Repræsentation af tal

Størrelse: px
Starte visningen fra side:

Download "Repræsentation af tal"

Transkript

1 Repræsentation af tal DM526 Rolf Fagerberg, 2009

2 Bitmønstre Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program) Pixels (billedfil) Amplitude (lydfil).

3 Bitmønstre Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program) Pixels (billedfil) Amplitude (lydfil). I dag: heltal og kommatal.

4 Talsystemer Tital-systemet: 4532 = =

5 Talsystemer Tital-systemet: 4532 = = Grundtal: 10 Cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (fordi i = 10 i+1 )

6 Talsystemer Tital-systemet: 4532 = = Grundtal: 10 Cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (fordi i = 10 i+1 ) Syvtal-systemet: = = = 1640

7 Talsystemer Tital-systemet: 4532 = = Grundtal: 10 Cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (fordi i = 10 i+1 ) Syvtal-systemet: = = = 1640 Grundtal: 7 Cifre: 0, 1, 2, 3, 4, 5, 6 (fordi 7 7 i = 7 i+1 )

8 Total-systemet = = = 11 Grundtal: 2 Cifre: 0, 1 (fordi 2 2 i = 2 i+1 )

9 Total-systemet = = = 11 Grundtal: 2 Cifre: 0, 1 (fordi 2 2 i = 2 i+1 ) Relevante for computere fordi todelte valg er nemmest at repræsentere rent fysisk. Total-systemet kaldes også det binære talsystem.

10 Addition Addition fungerer ens i alle talsystemer, blot med grundtal udskiftet. Tital-systemet: =

11 Addition Addition fungerer ens i alle talsystemer, blot med grundtal udskiftet. Tital-systemet: Total-systemet: = =

12 Addition Addition fungerer ens i alle talsystemer, blot med grundtal udskiftet. Tital-systemet: Total-systemet: = = Subtraktion, multiplikation, division fungerer også ens (ikke med i bog).

13 Konvertering til binært talsystem Find cifrene fra højre til venstre i den binære representation af et positivt heltal N: X N Sålænge X > 0: (X, næste ciffer) (kvotient, rest) ved heltalsdivision X/2

14 Konvertering til binært talsystem Find cifrene fra højre til venstre i den binære representation af et positivt heltal N: X N Sålænge X > 0: (X, næste ciffer) (kvotient, rest) ved heltalsdivision X/2 Eksempel: N = 25: 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 =

15 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 =

16 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = =

17 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = = = 2( ) + 1

18 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = = = 2( ) + 1 = 2(2( ) + 0) + 1

19 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = = = 2( ) + 1 = 2(2( ) + 0) + 1 = 2(2(2( ) + 0) + 0) + 1

20 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = = = 2( ) + 1 = 2(2( ) + 0) + 1 = 2(2(2( ) + 0) + 0) + 1 = 2(2(2(2( ) + 1) + 0) + 0) + 1

21 Hvorfor virker det? 25/2 = (12,1) 12/2 = (6,0) 6/2 = (3,0) 3/2 = (1,1) 1/2 = (0,1) 25 = = = 2( ) + 1 = 2(2( ) + 0) + 1 = 2(2(2( ) + 0) + 0) + 1 = 2(2(2(2( ) + 1) + 0) + 0) + 1 Bemærk at sidste division altid er 1/2 = (0,1): Kvotienten bliver 1 på et tidspunkt, da man ikke ved en division kan komme fra heltal 2 til heltal 0.

22 Repræsentationer af heltal Talrepræsentationer bruger (næsten altid) et fast antal bits (så operationer kan implementeres effektivt). k bits = 2 k forskellige bitmønstre

23 Repræsentationer af heltal Talrepræsentationer bruger (næsten altid) et fast antal bits (så operationer kan implementeres effektivt). k bits = 2 k forskellige bitmønstre Positive heltal: det binære talsystem giver en naturlig repræsentation. k = 4 :

24 Negative heltal Forskellige forslag: A Første bit = fortegn, ellers binært talsystem B Excess C Two s complement

25 Negative heltal Forskellige forslag: A Første bit = fortegn, ellers binært talsystem B Excess C Two s complement A B C A B C

26 Twos complement Repræsentationen two s complement har mange gode egenskaber: Fortegn kan ses af første bit. Simpel metode til at skifte fortegn findes. Den almindelige metode til addition virker også for negative tal (evt. ekstra mente til sidst skal blot smides væk). Ingen ekstra logiske kredsløb for disse (sparer transistorer på CPU). Subtraktion kan laves ved at vende fortegn og addere. Ingen logiske kredsløb for subtraktion (sparer transistorer på CPU). Uden bevis i bog. Prøv selv på eksempler.

27 Twos complement Repræsentationen two s complement har mange gode egenskaber: Fortegn kan ses af første bit. Simpel metode til at skifte fortegn findes. Den almindelige metode til addition virker også for negative tal (evt. ekstra mente til sidst skal blot smides væk). Ingen ekstra logiske kredsløb for disse (sparer transistorer på CPU). Subtraktion kan laves ved at vende fortegn og addere. Ingen logiske kredsløb for subtraktion (sparer transistorer på CPU). Uden bevis i bog. Prøv selv på eksempler. Skifte fortegn: Kopier bits fra højre til venstre til og med første 1-bit. Resten af bits inverteres. Eksempel: 6 = = -6

28 Kommatal Fast komma: Tital-systemet: = / /100 =

29 Kommatal Fast komma: Tital-systemet: = / /100 = Det binære talsystem: = = / / /8 = =

30 Flydende komma Flydende komma (alias videnskabelig notation): Tital-systemet: = ( 1) Mantisse: 4.56 Eksponent: 6

31 Flydende komma Flydende komma (alias videnskabelig notation): Tital-systemet: Binært: = ( 1) Mantisse: 4.56 Eksponent: = ( 1) Sign bit: 1 (sign bit 1 for negativt tal) Mantisse bits: (1)1010 (første bit underforstået) Eksponent: 010 (-2 i excess notation (3 bits)) Der afsættes et fast antal bits til hver af de tre dele.

32 Begrænsninger Heltal (N, Z) og reelle tal (R) er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2 k ) forskellige bitmønstre.

33 Begrænsninger Heltal (N, Z) og reelle tal (R) er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2 k ) forskellige bitmønstre. Ikke alle tal kan repræsenteres!

34 Begrænsninger Heltal (N, Z) og reelle tal (R) er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2 k ) forskellige bitmønstre. Viser sig f.eks. ved Overflow maxint + maxint =? Truncation errors Ikke alle tal kan repræsenteres! Stort tal + epsilon = stort tal. (a + b) + c a + (b + c) hvis a + b ikke kan repræsenteres exakt, mens b + c godt kan.

35 Begrænsninger Heltal (N, Z) og reelle tal (R) er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2 k ) forskellige bitmønstre. Viser sig f.eks. ved Overflow maxint + maxint =? Truncation errors Ikke alle tal kan repræsenteres! Stort tal + epsilon = stort tal. (a + b) + c a + (b + c) hvis a + b ikke kan repræsenteres exakt, mens b + c godt kan. I praksis ses det sjældent pga. et stort antal bits i talrepræsentationerne. Alternativt findes programmeringsbiblioteker der implementerer f.eks. vilkårligt store heltal (under brug af variabelt antal bits, samt tab af effektivitet).

36 Hexadecimal notation Gruppér bits i grupper af 4 (dvs. 16 forskellige muligheder):

37 Hexadecimal notation Gruppér bits i grupper af 4 (dvs. 16 forskellige muligheder): Vælg 16 tegn: F 1110 E 1101 D 1100 C 1011 B 1010 A

38 Hexadecimal notation Gruppér bits i grupper af 4 (dvs. 16 forskellige muligheder): Vælg 16 tegn: F 1110 E 1101 D 1100 C 1011 B 1010 A = 6AE...

39 Hexadecimal notation Gruppér bits i grupper af 4 (dvs. 16 forskellige muligheder): Vælg 16 tegn: F 1110 E 1101 D 1100 C 1011 B 1010 A = 6AE... NB: kan også bruges som cifre i et talsystem med grundtal 16.

dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet)

dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet) dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet) Efterår 2009 1 Simpel aritmetik på maskinniveau I SCO, appendix A, er det beskrevet, hvordan man adderer ikke-negative heltal

Læs mere

Talsystemer I V X L C D M 1 5 10 50 100 500 1000. Hvad betyder halvanden??. Kan man også sige Halvtredie???

Talsystemer I V X L C D M 1 5 10 50 100 500 1000. Hvad betyder halvanden??. Kan man også sige Halvtredie??? Romertal. Hvordan var de struktureret?? Systematisk?? I V X L C D M 1 5 10 50 100 500 1000 Regler: Hvis et lille tal skrives foran et stort tal trækkes tallet fra: IV = 5-1 = 4 Hvis et lille tal skrives

Læs mere

Boolesk Algebra og det binære talsystem - temahæfte informatik. Oprindelse.

Boolesk Algebra og det binære talsystem - temahæfte informatik. Oprindelse. Boolesk Algebra og det binære talsystem - temahæfte informatik. I dette hæfte arbejdes der med to-tals systemet og logiske udtryk. Vi oplever at de almindelige regneregler også gælder her, og vi prøver

Læs mere

Det binære talsystem og lidt om, hvordan computeren virker

Det binære talsystem og lidt om, hvordan computeren virker Det binære talsystem og lidt om, hvordan computeren virker Det binære talsystem...2 Lidt om, hvorledes computeren anvender det binære talsystem...5 Lyst til at lege med de binære tal?...7 Addition:...7

Læs mere

ITS MP 013. Talsystemer V009. Elevens navn. IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44

ITS MP 013. Talsystemer V009. Elevens navn. IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44 ITS MP 013 V009 Elevens navn IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44 ITS MP 013 Udarbejdet af Søren Haahr, juni 2010 Copyright Enhver mangfoldiggørelse af tekst eller illustrationer

Læs mere

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit.

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit. Kapitel 20: Talsystemer 20 Resumé af talsystemer... 344 Indtastning og omregning af talsystemer... 345 Udførelse af matematiske beregninger med hexadecimale og binære tal... 346 Sammenligning eller manipulation

Læs mere

En uægte brøk er en brøk der stadig kan forkortes ned til et blandet tal og som er større end 1. 17 Eksempel: Uægte brøk: 12

En uægte brøk er en brøk der stadig kan forkortes ned til et blandet tal og som er større end 1. 17 Eksempel: Uægte brøk: 12 7.,. og 9. klasse Regler for brøker Ægte og uægte brøker En ægte brøk er en brøk mellem 0 og. Ægte brøk Ægte brøk til mindste forkortelse (reduktion) 9 En uægte brøk er en brøk der stadig kan forkortes

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

1 Bits og Bytes Computere er fortræffelige til at opbevare data og behandle data Af data vil vi i dette afsnit primært beskæftige os med billeder, tekst og lyd, og se på, hvordan sådanne data lagres i

Læs mere

På en digital indgang kan en computer kun se forskel på, om en kontakt er tændt eller slukket. Men til gengæld er den hurtig og god til at regne.

På en digital indgang kan en computer kun se forskel på, om en kontakt er tændt eller slukket. Men til gengæld er den hurtig og god til at regne. Boolesk Algebra og det binære talsystem - temahæfte informatik Dette temahæfte introducerer to-talsystemet og logiske udtryk (Boolesk algebra). Vi oplever, at de almindelige regneregler også gælder i to-talsystemet,

Læs mere

CITIZEN TM CX-85. Strimmelregner. Instruktionsmanual

CITIZEN TM CX-85. Strimmelregner. Instruktionsmanual ITIZEN TM X-85 Strimmelregner Instruktionsmanual BESKRIVELSE AF TASTATUR OG KNAPPER... Slettetast (clear entry / clear) Anvendes til at slette et forkert indtastet beløb. Øvrige indhold af hukommelsen

Læs mere

Specielle tegn. Specielle tegn. Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5

Specielle tegn. Specielle tegn. Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5 Siede 1 af 6 Specielle tegn Indhold: Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5 Teori og praksis Man kan ind i mellem få brug for at kunne skrive specielle tegn.

Læs mere

Lektion 1 Grundliggende regning

Lektion 1 Grundliggende regning Lektion 1 Grundliggende regning Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division - brug af regnemaskine... Talsystemets opbygning - afrunding af tal... Store tal og negative tal...

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

DATALOGI 1E. Vejledende løsninger til Skriftlig eksamen mandag den 28. maj 2001. 1 60 min. 2 60 min. 3 60 min. 4 60 min.

DATALOGI 1E. Vejledende løsninger til Skriftlig eksamen mandag den 28. maj 2001. 1 60 min. 2 60 min. 3 60 min. 4 60 min. Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Vejledende løsninger til Skriftlig eksamen mandag den 28. maj 2001 Opgaverne vægtes i forhold til tidsangivelsen, og hver opgaves besvarelse

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

Det vigtigste ved læring af subtraktion er, at eleverne

Det vigtigste ved læring af subtraktion er, at eleverne Introduktion Subtraktion er sammen med multiplikation de to sværeste regningsarter. Begge er begrebsmæssigt sværere end addition og division og begge er beregningsmæssigt sværere end addition. Subtraktion

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Computerstøttet beregning

Computerstøttet beregning CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist qvist@math.aau.dk Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/

Læs mere

Lidt om Bits & Bytes. Talsystemer

Lidt om Bits & Bytes. Talsystemer Lidt om Bits & Bytes En hurtig genopfriskning af: Bits, bytes, kilobytes Megahertz, bps, Bps... Tegnsæt, f.eks. Unicode Hvad er det og hvor bruges det? Moderne og gammelt IT udstyr snakker sammen via 0

Læs mere

1121 PD L. Brugervejledning

1121 PD L. Brugervejledning 1121 PD L Brugervejledning Oversigt Generelle instruktioner... 2 Udskiftning af farvebånd........ 3 Isætning af papirrullen... 3 Display symboler... 4 Tastatur fortegnelse.... 5 Skydeknap funktioner......

Læs mere

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1.

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1. Læringsprogram Talkonvertering Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen Klasse 2.4 1. marts 2011 Fag: Vejleder: Skole: Informationsteknologi B Karl G. Bjarnason Roskilde

Læs mere

Tal i det danske sprog, analyse og kritik

Tal i det danske sprog, analyse og kritik Tal i det danske sprog, analyse og kritik 0 Indledning Denne artikel handler om det danske sprog og dets talsystem. I første afsnit diskuterer jeg den metodologi jeg vil anvende. I andet afsnit vil jeg

Læs mere

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer

Læs mere

Projekt Træningsmaskine

Projekt Træningsmaskine Computer- og El-teknik A. Holstebro Tekniske Gymnasium - HTX Projekt Træningsmaskine Afleveret: Fredag d. 10/10-2008. Udarbejdet af: Bent Arnoldsen, Holstebro HTX. Gruppemedlem: Hjalmar Krarup Andersen,

Læs mere

Et alfabet er en ordnet mængde af bogstaver og andre tegn

Et alfabet er en ordnet mængde af bogstaver og andre tegn 16. Tegn og alfabet I dette kapitel studerer vi tegn. Tegn udgør grundbestanddelen i enhver form for tekstbehandling. I senere kapitler, nærmere betegnet kapitel 27 - kapitel 31, ser vi på sammensætningen

Læs mere

Start i cirklen med nummer 1 - følg derefter pilene:

Start i cirklen med nummer 1 - følg derefter pilene: Bogstaver Bogstavet a Skriv bogstavet a i skrivehusene: Farv den figur som starter med a: Bogstavet b Skriv bogstavet b i skrivehusene: Farv den figur som starter med b: Bogstavet c Skriv bogstavet c i

Læs mere

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 stx MAT A1 stx 005-007 Jens Carstensen, Jesper Frandsen, Jens Studsgaard og Systime A/S Kopiering fra denne bog må kun finde sted i overensstemmelse

Læs mere

DM13-1. Obligatoriske Opgave - Kredsløbs design

DM13-1. Obligatoriske Opgave - Kredsløbs design DM13-1. Obligatoriske Opgave - Kredsløbs design Jacob Christiansen moffe42@imada.sdu.dk Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense 1. Opgaven Opgaven består i at designe et kredsløb,

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

1 Videnskabens værktøj

1 Videnskabens værktøj Videnskabens værktøj Videnskabens værktøj Ethvert erhverv har sine værktøjer. Det særlige værktøj, der efterhånden er blevet fælleseje for næsten alle grene af videnskab, er matematikken. I dette kapitel

Læs mere

T ALKUNNEN. Tilnærmede tal og computertal

T ALKUNNEN. Tilnærmede tal og computertal T ALKUNNEN 6 Allan C Allan C.. Malmberg Tilnærmede tal og computertal INFA Matematik - 2000 1 INFA - IT i skolens matematik Projektledelse: Allan C. Malmberg Inge B. Larsen INFA-Klubben: Leif Glud Holm

Læs mere

Programmering i C Intro og grundlæggende C 5. marts 2007

Programmering i C Intro og grundlæggende C 5. marts 2007 Programmering i C Intro og grundlæggende C 5. marts 2007 Mads Pedersen, OZ6HR mads@oz6hr.dk Plan for kurset Ma. 5/3: Ma. 19/3: Ma. 2/4: To. 12/4: Formål, intro, grundlæggende Videre, sprogkonstruktioner

Læs mere

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

Niveauer af abstrakte maskiner

Niveauer af abstrakte maskiner Det digitale niveau Niveauer af abstrakte maskiner Digitale kredsløb Logiske tilstande: (- V), (2-5 V) Kombinatoriske kredsløb Logiske tilstande: (- V), (2-5 V) Registre Logiske tilstande: (- V), (2-5

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Teknologi historie Datateknologi, Hardware og software

Teknologi historie Datateknologi, Hardware og software Teknologi historie Datateknologi, Hardware og software Følgende fremstilling er delvis baseret på Dr. Paul E. Dunne s forelæsningsnotater. Notaterne findes på http://www.csc.liv.ac.uk/~ped/teachadmin/histsci/content.html

Læs mere

HP 6S Videnskabelig kalkulator

HP 6S Videnskabelig kalkulator HP 6S Videnskabelig kalkulator H 1 1 FRALÆGGELSE Denne håndbog og eksempler heri stilles til rådighed uden forandringer, og er underkastet ændringer uden varsel. Undtagen i den udstrækning som loven forbyder,

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner FUNKTIONER del Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner -klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse FUNKTIONSBEGREBET... 3 Funktioner beskrevet ved mængder...

Læs mere

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Henrik S. Hansen, version 1.5

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Henrik S. Hansen, version 1.5 SCT. KNUDS GYMNASIUM KOMPLEKSE TAL Henrik S. Hansen, version 1.5 Indhold Tallenes udvikling... 2 De naturlige tal... 2 De hele tal... 2 De rationale tal... 3 De reelle tal... 3 De komplekse tal... 4 Indledning...

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

Induktive og rekursive definitioner

Induktive og rekursive definitioner Induktive og rekursive definitioner Denne note omhandler matematiske objekter, som formelt er opbygget fra et antal basale byggesten, kaldet basistilfælde eller blot basis, ved gentagen brug af et antal

Læs mere

Den lille hjælper. Krogårdskolen. Hvordan løses matematik? Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9.

Den lille hjælper. Krogårdskolen. Hvordan løses matematik? Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9. Den lille hjælper Krogårdskolen Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9. klasse Hvordan løses matematik? Positionssystem... 4 Positive tal... 4 Negative tal... 4 Hele tal...

Læs mere

Den logaritmiske spiral en introduktion til computerprogrammet LOGSPIR

Den logaritmiske spiral en introduktion til computerprogrammet LOGSPIR 1 Jørgen Erichsen Den logaritmiske spiral en introduktion til computerprogrammet LOGSPIR Kuno Fladt kalder i sin bog om plane kurver den logaritmiske spiral for die interessanteste aller Spiralen und vielleicht

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Affine - et krypteringssystem

Affine - et krypteringssystem Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på

Læs mere

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet RSA Kryptosystemet Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Kryptering med RSA Her følger først en kort opridsning af RSA kryptosystemet, som vi senere skal bruge til at lave digitale signaturer.

Læs mere

Fælles mål i dansk som andetsprog. v/ Sofia Esmann Busch

Fælles mål i dansk som andetsprog. v/ Sofia Esmann Busch Fælles mål i dansk som andetsprog v/ Sofia Esmann Busch Forenklede Fælles Mål dansk som andetsprog Dansk som andetsprog har fælles mål for basisundervisningen og for supplerende dansk som andetsprog. Workshoppen

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Robusthed i geometriske algoritmer Michael Neidhardt

Robusthed i geometriske algoritmer Michael Neidhardt Kandidatspeciale, Datalogisk Institut Københavns Universitet, december 2008 Vejleder Jyrki Katajainen Robusthed i geometriske algoritmer Michael Neidhardt Abstract The description of many geometric algorithms

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter uden regnemaskine...2 De fire regnearter nu må du godt bruge regnemaskine...5 10-tals-systemet...7 Decimaler og brøker...9 Store tal...1 Gange

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

Manual til WordPress CMS

Manual til WordPress CMS Manual til WordPress CMS 1. Log ind på din Wordpress-side For at arbejde på din hjemmeside skal du først logge ind på administrationsdelen. Muligvis har du et direkte link på siden. Ellers er adressen

Læs mere

xgalleri Mulige filtyper Installation web-version

xgalleri Mulige filtyper Installation web-version xgalleri xgalleri opstod ud fra ønsket om at lægge en større samling billeder på nettet. Der findes mange programmer, som kan bruges til at lægge datafiler på nettet; men de fungerer typisk på den måde,

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

REDOK. Morse. Morsenøglen: Hvide felter = prik (.) Røde felter = streg (-) Skråstreg = nyt bogstav To skråstreger = nyt ord

REDOK. Morse. Morsenøglen: Hvide felter = prik (.) Røde felter = streg (-) Skråstreg = nyt bogstav To skråstreger = nyt ord REDOK Dette katalog er ment som en hjælp til lederne i arbejdet med REDOK Niveau 2. Alle koder, der bliver brugt i REDOK Niveau 2, er forklaret i dette katalog. Morse Da englænderen Samuel Morse i 1837

Læs mere

Ideer til matematik-aktiviteter i yngstetrinet

Ideer til matematik-aktiviteter i yngstetrinet Ideer til matematik-aktiviteter i yngstetrinet Følgende ideer er ment som praktiske og konkrete ting, man kan bruge i matematik-undervisningen i de yngste klasser. Nogle af aktiviteterne kan bruges til

Læs mere

brikkerne til regning & matematik potenstal og præfikser Demo trin 1 preben bernitt

brikkerne til regning & matematik potenstal og præfikser Demo trin 1 preben bernitt brikkerne til regning & matematik potenstal og præfikser trin 1 preben bernitt brikkerne til regning & matematik potenser og præfikser, trin 1 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering

Læs mere

Undervisningsbeskrivelse for design & produktion - el

Undervisningsbeskrivelse for design & produktion - el Undervisningsbeskrivelse for design & produktion - el Termin Maj/juni 2013 Institution Uddannelse Fag og niveau Lærer Hold ZBC-Ringsted, Ahorn Allé 3-5 4100 Ringsted HTX Design & produktion - el Christian

Læs mere

Martin Geisler Mersenne primtal. Marin Mersenne

Martin Geisler Mersenne primtal. Marin Mersenne Martin Geisler Mersenne primtal Marin Mersenne 3. årsopgave Aalborghus Gymnasium 22. 29. januar 2001 Forord Denne opgave skal handle om Mersenne primtal, men kommer også ind på meget andet. Da de forskellige

Læs mere

Forenklede Fælles Mål. Matematik i marts 27. marts 2014

Forenklede Fælles Mål. Matematik i marts 27. marts 2014 Forenklede Fælles Mål Matematik i marts 27. marts 2014 Læringskonsulenter klar med bistand Side 2 Forenklede Fælles Mål hvad ligger der i de nye mål? Hvorfor nye Fælles Mål? Hvorfor? Målene bruges generelt

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

tal, algebra og funktioner

tal, algebra og funktioner JOhN schou kristine JEss hans christian hansen JEppE skott MAteMAtIk FoR LæReRStUDeReNDe tal, algebra og funktioner 4. 10. klasse Joh n Schou, Kristine Jess, Hans Christian Hansen og Jeppe Skott Matematik

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

KEuroCalc-håndbogen. Éric Bischoff

KEuroCalc-håndbogen. Éric Bischoff Éric Bischoff 2 Indhold 1 Indledning 5 2 Brug af KEuroCalc 7 2.1 Udførsel af konverteringer................................. 7 2.2 Addition og subtraktion.................................. 8 2.3 Multiplicere

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard RSA-kryptosystemet RSA-kryptosystemet Erik Vestergaard Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 007. Billeder: Forside: istock.com/demo10 Erik Vestergaard www.matematikfysik.dk 3 1. Indledning

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Programmering i maskinkode på AMIGA

Programmering i maskinkode på AMIGA Programmering i maskinkode på AMIGA A.Forness & N.A.Holten Copyright 1989 ARCUS Copyright 1989 DATASKOLEN Hæfte 1 Indhold Introduktion Det binære talsystem Det hexadecimale talsystem Assemblerens funktion

Læs mere

Medicinsk billeddannelse

Medicinsk billeddannelse Medicinsk billeddannelse Introduktion Billedtyper - Opgaver Billedegenskaber Billedbehandling Lars Møller Albrecht Lars.moeller.albrecht@mt.regionsyddanmark.dk Billedtyper Analog f.eks. billeder, malerier,

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Matematik Test 6. 6.1. Talskrivning: 6.2 Sandt eller falskt udsagn. 30 mm = 3 cm 500 m = 5 km 3 ton = 300 Kg. 4 dm > 80 mm 3000 m < 3 km 2 cm > 10 mm

Matematik Test 6. 6.1. Talskrivning: 6.2 Sandt eller falskt udsagn. 30 mm = 3 cm 500 m = 5 km 3 ton = 300 Kg. 4 dm > 80 mm 3000 m < 3 km 2 cm > 10 mm 1 Denne PDF fil består af 1. Evalueringstest ( side 1-5) 2. Elevstatusark (side 6) 3. Eksempler på henvisningsopgaver (s. 7-12 ) - vist med fed/kursiv skrift på statusarket. Matematik Test 6 Navn: Klasse

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Matematik for C niveau

Matematik for C niveau Matematik for C niveau M. Schmidt 2012 1 Indholdsfortegnelse 1. Tal og bogstavregning... 5 De elementære regnings arter og deres rækkefølge... 5 Brøker... 9 Regning med bogstavudtryk... 12 Talsystemet...

Læs mere

ER-modellen. Databaser, efterår 2002. Troels Andreasen. Efterår 2002

ER-modellen. Databaser, efterår 2002. Troels Andreasen. Efterår 2002 Databaser, efterår 2002 ER-modellen Troels Andreasen Datalogiafdelingen, hus 42.1 Roskilde Universitetscenter Universitetsvej 1 Postboks 260 4000 Roskilde Telefon: 4674 2000 Fax: 4674 3072 www.dat.ruc.dk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2013-forår 2014 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e)

Læs mere

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring Hovedemne 1: Talsystemet og at gange kan anvende flercifrede naturlige tal til at beskrive antal og rækkefølge udvikle metoder til multiplikation og division med naturlige tal udføre beregninger med de

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor

Læs mere

Komplekse tal. enote 29. 29.1 Indledning

Komplekse tal. enote 29. 29.1 Indledning enote 29 1 enote 29 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R forudsætter enoten almindeligt kendskab til de reelle tal,

Læs mere