Repræsentation af tal

Størrelse: px
Starte visningen fra side:

Download "Repræsentation af tal"

Transkript

1 Repræsentation af tal DM526 Rolf Fagerberg, 2009

2 Bitmønstre Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program) Pixels (billedfil) Amplitude (lydfil).

3 Bitmønstre Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program) Pixels (billedfil) Amplitude (lydfil). I dag: heltal og kommatal.

4 Talsystemer Tital-systemet: 4532 = =

5 Talsystemer Tital-systemet: 4532 = = Grundtal: 10 Cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (fordi i = 10 i+1 )

6 Talsystemer Tital-systemet: 4532 = = Grundtal: 10 Cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (fordi i = 10 i+1 ) Syvtal-systemet: = = = 1640

7 Talsystemer Tital-systemet: 4532 = = Grundtal: 10 Cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (fordi i = 10 i+1 ) Syvtal-systemet: = = = 1640 Grundtal: 7 Cifre: 0, 1, 2, 3, 4, 5, 6 (fordi 7 7 i = 7 i+1 )

8 Total-systemet = = = 11 Grundtal: 2 Cifre: 0, 1 (fordi 2 2 i = 2 i+1 )

9 Total-systemet = = = 11 Grundtal: 2 Cifre: 0, 1 (fordi 2 2 i = 2 i+1 ) Relevante for computere fordi todelte valg er nemmest at repræsentere rent fysisk. Total-systemet kaldes også det binære talsystem.

10 Addition Addition fungerer ens i alle talsystemer, blot med grundtal udskiftet. Tital-systemet: =

11 Addition Addition fungerer ens i alle talsystemer, blot med grundtal udskiftet. Tital-systemet: Total-systemet: = =

12 Addition Addition fungerer ens i alle talsystemer, blot med grundtal udskiftet. Tital-systemet: Total-systemet: = = Subtraktion, multiplikation, division fungerer også ens (ikke med i bog).

13 Konvertering til binært talsystem Find cifrene fra højre til venstre i den binære representation af et positivt heltal N: X N Sålænge X > 0: (X, næste ciffer) (kvotient, rest) ved heltalsdivision X/2

14 Konvertering til binært talsystem Find cifrene fra højre til venstre i den binære representation af et positivt heltal N: X N Sålænge X > 0: (X, næste ciffer) (kvotient, rest) ved heltalsdivision X/2 Eksempel: N = 25: 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 =

15 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 =

16 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = =

17 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = = = 2( ) + 1

18 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = = = 2( ) + 1 = 2(2( ) + 0) + 1

19 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = = = 2( ) + 1 = 2(2( ) + 0) + 1 = 2(2(2( ) + 0) + 0) + 1

20 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = = = 2( ) + 1 = 2(2( ) + 0) + 1 = 2(2(2( ) + 0) + 0) + 1 = 2(2(2(2( ) + 1) + 0) + 0) + 1

21 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = = = 2( ) + 1 = 2(2( ) + 0) + 1 = 2(2(2( ) + 0) + 0) + 1 = 2(2(2(2( ) + 1) + 0) + 0) + 1 Bemærk at sidste division altid er 1/2 = (0,1): Kvotienten bliver 1 på et tidspunkt, da man ikke ved en division kan komme fra heltal 2 til heltal 0.

22 Repræsentationer af heltal Talrepræsentationer bruger (næsten altid) et fast antal bits (så operationer kan implementeres effektivt). k bits = 2 k forskellige bitmønstre

23 Repræsentationer af heltal Talrepræsentationer bruger (næsten altid) et fast antal bits (så operationer kan implementeres effektivt). k bits = 2 k forskellige bitmønstre Positive heltal: det binære talsystem giver en naturlig repræsentation. k = 4 :

24 Negative heltal Forskellige forslag: A Første bit = fortegn, ellers binært talsystem B Excess C Two s complement

25 Negative heltal Forskellige forslag: A Første bit = fortegn, ellers binært talsystem B Excess C Two s complement A B C A B C

26 Twos complement Repræsentationen two s complement har mange gode egenskaber: Fortegn kan ses af første bit. Simpel metode til at skifte fortegn findes. Den almindelige metode til addition virker også for negative tal (evt. ekstra mente til sidst skal blot smides væk). Ingen ekstra logiske kredsløb for disse (sparer transistorer på CPU). Subtraktion kan laves ved at vende fortegn og addere. Ingen logiske kredsløb for subtraktion (sparer transistorer på CPU). Uden bevis i bog. Prøv selv på eksempler.

27 Twos complement Repræsentationen two s complement har mange gode egenskaber: Fortegn kan ses af første bit. Simpel metode til at skifte fortegn findes. Den almindelige metode til addition virker også for negative tal (evt. ekstra mente til sidst skal blot smides væk). Ingen ekstra logiske kredsløb for disse (sparer transistorer på CPU). Subtraktion kan laves ved at vende fortegn og addere. Ingen logiske kredsløb for subtraktion (sparer transistorer på CPU). Uden bevis i bog. Prøv selv på eksempler. Skifte fortegn: Kopier bits fra højre til venstre til og med første 1-bit. Resten af bits inverteres. Eksempel: 6 = = -6

28 Kommatal Fast komma: Tital-systemet: = / /100 =

29 Kommatal Fast komma: Tital-systemet: = / /100 = Det binære talsystem: = = / / /8 = =

30 Flydende komma Flydende komma (alias videnskabelig notation): Tital-systemet: = ( 1) Mantisse: 4.56 Eksponent: 6

31 Flydende komma Flydende komma (alias videnskabelig notation): Tital-systemet: Binært: = ( 1) Mantisse: 4.56 Eksponent: = ( 1) Sign bit: 1 (sign bit 1 for negativt tal) Mantisse bits: (1)1010 (første bit underforstået) Eksponent: 010 (-2 i excess notation (3 bits)) Der afsættes et fast antal bits til hver af de tre dele.

32 Begrænsninger Heltal (N, Z) og reelle tal (R) er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2 k ) forskellige bitmønstre.

33 Begrænsninger Heltal (N, Z) og reelle tal (R) er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2 k ) forskellige bitmønstre. Ikke alle tal kan repræsenteres!

34 Begrænsninger Heltal (N, Z) og reelle tal (R) er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2 k ) forskellige bitmønstre. Viser sig f.eks. ved Overflow maxint + maxint =? Truncation errors Ikke alle tal kan repræsenteres! Stort tal + epsilon = stort tal. (a + b) + c a + (b + c) hvis a + b ikke kan repræsenteres exakt, mens b + c godt kan.

35 Begrænsninger Heltal (N, Z) og reelle tal (R) er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2 k ) forskellige bitmønstre. Viser sig f.eks. ved Overflow maxint + maxint =? Truncation errors Ikke alle tal kan repræsenteres! Stort tal + epsilon = stort tal. (a + b) + c a + (b + c) hvis a + b ikke kan repræsenteres exakt, mens b + c godt kan. I praksis ses det sjældent pga. et stort antal bits i talrepræsentationerne. Alternativt findes programmeringsbiblioteker der implementerer f.eks. vilkårligt store heltal (under brug af variabelt antal bits, samt tab af effektivitet).

36 Hexadecimal notation Gruppér bits i grupper af 4 (dvs. 16 forskellige muligheder):

37 Hexadecimal notation Gruppér bits i grupper af 4 (dvs. 16 forskellige muligheder): Vælg 16 tegn: F 1110 E 1101 D 1100 C 1011 B 1010 A

38 Hexadecimal notation Gruppér bits i grupper af 4 (dvs. 16 forskellige muligheder): Vælg 16 tegn: F 1110 E 1101 D 1100 C 1011 B 1010 A = 6AE...

39 Hexadecimal notation Gruppér bits i grupper af 4 (dvs. 16 forskellige muligheder): Vælg 16 tegn: F 1110 E 1101 D 1100 C 1011 B 1010 A = 6AE... NB: kan også bruges som cifre i et talsystem med grundtal 16.

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM534 Rolf Fagerberg Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, decimaltal (kommatal)) Bogstaver Computerinstruktion

Læs mere

CPUer og maskinkode DM534. Rolf Fagerberg

CPUer og maskinkode DM534. Rolf Fagerberg CPUer og maskinkode DM534 Rolf Fagerberg CPUers opbygning En CPU er bygget op af elektriske kredsløb (jvf. sidste forelæsning), som kan manipulere bits. En CPU manipulerer flere bits ad gangen, deres antal

Læs mere

dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet)

dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet) dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet) Efterår 2009 1 Simpel aritmetik på maskinniveau I SCO, appendix A, er det beskrevet, hvordan man adderer ikke-negative heltal

Læs mere

Talsystemer I V X L C D M 1 5 10 50 100 500 1000. Hvad betyder halvanden??. Kan man også sige Halvtredie???

Talsystemer I V X L C D M 1 5 10 50 100 500 1000. Hvad betyder halvanden??. Kan man også sige Halvtredie??? Romertal. Hvordan var de struktureret?? Systematisk?? I V X L C D M 1 5 10 50 100 500 1000 Regler: Hvis et lille tal skrives foran et stort tal trækkes tallet fra: IV = 5-1 = 4 Hvis et lille tal skrives

Læs mere

Det binære talsystem og lidt om, hvordan computeren virker

Det binære talsystem og lidt om, hvordan computeren virker Det binære talsystem og lidt om, hvordan computeren virker Det binære talsystem...2 Lidt om, hvorledes computeren anvender det binære talsystem...5 Lyst til at lege med de binære tal?...7 Addition:...7

Læs mere

Boolesk Algebra og det binære talsystem - temahæfte informatik. Oprindelse.

Boolesk Algebra og det binære talsystem - temahæfte informatik. Oprindelse. Boolesk Algebra og det binære talsystem - temahæfte informatik. I dette hæfte arbejdes der med to-tals systemet og logiske udtryk. Vi oplever at de almindelige regneregler også gælder her, og vi prøver

Læs mere

ITS MP 013. Talsystemer V009. Elevens navn. IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44

ITS MP 013. Talsystemer V009. Elevens navn. IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44 ITS MP 013 V009 Elevens navn IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44 ITS MP 013 Udarbejdet af Søren Haahr, juni 2010 Copyright Enhver mangfoldiggørelse af tekst eller illustrationer

Læs mere

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit.

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit. Kapitel 20: Talsystemer 20 Resumé af talsystemer... 344 Indtastning og omregning af talsystemer... 345 Udførelse af matematiske beregninger med hexadecimale og binære tal... 346 Sammenligning eller manipulation

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

En uægte brøk er en brøk der stadig kan forkortes ned til et blandet tal og som er større end 1. 17 Eksempel: Uægte brøk: 12

En uægte brøk er en brøk der stadig kan forkortes ned til et blandet tal og som er større end 1. 17 Eksempel: Uægte brøk: 12 7.,. og 9. klasse Regler for brøker Ægte og uægte brøker En ægte brøk er en brøk mellem 0 og. Ægte brøk Ægte brøk til mindste forkortelse (reduktion) 9 En uægte brøk er en brøk der stadig kan forkortes

Læs mere

Om at udregne enkeltstående hexadecimaler i tallet pi

Om at udregne enkeltstående hexadecimaler i tallet pi Om at udregne enkeltstående hexadecimaler i tallet pi I 996 var det en sensation, da det kom frem, at det var lykkedes D. Bailey, P. Borwein og S. Plouffe at finde en formel for tallet π, med hvilken man

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Det Digitale Niveau. Niels Olof Bouvin Institut for Datalogi Aarhus Universitet

Det Digitale Niveau. Niels Olof Bouvin Institut for Datalogi Aarhus Universitet Det Digitale Niveau Niels Olof Bouvin Institut for Datalogi Aarhus Universitet Level : Det digitale niveau Level 5 Problem-oriented language level Translation (compiler) Level 4 Assembly language level

Læs mere

Negative cifre n. I et positionssystem skriver man et tal på formen xn a + xn 1a

Negative cifre n. I et positionssystem skriver man et tal på formen xn a + xn 1a Af Peter Harremoës, Herlev Gymnasium Indledning De fleste lærebogssystemer til brug i gymnasiet eller HF indeholder et afsnit om vort positionssystem. Det bliver gerne fremstillet som noget af det mest

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

dcomnet-nr. 6 Talrepræsentation Computere og Netværk (dcomnet)

dcomnet-nr. 6 Talrepræsentation Computere og Netværk (dcomnet) dcomnet-nr. 6 Talrepræsentation Computere og Netværk (dcomnet) Efterår 2009 1 Talrepræsentation På maskinkodeniveau (Instruction Set Architecture Level) repræsenteres ordrer og operander ved bitfølger

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

1 Bits og Bytes Computere er fortræffelige til at opbevare data og behandle data Af data vil vi i dette afsnit primært beskæftige os med billeder, tekst og lyd, og se på, hvordan sådanne data lagres i

Læs mere

Matematisk modellering og numeriske metoder. Lektion 15

Matematisk modellering og numeriske metoder. Lektion 15 Matematisk modellering og numeriske metoder Lektion 15 Morten Grud Rasmussen 1. november, 2013 1 Numerisk analyse [Bogens afsnit 19.1 side 788] 1.1 Grundlæggende numerik Groft sagt handler numerisk analyse

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

På en digital indgang kan en computer kun se forskel på, om en kontakt er tændt eller slukket. Men til gengæld er den hurtig og god til at regne.

På en digital indgang kan en computer kun se forskel på, om en kontakt er tændt eller slukket. Men til gengæld er den hurtig og god til at regne. Boolesk Algebra og det binære talsystem - temahæfte informatik Dette temahæfte introducerer to-talsystemet og logiske udtryk (Boolesk algebra). Vi oplever, at de almindelige regneregler også gælder i to-talsystemet,

Læs mere

De 4 regnearter. (aritmetik) Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 42 Ekstra: 5 Point:

De 4 regnearter. (aritmetik) Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 42 Ekstra: 5 Point: Navn: Klasse: Matematik Opgave Kompendium De 4 regnearter (aritmetik) Aritmetik: kommer af græsk: arithmetike = regnekunst arithmos = tal Aritmetik er læren om tal og operationer på tal som de 4 regnearter.

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Tal og Regneoperationer

Tal og Regneoperationer Tal og Regneoperationer Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Specielle tegn. Specielle tegn. Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5

Specielle tegn. Specielle tegn. Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5 Siede 1 af 6 Specielle tegn Indhold: Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5 Teori og praksis Man kan ind i mellem få brug for at kunne skrive specielle tegn.

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 14. oktober 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3 1.2

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet

Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet penge Periode Mål Eleverne skal: Lære at anvende simpel hovedregning gennem leg og praktiske anvende addition og

Læs mere

DATALOGI 1E. Skriftlig eksamen mandag den 23. juni 2003

DATALOGI 1E. Skriftlig eksamen mandag den 23. juni 2003 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen mandag den 23. juni 2003 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

CITIZEN TM CX-85. Strimmelregner. Instruktionsmanual

CITIZEN TM CX-85. Strimmelregner. Instruktionsmanual ITIZEN TM X-85 Strimmelregner Instruktionsmanual BESKRIVELSE AF TASTATUR OG KNAPPER... Slettetast (clear entry / clear) Anvendes til at slette et forkert indtastet beløb. Øvrige indhold af hukommelsen

Læs mere

Figur 0.1: To kredsløb hvor en operationsforstærker bliver brugt som komparator. [1]

Figur 0.1: To kredsløb hvor en operationsforstærker bliver brugt som komparator. [1] A/D Konvertering Den virkelige verden, består af kontinuerlige analoge signaler. Computere derimod kan kun håndtere diskrete digitale signaler. Et forsøg på at repræsentere og bearbejde virkeligheden på

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

Lektion 1 Grundliggende regning

Lektion 1 Grundliggende regning Lektion 1 Grundliggende regning Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division - brug af regnemaskine... Talsystemets opbygning - afrunding af tal... Store tal og negative tal...

Læs mere

Noter til C# Programmering Selektion

Noter til C# Programmering Selektion Noter til C# Programmering Selektion Sætninger Alle sætninger i C# slutter med et semikolon. En sætning kontrollerer sekvensen i programafviklingen, evaluerer et udtryk eller gør ingenting Blanktegn Mellemrum,

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

DATALOGI 1E. Vejledende løsninger til Skriftlig eksamen mandag den 28. maj 2001. 1 60 min. 2 60 min. 3 60 min. 4 60 min.

DATALOGI 1E. Vejledende løsninger til Skriftlig eksamen mandag den 28. maj 2001. 1 60 min. 2 60 min. 3 60 min. 4 60 min. Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Vejledende løsninger til Skriftlig eksamen mandag den 28. maj 2001 Opgaverne vægtes i forhold til tidsangivelsen, og hver opgaves besvarelse

Læs mere

TIN15. Rydning, sletning og nulstilling w. Displayindikatorer. Generelle oplysninger. Grundlæggende operationer. Display og rulning "!

TIN15. Rydning, sletning og nulstilling w. Displayindikatorer. Generelle oplysninger. Grundlæggende operationer. Display og rulning ! TIN15 Regnemaskine med regneøvefunktion Texas Instruments 7800 Banner Dr. Dallas, TX 75251 U.S.A. Texas Instruments Holland B.V. Rutherfordweg 102 542 CG Utrecht - The Netherlands ¾ www.ti.com/calc Copyright

Læs mere

1. En nyttig formel Lad mig uden bevis angive en nyttig trigonometrisk formel, som i dag kaldes for en logaritmisk formel: (1) sin( A) sin( B) = 1 [ cos( A B) cos( A+ B) ] 2 Navnet skyldes løst sagt, at

Læs mere

matematik grundbog Demo trin 2 preben bernitt

matematik grundbog Demo trin 2 preben bernitt matematik grundbog trin preben bernitt matematik grundbog -udgave 00 by bernitt-matematik.dk Kopiering og udskrift af denne bog er kun tilladt efter aftale med bernitt-matematik.dk Læs nærmere om dette

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Det vigtigste ved læring af subtraktion er, at eleverne

Det vigtigste ved læring af subtraktion er, at eleverne Introduktion Subtraktion er sammen med multiplikation de to sværeste regningsarter. Begge er begrebsmæssigt sværere end addition og division og begge er beregningsmæssigt sværere end addition. Subtraktion

Læs mere

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1.

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1. Læringsprogram Talkonvertering Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen Klasse 2.4 1. marts 2011 Fag: Vejleder: Skole: Informationsteknologi B Karl G. Bjarnason Roskilde

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

Tal i det danske sprog, analyse og kritik

Tal i det danske sprog, analyse og kritik Tal i det danske sprog, analyse og kritik 0 Indledning Denne artikel handler om det danske sprog og dets talsystem. I første afsnit diskuterer jeg den metodologi jeg vil anvende. I andet afsnit vil jeg

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Andreas Nielsen Kalbyrisskolen 2009

Andreas Nielsen Kalbyrisskolen 2009 Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

1. Montering af papirrullen 2. Udskiftning af blækrullen Bemærk: 2. Udskiftning af batterier

1. Montering af papirrullen 2. Udskiftning af blækrullen Bemærk: 2. Udskiftning af batterier Strimmelregner 1. ontering af papirrullen Sæt [] knappen til "NP" (non print) stilling 1) Åben printer-låget 2) Sæt papirrullen på 3) Klip papirkanten lige med en saks og indsæt papirets forkant i printerens

Læs mere

Et alfabet er en ordnet mængde af bogstaver og andre tegn

Et alfabet er en ordnet mængde af bogstaver og andre tegn 16. Tegn og alfabet I dette kapitel studerer vi tegn. Tegn udgør grundbestanddelen i enhver form for tekstbehandling. I senere kapitler, nærmere betegnet kapitel 27 - kapitel 31, ser vi på sammensætningen

Læs mere

Lidt om Bits & Bytes. Talsystemer

Lidt om Bits & Bytes. Talsystemer Lidt om Bits & Bytes En hurtig genopfriskning af: Bits, bytes, kilobytes Megahertz, bps, Bps... Tegnsæt, f.eks. Unicode Hvad er det og hvor bruges det? Moderne og gammelt IT udstyr snakker sammen via 0

Læs mere

Forord 3 Strukturen i denne bog 6

Forord 3 Strukturen i denne bog 6 Indhold i Epsilon Forord 3 Strukturen i denne bog 6 Introduktion til del I. De naturlige tal 10 1 Børns talbegreber og regneoperationer omkring de første skoleår 12 Tal og det at tælle 15 Det indledende

Læs mere

Computerstøttet beregning

Computerstøttet beregning CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist qvist@math.aau.dk Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/

Læs mere

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point:

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point: Matematik / Basal Matematik Navn: Klasse: Matematik Opgave Kompendium Basal Matematik Følgende gennemgås De regnearter Afrunding af tal Større & mindre end Enheds omregning Regne hierarki Brøkregning Potenser

Læs mere

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer

Læs mere

Eksempel: Skat i år 2000

Eksempel: Skat i år 2000 Kursus 02199: Programmering afsnit 2.1-2.7 Anne Haxthausen IMM, DTU 1. Værdier og typer (bl.a. char, boolean, int, double) (afsnit 2.4) 2. Variable og konstanter (afsnit 2.3) 3. Sætninger (bl.a. assignments)

Læs mere

Start i cirklen med nummer 1 - følg derefter pilene:

Start i cirklen med nummer 1 - følg derefter pilene: Bogstaver Bogstavet a Skriv bogstavet a i skrivehusene: Farv den figur som starter med a: Bogstavet b Skriv bogstavet b i skrivehusene: Farv den figur som starter med b: Bogstavet c Skriv bogstavet c i

Læs mere

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel Grundlæggende matematiske begreber del Algebraiske udtryk Ligninger Løsning af ligninger med én variabel x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse ALGEBRAISKE UDTRYK... 3 Regnearternes

Læs mere

1 Videnskabens værktøj

1 Videnskabens værktøj Videnskabens værktøj Videnskabens værktøj Ethvert erhverv har sine værktøjer. Det særlige værktøj, der efterhånden er blevet fælleseje for næsten alle grene af videnskab, er matematikken. I dette kapitel

Læs mere

Python programmering. Per Tøfting. MacFest

Python programmering. Per Tøfting. MacFest Python programmering MacFest 2005 Per Tøfting http://pertoefting.dk/macfest/ Indhold Måder at afvikle Python program på Variabler Data typer Tal Sekvenser Strenge Tupler Lister Dictionaries Kontrolstrukturer

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

DATALOGI 1E. Skriftlig eksamen fredag d. 16. januar 2004

DATALOGI 1E. Skriftlig eksamen fredag d. 16. januar 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen fredag d. 16. januar 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Projekt Træningsmaskine

Projekt Træningsmaskine Computer- og El-teknik A. Holstebro Tekniske Gymnasium - HTX Projekt Træningsmaskine Afleveret: Fredag d. 10/10-2008. Udarbejdet af: Bent Arnoldsen, Holstebro HTX. Gruppemedlem: Hjalmar Krarup Andersen,

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

DM13-1. Obligatoriske Opgave - Kredsløbs design

DM13-1. Obligatoriske Opgave - Kredsløbs design DM13-1. Obligatoriske Opgave - Kredsløbs design Jacob Christiansen moffe42@imada.sdu.dk Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense 1. Opgaven Opgaven består i at designe et kredsløb,

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

HP 6S Videnskabelig kalkulator

HP 6S Videnskabelig kalkulator HP 6S Videnskabelig kalkulator H 1 1 FRALÆGGELSE Denne håndbog og eksempler heri stilles til rådighed uden forandringer, og er underkastet ændringer uden varsel. Undtagen i den udstrækning som loven forbyder,

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

Programmering i maskinkode på AMIGA

Programmering i maskinkode på AMIGA Programmering i maskinkode på AMIGA A.Forness & N.A.Holten Copyright 1989 ARCUS Copyright 1989 DATASKOLEN Indhold Blitter Copper-cycling Fonts Scrollning Maskinkode VI DATASKOLEN Postboks 62 Nordengen

Læs mere

Niveauer af abstrakte maskiner

Niveauer af abstrakte maskiner Det digitale niveau Niveauer af abstrakte maskiner Digitale kredsløb Logiske tilstande: (- V), (2-5 V) Kombinatoriske kredsløb Logiske tilstande: (- V), (2-5 V) Registre Logiske tilstande: (- V), (2-5

Læs mere

Den ideelle operationsforstærker.

Den ideelle operationsforstærker. ELA Den ideelle operationsforstærker. Symbol e - e + v o Differensforstærker v o A OL (e + - e - ) - A OL e ε e ε e - - e + (se nedenstående figur) e - e ε e + v o AOL e - Z in (i in 0) e + i in i in v

Læs mere

MAteMAtIk FoR LæReRStUDeReNDe. tal, algebra og funktioner. 1. 6. klasse

MAteMAtIk FoR LæReRStUDeReNDe. tal, algebra og funktioner. 1. 6. klasse kristine JEss HaNs CHRIsTIaN HaNsEN JOHN schou JEppE skott MAteMAtIk FoR LæReRStUDeReNDe tal, algebra og funktioner 1. 6. klasse Kristine Jess, Hans Christian Hansen, Joh n Schou og Jeppe Skott Matematik

Læs mere

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder 3 Algebra Faglige mål Kapitlet Algebra tager udgangspunkt i følgende faglige mål: Variable og brøker: kende enkle algebraiske udtryk med brøker og kunne behandle disse ved at finde fællesnævner. Den distributive

Læs mere

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 stx MAT A1 stx 005-007 Jens Carstensen, Jesper Frandsen, Jens Studsgaard og Systime A/S Kopiering fra denne bog må kun finde sted i overensstemmelse

Læs mere

1. En nyttig formel Lad mig uden bevis angive en nyttig trigonometrisk formel, som i dag kaldes for en logaritmisk formel: (1) sin( A) sin( B) = 1 [ cos( A B) cos( A+ B) ] 2 Navnet skyldes løst sagt, at

Læs mere

DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E

DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI MASKINARKITEKTUR Blok 2 samt Reeksamination i DATALOGI MASKINARKITEKTUR Blok 1 og arkitekturdelen af DATALOGI 1E Vejledende løsninger til

Læs mere

Opgave: BOW Bowling. Rules of Bowling. danish. BOI 2015, dag 1. Tilgængelig hukommelse: 256 MB. 30.04.2015

Opgave: BOW Bowling. Rules of Bowling. danish. BOI 2015, dag 1. Tilgængelig hukommelse: 256 MB. 30.04.2015 Opgave: BOW Bowling danish BOI 0, dag. Tilgængelig hukommelse: 6 MB. 30.04.0 Byteasar er fan af både bowling og statistik. Han har nedskrevet resultaterne af et par tidligere bowling spil. Desværre er

Læs mere

Regulære udtryk og endelige automater

Regulære udtryk og endelige automater Regulære udtryk og endelige automater Regulære udtryk: deklarative dvs. ofte velegnede til at specificere regulære sprog Endelige automater: operationelle dvs. bedre egnet til at afgøre om en given streng

Læs mere

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Talteoriopgaver Træningsophold ved Sorø Akademi 2007 Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2

Læs mere

Sproget Six. Til brug i rapportopgaven på kurset Oversættere. Vinter 2006. Abstract

Sproget Six. Til brug i rapportopgaven på kurset Oversættere. Vinter 2006. Abstract Sproget Six Til brug i rapportopgaven på kurset Oversættere Vinter 2006 Abstract Six er baseret på det sprog, der vises i figur 6.2 og 6.4 i Basics of Compiler Design. Den herværende tekst beskriver basissproget

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 25. februar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Computerarkitektur. - en introduktion til computerarkitektur med LINDA

Computerarkitektur. - en introduktion til computerarkitektur med LINDA Computerarkitektur - en introduktion til computerarkitektur med LINDA faraz@butt.dk Faraz Butt mads@danquah.dk Mads Danquah doktor@dyregod.dk Ulf Holm Nielsen Roskilde Universitetscenter Naturvidenskabelig

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Den lille hjælper. Krogårdskolen. Hvordan løses matematik? Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9.

Den lille hjælper. Krogårdskolen. Hvordan løses matematik? Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9. Den lille hjælper Krogårdskolen Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9. klasse Hvordan løses matematik? Positionssystem... 4 Positive tal... 4 Negative tal... 4 Hele tal...

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

T ALKUNNEN. Tilnærmede tal og computertal

T ALKUNNEN. Tilnærmede tal og computertal T ALKUNNEN 6 Allan C Allan C.. Malmberg Tilnærmede tal og computertal INFA Matematik - 2000 1 INFA - IT i skolens matematik Projektledelse: Allan C. Malmberg Inge B. Larsen INFA-Klubben: Leif Glud Holm

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere