balanceligningen). p.26/52

27 Eksempel Hvis alle B T -celler indenfor en komponent indeholder lige mange observationer, er designet blok-balanceret. A B C D E D = 2 3 6, så B og T er geometrisk ortogonale.. p.27/52

28 Tosidet variansanalyse Sætning: Antag at B og T er surjektive og geometrisk ortogonale. Da er dim L B+T = B + T B T Endvidere er P B+T X = P B X + P T X P B T X Specielt er P B+T X 2 = P B X 2 + P T X 2 P B T X 2. p.28/52

29 Additive hypoteser i flerfaktorforsøg Et design er et system af faktorer, G = {G 1,..., G m } Hertil hører et underrum af R I og en hypotese L G = m L Gi, H G : ξ L G i=1 Udfordring: Find dim L G Udregn projektionen ned i L G. p.29/52

30 Additive hypoteser i flerfaktorforsøg Hvis G 1 G 2 så er m L Gi = m L Gi i=1 i=2 Hvis vi sætter ser vi altså at G = {G 2,..., G m } H G = H G Komplikation: Flere designs kan specificere den samme hypotese.... p.30/52

31 Ortogonal dekomposition Lad G = {G 1,..., G m } være et system af faktorer. Sæt V G = L G G <G L G. Sætning Antag at G G G for alle G, G G G G for alle G, G ( -stabilitet) (geometrisk ortogonalitet) Da er V G V G for alle G, G L G = G G V G for alle G. p.31/52

32 Et allergieksperiment Forsøgspersoner: 2 mænd, 3 kvinder. Behandling: Tre allergifremkaldende stoffer - A, B og C - indsprøjtes i armen på hver forsøgsperson. Effekt: Tre allergiske responser fremtræder (røde pletter). Måling: Udbredelsen (diameteren) af hver allergisk respons. Substantive spørgsmål: Hvor allergologiske er de tre stoffer? Virker stofferne ens på mænd og kvinder?. p.32/52

33 Data Nummer Person Køn Behandl Obs 1 1 Mand A Mand B Mand C Mand A Mand B Mand C Kvinde A Kvinde B Kvinde C Kvinde A Kvinde B Kvinde C Kvinde A Kvinde B Kvinde C p.33/52

34 Data Respons A B C Behandling Mænd: Kvinder:. p.34/52

35 Formel beskrivelse Vi ser forsøget som et faktorforsøg. Vi har 15 målinger, (X i ) i I hvor I = {1,..., 15}. Målingerne er uafhængige, og X i N (ξ i, σ 2 ). Vi har tre faktorer, Patient : I {1,..., 5} Køn : I {Mand, Kvinde} Treatment : I {A, B, C}. p.35/52

36 Interessante hypoteser Grundlæggende model: P + K T. Patienterne har en individuel generel følsomhed. Mænd og kvinder reagerer forskelligt på de tre stoffer. Primær delhypotese: P + T. Patienterne har en individuel generel følsomhed. Mænd og kvinder reagerer ens på de tre stoffer.. p.36/52

37 Interessante hypoteser Alternativ delhypotese: K T. Patienterne er ens, bortset fra kønsforskel. Mænd og kvinder reagerer forskelligt på de tre stoffer. Potentiel sluthypotese: K + T. Patienterne er ens, bortset fra kønsforskel. Mænd og kvinder reagerer ens på de tre stoffer.. p.37/52

38 Standard faktorstrukturdiagram For en tresidet variansanalyse har man normalt følgende strukturdiagram: replacements P K P P K T P T K 1 K T T Eftersom K P gælder at: P K = P, P K T = P T, K T P T. p.38/52

39 Modificeret faktorstrukturdiagram Et faktorstrukturdiagram der tager hensyn til alle ordninger i dette tilfælde, er: P T K T T P K 1. p.39/52

40 Strategi Brugen af den store sætning forløber i følgende trin: Kontroller at designet er -stabilt og ortogonalt. Lav etsidede variansanalyser for hver faktor i G. Regn baglæns, og find V G og de tilhørende projektioner Q G. Dan additive hypoteser.. p.40/52

41 Er designet ortogonalt? P T K T T P K 1 Hvis G G, så er G G = G, og der gælder automatisk at G G. G Så det er kun nødvendigt at se på tre par af faktorer: (K, T ) (P, T ) (P, K T ). p.41/52

42 (K, T ) Vi opskriver (K, T )-antalstabellen: A B C Mænd Kvinder Alle celletal er 0 så K T = 1. Balanceligningen er opfyldt.. p.42/52

43 (P, T ) Vi opskriver (P, T )-antalstabellen: A B C Alle celletal er 0 så P T = 1. Balanceligningen er opfyldt.. p.43/52

44 (P, K T ) Vi opskriver (P, K T )-antalstabellen: (M, A) (M, B) (M, C) (K, A) (K, B) (K, C) To sammenhængskomponenter, P (K T ) = K. Balanceligningen er opfyldt.. p.44/52

45 Ensidet variansanalyse, opsummeret Vi gennemregner de etsidede variansanalyser, og tilføjer resultaterne til faktorstrukturdiagrammet: P T 15, K T 6, T 3, P 5, K 2, , p.45/52

46 Dekomposition, 1 Vi starter nedefra. P T 15, K T 6, T 3, P 5, K 2, , , så L 1 = V 1, dim V 1 = dim L 1 = 1 og Q 1 X 2 = P 1 X 2 = p.46/52

47 Dekomposition, K P T 15, K T 6, T 3, P 5, K 2, , , , så L K = V K + V 1 dim L K = dim V K + dim V 1 2 = dim V K + 1. p.47/52

48 Dekomposition, T P T 15, K T 6, T 3, , 4.0 P 5, K 2, , , , så L T = V T + V 1 dim L T = dim V T + dim V 1 3 = dim V T + 1. p.48/52

49 Dekomposition, P P T 15, K T 6, T 3, , 4.0 P 5, , 33.3 K 2, , , , så L P = V P + V K + V 1 dim L P = dim V P + dim V K + dim V 1 5 = dim V P p.49/52

50 Dekomposition, K T P T 15, K T 6, , 3.7 T 3, , 4.0 P 5, , 33.3 K 2, , , , så L K T = V K T + V T + V K + V 1 dim L K T = dim V K T + dim V T + dim V K + dim V 1 6 = dim V p.50/52

51 Dekomposition, P T P T 15, K T 6, , 3.7 T 3, , 4.0 P 5, , 33.3 K 2, , , , så L P T = V P T + V K T + V P + V T + V K + V 1 15 = dim V P T p.51/52

52 Additiv hypotese, P + K T L P + L K T = (V P + V K + V 1 ) + (V K T + V T + V K + V 1 ) = V P + V K T + V T + V K + V 1 så dim L P + L K T = dim V P + dim V K T + dim V T + dim V K + dim V 1 = = 9. p.52/52

Additive hypoteser i flerfaktorforsøg

Additive hypoteser i flerfaktorforsøg Additive hypoteser i flerfaktorforsøg Et design er et system af faktorer, G = {G 1,...,G m } Hertil hører et underrum af R I og en hypotese L G = m L Gi, i=1 H G : ξ L G Udfordring: Forstå hvad udsagnet

Læs mere

Fejlstrata. Vi forestiller os at V har. 1) Et underrum L. 2) Et indre produkt, 3) En ortogonal dekomposition V = W W m

Fejlstrata. Vi forestiller os at V har. 1) Et underrum L. 2) Et indre produkt, 3) En ortogonal dekomposition V = W W m Fejlstrata Vi forestiller os at V har 1) Et underrum L 2) Et indre produkt, 3) En ortogonal dekomposition V = W 1 +... + W m Underrummene W i kaldes fejlstrata. Typisk eksempel på en fejlstratumdekomposition:

Læs mere

Tofaktorforsøg. Kapitel 13

Tofaktorforsøg. Kapitel 13 Kapitel 13 Tofaktorforsøg Det er meget almindeligt inden for de eksperimentelle fag, at man er interesseret i flere forholds indvirkning på en respons. En simpel tilgang til problemet kan beskrives som

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Eksempel , opg. 2

Eksempel , opg. 2 Faktorer En faktor er en gruppering/inddeling af målinger/observationer pga. Tilsigtede variationer i en eller flere forsøgsparametre Nødvendige (potentielle) blok-effekter såsom gentagne målinger på samme

Læs mere

Faktorforsøg. Kapitel 12

Faktorforsøg. Kapitel 12 Kapitel 12 Faktorforsøg I et faktorforsøg forklarer man ikke responsvariablen ud fra numeriske baggrundsvariable. Man deler i stedet observationerne ind i nogle grupper, og undersøger om denne gruppering

Læs mere

Lidt alment om vektorrum et papir som grundlag for diskussion

Lidt alment om vektorrum et papir som grundlag for diskussion Definition : vektorrum, vektorer Et vektorrum er en mængde af elementer med operationerne sum (+) og numerisk multiplikation (), så følgende regler gælder for alle a, b, c og for alle reelle tal s, t R.

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder Oversigt [LA] 11, 1, 13 Prikprodukt Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 00, opgave 6 Cauchy-Schwarz ulighed

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Klassisk Taylors formel

Klassisk Taylors formel p. 1/17 Klassisk Taylors formel Sætning Lad f : (a, b) R være n gange differentiabel. For x 0, x (a, b) findes et ξ mellem x 0 og x der opfylder at f(x) = f(x 0 )+ f (x 0 ) 1! (x x 0 )+...+ f(n 1) (x 0

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 2002, opgave 6 Cauchy-Schwarz ulighed Calculus

Læs mere

Den lineære normale model

Den lineære normale model Den lineære normale model Ingredienser: V : N-dimensionalt vektorrum. X : Ω V : stokastisk variabel. L : ægte underrum af V, dimension k., : fundamentalt indre produkt på V. Vi laver en hel familie af

Læs mere

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable E6 efterår 999 Notat 8 Jørgen Larsen 22. november 999 Lineære normale modeller ) udkast Ved hjælp af lineær algebra kan man formulere og analysere de såkaldte lineære normale modeller meget overskueligt

Læs mere

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok Opgave 1 Vejledende besvarelse af eksamen i Statistik for biokemikere, blok 2 2006 Inge Henningsen og Niels Richard Hansen Analysevariablen i denne opgave er variablen forskel, der for hver af 10 kvinder

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

S T A T I S T I S K T E O R I 1 : V A R I A N S A N A L Y S E J Ø R G E N G R A N F E L D T

S T A T I S T I S K T E O R I 1 : V A R I A N S A N A L Y S E J Ø R G E N G R A N F E L D T S T A T I S T I S K T E O R I 1 : V A R I A N S A N A L Y S E J Ø R G E N G R A N F E L D T Jørgen Granfeldt 2005 Institut for Matematiske Fag Det Naturvidenskabelige Fakultet Aarhus Universitet November

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Den lineære normale model

Den lineære normale model Den lineære normale model Ingredienser: V : N-dimensionalt vektorrum. X : Ω V : stokastisk variabel. L : ægte underrum af V, dimension k., : fundamentalt indre produkt på V. Vi laver en hel familie af

Læs mere

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod.

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. 1-stikprøve t-test (Eksamen 2005 opgave 1) Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. I nedenstående tabel betragtes blodprøver fra 9 patienter. Hver

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

Indhold. 2 Tosidet variansanalyse Additive virkninger Vekselvirkning... 9

Indhold. 2 Tosidet variansanalyse Additive virkninger Vekselvirkning... 9 Indhold 1 Ensidet variansanalyse 2 1.1 Estimation af middelværdier............................... 3 1.2 Estimation af standardafvigelse............................. 3 1.3 F-test for ens middelværdier...............................

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2 Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar

Læs mere

Sidste gang: One-way(ensidet)/one-factor ANOVA I dag: Two-factor ANOVA (Analysis of variance) Two-factor ANOVA med interaktion

Sidste gang: One-way(ensidet)/one-factor ANOVA I dag: Two-factor ANOVA (Analysis of variance) Two-factor ANOVA med interaktion VARIANSANALYSE 2 Sidste gang: One-way(ensidet)/one-factor ANOVA I dag: (Analysis of variance) med interaktion Problem: Hvordan håndterer vi forsøg, hvor effekten er forårsaget af to faktorer og en evt.

Læs mere

Program. Flersidet variansanalyse og hierarkiske modeller. Eksempel: iltoptag for krabber. Eksempel: iltoptag for krabber.

Program. Flersidet variansanalyse og hierarkiske modeller. Eksempel: iltoptag for krabber. Eksempel: iltoptag for krabber. Program Flersidet variansanalyse og hierarkiske modeller Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 50, mandag) Flersidet ANOVA 1 / 19 StatBK (Uge 50, mandag) Flersidet ANOVA 2 / 19 Eksempel:

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål

Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål Statistisk model Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål på (X, E). Modellen er parametriseret hvis der findes en parametermængde Θ og

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

standard normalfordelingen på R 2.

standard normalfordelingen på R 2. Standard normalfordelingen på R 2 Lad f (x, y) = 1 x 2 +y 2 2π e 2. Vi har så f (x, y) = 1 2π e x2 2 1 2π e y2 2, og ved Tonelli f dm 2 = 1. Ved µ(a) = A f dm 2 defineres et sandsynlighedsmål på R 2 målet

Læs mere

Diagonalisering. Definition (diagonaliserbar)

Diagonalisering. Definition (diagonaliserbar) 1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Den generelle lineære model

Den generelle lineære model Kapitel 10 Den generelle lineære model Den generelle lineære normale model, eller blot den lineære normale model, er en matematisk abstraktion af en række af de mest anvendte statistiske modeller: etsidet

Læs mere

Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al

Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al Program Tosidet variansanalyse og forsøgsplanlægning Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Ensidet ANOVA: repetition og Collinge eksempel. Additiv tosidet ANOVA (blokforsøg) Tosidet ANOVA

Læs mere

Forsøgsplanlægning Stikprøvestørrelse

Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 6. november 2007 Forsøgsplanlægning Stikprøvestørrelse 1 41 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Designteori. Kapitel 1

Designteori. Kapitel 1 Kapitel 1 Designteori Et forvirrende aspekt ved den behandling vi har givet sætningen om ortogonal dekomposition, er at sætningen indeholder ganske meget dyb matematik, men alligevel er underligt irrelevant

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

1 Beviser for fornyelsessætningen

1 Beviser for fornyelsessætningen Hvordan beviser man fornyelsessætningen? 1 1 Beviser for fornyelsessætningen I dette notat skal vi diskutere, hvorman man kan bevise fornyelsessætningen. Vi vil starte med at se på tilfældet, hvor ventetidsfordelingen

Læs mere

Lineære normale modeller (4) udkast

Lineære normale modeller (4) udkast E6 efterår 1999 Notat 21 Jørgen Larsen 2. december 1999 Lineære normale modeller (4) udkast 4.5 Regressionsanalyse 4.5.1 Præsentation 1 Regressionsanalyse handler om at undersøge hvordan én målt størrelse

Læs mere

2 0.9245. Multiple choice opgaver

2 0.9245. Multiple choice opgaver Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

Områdeestimator. X x. P θ. ν θ. Θ C(x) En områdeestimator er en afbildning C : X P(Θ). . p.1/30

Områdeestimator. X x. P θ. ν θ. Θ C(x) En områdeestimator er en afbildning C : X P(Θ). . p.1/30 Områdeestimator X (Ω, F) (X, E) x 01 01 P θ ν θ θ Θ 0000 1111 000000 111111 0000 1111 0000 1111 C(x) En områdeestimator er en afbildning C : X P(Θ).. p.1/30 Konfidensområde En områdestimator C : X P(Θ)

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Om begrebet relation

Om begrebet relation Om begrebet relation Henrik Stetkær 11. oktober 2005 Vi vil i denne note diskutere det matematiske begreb en relation, herunder specielt ækvivalensrelationer. 1 Det abstrakte begreb en relation Som ordet

Læs mere

Løsning til øvelse 7.8, side 272: Københavns Politigård

Løsning til øvelse 7.8, side 272: Københavns Politigård website: link fra, kapitel 7, afsnit 2 Løsning til øvelse 7.8, side 272: Københavns Politigård Bemærk: Benyt fx formelsamlingen til stxa side 10-14 til at finde de relevante formler. (Geogebra starter

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

Bilag 1. Om læsning og tolkning af kort udformet ved hjælp af korrespondanceanalysen.

Bilag 1. Om læsning og tolkning af kort udformet ved hjælp af korrespondanceanalysen. Bilag 1. Om læsning og tolkning af kort udformet ved hjælp af korrespondanceanalysen. Korrespondanceanalysen er en multivariat statistisk analyseform, som i modsætning til mange af de mere traditionelle

Læs mere

Fejlstratummodeller. Kapitel 3

Fejlstratummodeller. Kapitel 3 Kapitel 3 Fejlstratummodeller Lad V være et endeligdimensionalt reelt vektorrum. En fejlstratummodel på V har tre ingredienser, hvoraf de to første svarer til hvad man har for lineære normale modeller:

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance Plot af B j + ǫ ij (Y ij µ α i )): Program: res 4 2 0 2 B1 B2 B3 B4 B5 1. vi starter med at gennemgå opgave 3 side 513. 2. nyt: to-sidet variansanalyse 1 2 3 4 5 block σ 2 : within blocks variance σb 2

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Fejlstratummodeller. Kapitel 3

Fejlstratummodeller. Kapitel 3 Kapitel 3 Fejlstratummodeller Lad V være et endeligdimensionalt reelt vektorrum. En fejlstratummodel på V har tre ingredienser, hvoraf de to første svarer til hvad man har for lineære normale modeller:

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Statistik 1TS 2004 Obligatorisk opgave 2

Statistik 1TS 2004 Obligatorisk opgave 2 23. april 2004 Stat 1TS / EH Statistik 1TS 2004 Obligatorisk opgave 2 Formelle forhold: Opgaven stilles fredag d. 23. april 2003. Rapporten afleveres senest torsdag d. 13. maj kl. 12. Rapporten afleveres

Læs mere

Uge 11 Lille Dag. Opgaver til OPGAVER 1. Det ortogonale komplement

Uge 11 Lille Dag. Opgaver til OPGAVER 1. Det ortogonale komplement OPGAVER 1 Opgaver til Uge 11 Lille Dag Opgave 1 Det ortogonale komplement a) I R 2 er der givet vektoren (3, 7). Angiv en basis for det ortogonale komplement. b) Find i R 3 en basis for det ortogonale

Læs mere

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6 Institut for Matematiske Fag Matematisk Modellering 1 Aarhus Universitet Eva B. Vedel Jensen 25. februar 2008 UGESEDDEL 6 Forelæsningerne torsdag den 21. februar og tirsdag den 26. februar. Jeg har gennemgået

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Kombinant. En kombinant er en afbildning. hvor (Y, K) er endnu et målbart rum. Typisk taler vi om reelle kombinanter, hvor Y = R.

Kombinant. En kombinant er en afbildning. hvor (Y, K) er endnu et målbart rum. Typisk taler vi om reelle kombinanter, hvor Y = R. Kombinant Lad (ν θ ) θ Θ være en statistisk model på (X, E). En kombinant er en afbildning hvor (Y, K) er endnu et målbart rum. R : X Θ Y Typisk taler vi om reelle kombinanter, hvor Y = R. Som regel forsøger

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Geom2-dispositioner (reeksamen)

Geom2-dispositioner (reeksamen) Geom2-dispositioner (reeksamen) Rasmus Sylvester Bryder 20. april 2012 1 Mangfoldigheder i R n 1. Introducér begreberne parametriseret mangfoldighed, regularitet, indlejret parametriseret mangfoldighed

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

Oversigt over gruppeteori: definitioner og sætninger

Oversigt over gruppeteori: definitioner og sætninger Oversigt over gruppeteori: definitioner og sætninger (G, ) kaldesengruppe, når følgende aksiomer er opfyldt: 0) (G, ) er en organiseret (stabil) mængde: a, b G a b G 1) Den associative lov gælder, dvs.

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

Vektorer og lineær regression

Vektorer og lineær regression Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden

Læs mere

Statistik for Biokemikere Projekt

Statistik for Biokemikere Projekt Statistik for Biokemikere Projekt Institut for Matematiske Fag Inge Henningsen og Helle Sørensen Københavns Universitet November 2008 Formalia Dette projekt udgør en del af evalueringen i kurset Statistik

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff. Envejs variansanalyse - eksempel

Oversigt. Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff. Envejs variansanalyse - eksempel Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere