Boolesk Algebra og det binære talsystem - temahæfte informatik. Oprindelse.

Størrelse: px
Starte visningen fra side:

Download "Boolesk Algebra og det binære talsystem - temahæfte informatik. Oprindelse."

Transkript

1 Boolesk Algebra og det binære talsystem - temahæfte informatik. I dette hæfte arbejdes der med to-tals systemet og logiske udtryk. Vi oplever at de almindelige regneregler også gælder her, og vi prøver at nedskrive simple apparaters opførsel vha. booleske udtryk. Normalt vil det tage 2-3 moduler (á 90 minutter) at gennemgå hele hæftet. 1.0 Opbygning af 2-talsystemet Konvertering fra ti-talsystem til to-talsystem Addition Subtraktion Multiplikation Boolesk Algebra og gates OR gate AND gate NOT - Inverter Opbygning af sandhedstabeller Boolesk Algebra. Definitioner Booleske Regneregler De Morgans regel - ophævelse af Inverteringsbjælke Logiske skrivemåder Karnaughkort Oprindelse. I 1854 var der en engelsk matematiker og logiker ved navn George Boole ( ) der lavede en algebraisk beskrivelse af logiske love - det der i dag kaldes Boolesk Algebra. George Boole var autodidakt (senere matematik professor ved Queens College i Irland) og det var diskussioner med filosoffer og logikere, der fik Boole i gang med at opstille de logiske regler.

2 Ken Mathiasen 26/ Må gerne kopieres :) Side 2 af 28

3 1.0 Opbygning af 2-talsystemet. Vi begynder med ti-talsystemet. Når man skriver 3146 i vores normale ti-talsystem betyder det, at der er seks enere, fire tiere, en hundrede og tre tusinder. Når vi lægger de individuelle tal sammen, giver det På skemaform kan det skrives på følgende vis: = 3146 På tilsvarende måde gælder det i to-talsystemet. Vi tæller ikke fra 0 til 9, men fra 0 til 1. Et ciffer kan have værdien 1 eller 0. I ti-talsystemet kan et ciffer have værdien 0,1,2,3,4,5,6,7,8,9. I totalsystemet er der kun; 0, 1 - nul og en - falsk eller sandt - high eller low - lys eller mørke. Kun 0 og 1. Tallet 6 i ti-talsystemet skrives som 0110 i to-talsystemet. To-talsystemet kaldes også det binære talsystem. Tallet 3 i ti-talsystemet skrives som 0011 i det binære talsystem. 2.0 Konvertering fra ti-talsystem til to-talsystem Man konvertere et tal i 2-talsystemet til 10-talsystemet ved at indsætte 2-talsystemtallet i tabellen og lægge kolonneoverskrifterne sammen de steder der er "1" i cellen. Således bliver tallet i 2-talsystemet til 5 i 10-talsystemet = 5 I 10-talsystemet hedder et enkelt tal, et ciffer. I 2-talsystemet kalder vi det et bit. Normalt arbejder man i 2-talsystemet med 8 bit ad gangen - det kaldes en byte. 1 G Byte er med andre ord 8 G Bit. Ken Mathiasen 26/ Må gerne kopieres :) Side 3 af 28

4 2.1 Konverter følgende binære tal til 10-tal system a) b) c) d) Konverter følgende decimaltal til 2-tal system a) b) c) d) b) c) Ken Mathiasen 26/ Må gerne kopieres :) Side 4 af 28

5 2.3 Addition To tal lægges sammen på gammeldags måde ved at stille dem over hinanden altså = =5 Læg følgende tal sammen og konverter til 10-tal system a) = b) = 2.4 Addition med "carry" (mente) Når vi lægger to store tal sammen på den gammeldags metode skubber vi en ti'er, hvis resultatet af to cifre bliver for stort. Man begynder altid bagfra: et tal NB! flyttes (mente) = 2 = 62 = 462 = = 2462 = a) Læg følgende tal sammen på den gammeldags metode. Begynd bagfra - tjek efterfølgende svaret med din lommeregner: = = = Læg nu følgende 2-talsystems tal sammen - "med carry" b) = c) = Ken Mathiasen 26/ Må gerne kopieres :) Side 5 af 28

6 2.5 Subtraktion Det samme gælder når vi subtraherer (minusstykker). Vi starter bagfra og så "låner" vi nogle gange fra naboen. I totalssystemet får vi to når vi låner. 10 (altså vi lånte ti) 11 (og her lånte vi to stk) = 1 = 1191 = Multiplikation Multiplikation (gangestykker) forløber problemfrit i forhold til regnereglerne. At gange med 0 eller 1 er enkelt - det kender vi fra 10-talsystemet = 0 og = = = 4 Skal man gange med 2, svarer det til at lægge det oprindelige tal sammen to gange = = altså = =8 Hvis vi ganger med 3, så skal det oprindelige tal lægges sammen tre gange. I computeren udnytter man dette forhold. Hvis der skal gange med 2, så skifter man de enkelte bit én gang til venstre (left shift). Lidt ligesom vi flytter kommaet, når vi normalt ganger med skiftet en gang til venstre bliver man sætter "0" ind på den nye plads så svaret bliver Hvis man skal dele med 2, skifter man bare en gang til højre (right shift). Ken Mathiasen 26/ Må gerne kopieres :) Side 6 af 28

7 3.0 Boolesk Algebra og gates. Foruden de normale regneregler har man i to-talsystemet og så Booleske regneregler - Boolesk algebra. Disse regneregler er en stor hjælp når en computer skal arbejde. Boolesk algebra er logik-baseret. Man taler om "et udsagn". Et udsagn kan være sandt eller falsk. Sandt/rigtigt kan symboliseres ved lys i lampen på en sandhedsdetektor (ved løgn eller forkert svar, forbliver lampen slukket) Et falsk udsagn: Peter kan trække vejret under vandet. Et sandt udsagn: Peter kan drikke en cola. Et sandt udsagn er: = Sandt medfører lampen lyser Stærkt simplificeret kan man sige at det eneste en computer gør, er at kigge på en række udsagn (nogle input) og derefter udføre en ordre (output) der er afhængig af udsagnet. Den gør det bare en million gange i sekundet. Der er grundlæggende tre Booleske udtryk. Til hvert udtryk hører et symbol og en sandhedstabel. a) AND b) OR c) NOT (også kaldet Inverter) Ken Mathiasen 26/ Må gerne kopieres :) Side 7 af 28

8 3.1 OR gate Udgangen af en gate er enten 0 eller 1 (falsk eller sandt). Det er indgangsforholdene (kaldet A, B) der bestemmer hvad udgangen skal være. Udgangen kaldes Q. Udgangen, Q på en OR gate er altid 1 - på nær når begge indgange er 0. Med andre ord så er udgangen på en OR gate 1, når indgang A eller indgang B er 1 (på engelsk bliver det A or B). Hvis A = 1 og B = 0, bliver Q = 1: Det modsatte er også tilfældet. Hvis A = 0 og B = 1, så bliver Q = 1 (hvis A OR B er 1, bliver Q = 1). De forskellige kombinationer af A og B kan skrives op i en sandhedstabel. B A Q Sandhedstabel for en OR gate 3.2 AND gate Tilsvarende haves en kombination, hvor både A og B skal være 1, før udgangen, Q også bliver 1. Så man kan sige at udgangen på en AND gate altid er 0, på nær når A og B = 1 (på engelsk bliver det A and B). Hvis A = 1 og B = 0, bliver Q = 0 (fordi både A og B skal være 1 før Q bliver 1): Modsat, hvis A = 0 og B = 1, forbliver Q = 0. De forskellige kombinationer af A og B kan skrives op i en sandhedstabel. B A Q Sandhedstabel for en AND gate Ken Mathiasen 26/ Må gerne kopieres :) Side 8 af 28

9 3.3 NOT - Inverter Den sidste gate-type er en Inverter. En inverter inverterer - med andre ord så vender Inverteren indgangssignalet. Hvis indgangen er 1 bliver udgangen 0. Hvis indgang er 0, bliver udgangen 1. A Q Sandhedstabel for en Inverter Udgangen er det modsatte af indgangen. Så hvis A er 1, så er Q "not 1". _ NOT A kan også skrives som A. En bjælke over et udtryk betyder at det skal inverteres. _ A = 1 medfører at A = 0 Ken Mathiasen 26/ Må gerne kopieres :) Side 9 af 28

10 3.4 Opgaver - Sandhedstabeller vist med batterier, kontakter og pærer Kig på el-diagrammet. Når man trykker på en af knapperne (fx knappen SW 1), så lyser pæren. Hvis man trykker på den anden knap, SW 2 lyser pæren også. Hvis man trykker begge knapper samtidig, lyser pæren. Er ingen knapper trykkede, er der ingen lys. Man kan sammenligne kredsløbet med en gate og lave en sandhedstabel. Når man aktiverer en knap (når man trykker på den) svarer det til at indgang A på en gate, er 1. a) Prøv de forskellige knap kombinationer og skriv resultatet i tabellen B A Q b) Hvilken gate opfører sig som det kredsløb der er vist herover? Ken Mathiasen 26/ Må gerne kopieres :) Side 10 af 28

11 3.5 Opgave - Herunder er et nyt kredsløb. Når man trykker på SW 1 sker der ingen ting (ingen lys) a) Hvordan får man lys i pæren. b) Hvilken gate har en tilsvarende opførsel? 3.6 Inverter kredsløbet laves med et relæ. Herunder er vist et kredsløb der simulerer en Inverters opførsel. Pæren lyser hele tiden - selvom knappen SW 1 ikke er trykket ned. Når man trykker på knappen aktiveres relæet og så svinger kontakten væk fra pæren (den kontakt der er inde i RLY2, lige over lampen). Det er lidt ligesom et skiftespor til et tog. Pæren mister forbindelsen og slukkes når relæet aktiveres. Med andre ord; når man trykker på knappen, slukkes lampen. Ken Mathiasen 26/ Må gerne kopieres :) Side 11 af 28

12 4.0 Opbygning af sandhedstabeller. Her er to gate kombineret. Udgangen af en AND gate (kaldet P) er brugt som indgang på en Inverter. P Skal man lave en sandhedstabel, begynder man fra input (A, B) og bevæger sig mod output (Q). Først skrives AND gatens sandhedstabel op: B A P Q Bagefter tilføjes en kolonne Q, hvor man kigger på P og bruger P kolonnen som input til Inverteren. Kolonne Q er med andre ord blot det modsatte af P. Ovenstående sandhedstabel er meget anvendt. Den gælder en gate der hedder NAND gate (navnet er sammensat af "not" og "and" ) 4.1 Opgave - Lav en sandhedstabel for nedenstående kredsløb: P B A P Q Kredsløbet betegnes også NOR gate. Ken Mathiasen 26/ Må gerne kopieres :) Side 12 af 28

13 4.2 Kompressorens virkemåde. En hobby kompressor fungerer ved, at den tænder en luftpumpe der fylder luft i en tank. Når trykket i tanken er 6 bar eller mere (input A = 1), slukkes luftpumpen. Når trykket kommer under 6 bar tændes kompressoren igen. Lav en sandhedstabel for luftpumpen: Tryk 0 1 Luftpumpe 4.3 Opgave - El-radiatorens virkemåde Hvis hovedafbryderen i el-skabet er tændt (input A), så fungerer en el-radiator ved at den tænder automatisk når temperaturen i stuen kommer under 20 C. Når temperaturen kommer over 20 C igen (giver "temperatur > 20 C" = 1), slukkes radiatoren. Hvis hovedafbryderen i el-skabet er slukket (0), er el-radiatoren også slukket (0), uanset hvad temperaturen i rummet er. a) Lav en sandhedstabel for hele kredsløbet; el-radiator og hovedafbryder. Temperatur > 20 C Hovedafbryder Radiator der varmer Ken Mathiasen 26/ Må gerne kopieres :) Side 13 af 28

14 4.4 Opgave- Lav en sandhedstabel for nedenstående kredsløb: B A P B Q P ,5 Opgave - Lav en sandhedstabel for nedenstående kredsløb: A B C D E Z Ken Mathiasen 26/ Må gerne kopieres :) Side 14 af 28

15 4.6 Opgave - Lav en sandhedstabel for et køleskab der er tilsluttet en stikkontakt i væggen. Når temperaturen i et køleskab er over 5 C skal kompressoren tændes. Når temperaturen er under 5 C skal kompressoren slukkes - hvis altså stikkontakten er tændt. a) Bestem hvad der er A og B og Q. b) Lav en sandhedstabel for systemet. Ken Mathiasen 26/ Må gerne kopieres :) Side 15 af 28

16 5.0 Boolesk Algebra. Definitioner Forskellige gates opfylder forskellige Booleske regneregler. 1 0 = 0 (det er en AND gate) = 1 (det er en OR gate) 1 1 = = 1 0 = 1 (stegen over 0 læses som "0 negeret") 1 = 0 "0 negeret" kan også siges som "ikke 0". På samme måde kan "1 negeret" siges som "ikke 1." 5.1 Opgave - Udregn følgende Booleske udtryk: a) 0 1 = b) 1 1 = c) 1 1 = d) = _ e) 1 0 = f) ( 1 0 ) + ( 1 1) = g) (1 0 ) + (1 1 ) = h) ( 0 1 ) + ( 1 1 ) + ( 0 0 ) = _ i) ( ) (1 1 1) = j) ) (1 + 1 ) = 5.2 Opgave - Logiske opgaver fra hverdagen a) Lav et gate kresløb der blokerer lågen i en vaskemaskine, hvis der er vand i vaskemaskinen og man prøver at åbne lågen. Kredsløbet skal også blokere lågen hvis tromlen kører. Beskriv kredsløbet med Booleske udtryk. b) Lav et lille gate kredsløb der tænder for lyset i en carport hvis der er bevægelse foran en bevægelsessensor. Kredsløbet skal kun virke når der er mørkt (måles med en lyssensor). Beskriv kredsløbet med Booleske udtryk og tegn kredsløbet med gates. Ken Mathiasen 26/ Må gerne kopieres :) Side 16 af 28

17 5.3 Brug Boolesk regneregler på følgende udtryk (" " angiver OR. " " angiver AND) a) = b) = c) = d) = e) = f) = 5.4 Opgave - Logiske opgaver fra hverdagen a) Et netstik til en stuelampe stikkes i væggen i en stikkontakt. Når man tænder og slukker på stikkontakten i væggen tænder og slukker lampen. MEN på ledningen er der monteret en afbryder. Når ledningsafbryderen er tændt, fungerer stikkontaktkontakten normalt. Hvis ledningsafbryderen er slukket kan lampen ikke tændes. Lav et lille gatekredsløb der opfører sig på tilsvarende måde. Beskriv kredsløbet med Booleske udtryk og tegn kredsløbet med gates. b) Lav et lille gate kredsløb der giver alarm, hvis lygterne i en gammel bil er tændt, selvom der ikke er tænding på (altså beep-beep, hvis man glemmer at slukke lyset når man har kørt en tur). Kredsløbet skal også give alarm, når der er tænding på, men med samtidig slukkede lygter (altså også en beep-beep, når man kører en tur med slukkede lygter). Beskriv kredsløbet med Booleske udtryk. Ken Mathiasen 26/ Må gerne kopieres :) Side 17 af 28

18 6.0 Booleske Regneregler. Rækkefølgen. Når man regner med booleske udtryk løser man parenteserne først (ligesom vi plejer - lidt som en mellemregning) ( 1 0 ) + ( 1 1) = efterfølgende løser man udtrykket = 1 Vis at følgende udtryk giver 1: a) ( 1 1 ) + ( 0 1) = b) ( 0 0 ) + ( 0 1) + ( 1 1 ) = _ c) ( 1 0 ) ( 1 1) = d) ( ) + (0 0) + 1= 6.1 AND ( ) "binder" mere end OR (+). Vi begynder med at udregne AND ( ) først, og bagefter udregner vi OR (+). Det kender vi fra den normale matematik, hvor vi udregner gange og division, før vi lægger tallene sammen. Normalt udregnes ved at man først siger 2 10 = 20 og 4 3 = 12. Når det er gjort, lægger vi tallene sammen = 32. Så = 32. I Boolesk algebra kan det se således ud: udregnes ved først at sige 1 0 = 0 og 1 1 = 1. Når det er gjort, OR'es de to tal sammen = 1. Med andre ord så er = 1. Vis at følgende udtryk giver 1: a) = b) = _ c) = d) ( 1 0 ) ( 0 1) ( 1 1 ) = Ken Mathiasen 26/ Må gerne kopieres :) Side 18 af 28

19 6.2 Inverteringsbjælken fungerer som en parentes. Det bjælken dækker, skal inverteres (det der står i ly af bjælken hvis det regner, skal vendes om). 0 bliver til 1. Ligesom 1 bliver til 0 (1 + 1) bliver til (1) altså Først løses det der står under bjælken - ligesom parenteser (dvs 1 1 = 1): _ Herefter fjerner vi bjælken (1 bliver til 0): og nu kan udregningen laves = De Morgans regel - ophævelse af Inverteringsbjælke En Inverteringsbjælke der dækker to pladser, kan fjernes ved at den "falder ned". De fortegn den dækker (de fortegn stumperne fra bjælken rammer, når den falder ned) skal ændres. _ = (så nu er bjælken delt i to og fortegnet under den er skiftet) _ = To bjælker går ud med hinanden: = først lader man bjælken falde ned: så udregning: = 0 Vis at følgende udtryk kan reduceres ned til 0 a) = b) (0 + 1) = c) (1 + 0 ) (1 1 1) + 0= d) (1 + 0) = Ken Mathiasen 26/ Må gerne kopieres :) Side 19 af 28

20 I Boolesk algebra anvender man A, B, C osv. for de forskellige indgange når man tegner gates. Hver indgang kan være 1 eller 0. Skriver man regnereglerne op med bogstaver (ligesom vi normalt bruger bogstaver i formlerne), kommer den første regel til at se således ud: = 1 0 med bogstaber bliver det til A + B = A B Herefter kan man tegne udtrykket med gates og lave en sandhedstabel til: A P A A Q B B B Q B A P Q B A B A Q _ A + B = A B De to kredsløb er altså ens - set med logiske øjne 6.4 Opgave a) Tegn de to Boelske udtryk med gates A B = A + B b) Lav de tilsvarende sandhedstabeller: B A P Q B A B A Q Ken Mathiasen 26/ Må gerne kopieres :) Side 20 af 28

21 6.5 Opgave En anden Boolesk regel er at: A + A B = A. a) Tegn udtrykket "A + A B" med gates b) Lav en sandhedstabel for de to udtryk B A P Q A Q c) Tegn derefter sandhedstabellen for A = A 6.6 Opgave a) Opskriv sandhedstabellen for følgende udtryk: Q = C (B + A) C B A C (B+A) Q b) Tegn kredsløbet med gates Ken Mathiasen 26/ Må gerne kopieres :) Side 21 af 28

22 6.7 Opgave a) Opskriv sandhedstabellen for følgende udtryk: Q = B + (C A) C B A A (C A) Q b) Tegn kredsløbet 6.8 Opgave Opstil det Booleske udtryk bag følgende kredsløb og lav den tilhørende sandhedstabel: A A + B C B A C (A+B) Q Q B C C Ken Mathiasen 26/ Må gerne kopieres :) Side 22 af 28

23 6.9 Opgave Opstil det Booleske udtryk bag følgende kredsløb og lav den tilhørende sandhedstabel: A C B A Q B C Ken Mathiasen 26/ Må gerne kopieres :) Side 23 af 28

24 7.0 Logiske skrivemåder Først et par regneregler - er man i tvivl kan man altid teste en regel med en sandhedstabel: 1) En Inverteringsbjælken kan falde ned og ændre fortegn: A + B = A B 2) Optræder en variabel alene (OR) kan de andre variable slettes A + A B = A 3) En operator OR'ed med sig selv, giver det oprindelige A + A = A 4) En operator AND'ed med sig selv, giver det oprindelige A A = A 5) Man kan gange (AND) ind i en parentes: A (B + C) = A B + A C 6) Man kan OR en parameter ind i en parentes: A + (B C) = (A+B) (A+C) Eksempel på reduktionsstykke: Q = A (B + C) + A C vi AND'er parentesen ud (regel 5): A B + A C + A C Q = A B + A C + A C så samler vi de to ens operatorer (regel 3): A B + A C Q = A B + A C så sætter vi A uden for en parentes (regel 5): Q = A (B+C) Tegner man opgaven, ser det således ud. Det der kommer igennem de to kredsløb er det samme: A A (B+C) A A (B+C) B+C B+C B B C A C C 7.1 Opgave - Reducer følgende udtryk: a) Q = A + B b) Q = B + A B c) Q = (A B) + C D + A d) Q = ( A B ) + ( A C ) (her begynder man med at sættes A udenfor en parentes) e) Q = ABC + ABC + ABC + ABC _ f) Q = ABC + ABC + ABC + ABC Ken Mathiasen 26/ Må gerne kopieres :) Side 24 af 28

25 8.0 Karnaughkort Logiske reduktionsopgaver kan løses grafisk med Karnaughkort. Sandhedstabellen skrives op og indsættes i derefter en matrice. Det er ofte nemmere end at foretage udregningen. Eksempel på reduktion af: Q = ABC + ABC + ABC + ABC C B A Q Hver celle repræsenterer Q i en linje af sandhedstabellen BA BA BA BA C C Karnaughkort for Nu samles (grupperes) alle "1" i Karnaughkortet. Det ses at når C = 0 er det lige meget hvad "A" er i BA, bare B = 1. Så første led i løsningen er at Q = C B +... BA BA BA BA C C Karnaughkort for Næste gruppe med "1" findes: BA BA BA BA C C Karnaughkort for Det ses at når C = 1 er det lige meget hvad "B" er i BA, når bare A = 1. Så andet led i løsningen er at Q = C B + C A Nu kan der ikke laves flere sløjfer - vi er færdige. Så svaret er Q = CB + CA Ken Mathiasen 26/ Må gerne kopieres :) Side 25 af 28

26 8.1 Karnaughkort regler Ved brug af Karnaughkort skal man altid lave de største sløjfer først. Sløjferne skal være rektangulære eller kvadratiske. Alle ettaller skal sløjfes. Samme ettal må gerne indgå i flere sløjfer. 8.2.a) Reducer følgende udtryk med Karnaughkort: Q = ABC + ABC + ABC + ABC C B A Q Karnaughkort for C 0 C 1 BA BA BA BA _ 8.2.b) Reducer følgende udtryk med Karnaughkort: Q = ABC + ABC + ABC + ABC C B A Q Karnaughkort for C 0 C 1 BA BA BA BA _ 8.2.c) Reducer følgende udtryk med Karnaughkort: Q = ABC + ABC + ABC + ABC C B A Q Karnaughkort for C 0 C 1 BA BA BA BA Ken Mathiasen 26/ Må gerne kopieres :) Side 26 af 28

27 _ 8.2.d) Reducer følgende udtryk med Karnaughkort: Q = ABC + ABC + ABC + ABC C B A Q Karnaughkort for BA BA BA BA C C Her er et værktøj der kan hjælpe med reduktionsstykkerne: are only 010 kind of people: Those who understand binary and those who don t. Ken Mathiasen 26/ Må gerne kopieres :) Side 27 af 28

28 OR gate B A Q = 1 (det er en OR gate) = 1, = 0 AND gate B A Q = 0 (det er en AND gate). 1 1 = 1, 0 0 = 0 Inverter (NOT gate) A Q = 1 (stegen over 0 læses som "0 negeret") 1 = 0 Boolesk Algebra (digital), regneregler 1) En Inverteringsbjælken kan falde ned og ændre fortegn: A + B = A B 2) Optræder en variabel alene (OR) kan de andre variable slettes A + A B = A 3) En operator OR'ed med sig selv, giver det oprindelige A + A = A 4) En operator AND'ed med sig selv, giver det oprindelige A A = A 5) Man kan gange (AND) ind i en parentes: A (B + C) = A B + A C 6) Man kan OR en parameter ind i en parentes: A + (B C) = (A+B) (A+C) Dette kompendium er udarbejdet af adjunkt ved Sønderborg Statsskole, Ken Mathiasen (cand IT). Kopiering og af kompendiet må gerne finde sted, men husk at bibeholde navnereferencen :) Ken Mathiasen 26/ Må gerne kopieres :) Side 28 af 28

På en digital indgang kan en computer kun se forskel på, om en kontakt er tændt eller slukket. Men til gengæld er den hurtig og god til at regne.

På en digital indgang kan en computer kun se forskel på, om en kontakt er tændt eller slukket. Men til gengæld er den hurtig og god til at regne. Boolesk Algebra og det binære talsystem - temahæfte informatik Dette temahæfte introducerer to-talsystemet og logiske udtryk (Boolesk algebra). Vi oplever, at de almindelige regneregler også gælder i to-talsystemet,

Læs mere

ITS MP 013. Talsystemer V009. Elevens navn. IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44

ITS MP 013. Talsystemer V009. Elevens navn. IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44 ITS MP 013 V009 Elevens navn IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44 ITS MP 013 Udarbejdet af Søren Haahr, juni 2010 Copyright Enhver mangfoldiggørelse af tekst eller illustrationer

Læs mere

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM526 Rolf Fagerberg, 2009 Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program)

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM534 Rolf Fagerberg Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, decimaltal (kommatal)) Bogstaver Computerinstruktion

Læs mere

(Positions) Talsystemer

(Positions) Talsystemer (Positions) Talsystemer For IT studerende Hernik Kressner Indholdsfortegnelse Indledning...2 Positions talsystem - Generelt...3 For decimalsystemet gælder generelt:...4 Generelt for et posistionstalsystem

Læs mere

Talsystemer I V X L C D M 1 5 10 50 100 500 1000. Hvad betyder halvanden??. Kan man også sige Halvtredie???

Talsystemer I V X L C D M 1 5 10 50 100 500 1000. Hvad betyder halvanden??. Kan man også sige Halvtredie??? Romertal. Hvordan var de struktureret?? Systematisk?? I V X L C D M 1 5 10 50 100 500 1000 Regler: Hvis et lille tal skrives foran et stort tal trækkes tallet fra: IV = 5-1 = 4 Hvis et lille tal skrives

Læs mere

Indholdsfortegnelse :

Indholdsfortegnelse : Rapporten er udarbejdet af Daniel & Kasper D. 23/1-2001 Indholdsfortegnelse : 1.0 STEPMOTEREN : 4 1.1 Stepmotorens formål : 4 1.2 Stepmotorens opbygning : 4 2.0 PEEL-KREDSEN 4 2.1 PEEL - Kredsen Generelt

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel Grundlæggende matematiske begreber del Algebraiske udtryk Ligninger Løsning af ligninger med én variabel x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse ALGEBRAISKE UDTRYK... 3 Regnearternes

Læs mere

Noter til C# Programmering Selektion

Noter til C# Programmering Selektion Noter til C# Programmering Selektion Sætninger Alle sætninger i C# slutter med et semikolon. En sætning kontrollerer sekvensen i programafviklingen, evaluerer et udtryk eller gør ingenting Blanktegn Mellemrum,

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet.

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet. Algebra og ligninger - Facitliste Om kapitlet I dette kapitel om algebra og ligninger skal eleverne lære at regne med variable, få erfaringer med at benytte variable Elevmål for kapitlet Målet er, at eleverne:

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

De 4 regnearter. (aritmetik) Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 42 Ekstra: 5 Point:

De 4 regnearter. (aritmetik) Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 42 Ekstra: 5 Point: Navn: Klasse: Matematik Opgave Kompendium De 4 regnearter (aritmetik) Aritmetik: kommer af græsk: arithmetike = regnekunst arithmos = tal Aritmetik er læren om tal og operationer på tal som de 4 regnearter.

Læs mere

Det binære talsystem og lidt om, hvordan computeren virker

Det binære talsystem og lidt om, hvordan computeren virker Det binære talsystem og lidt om, hvordan computeren virker Det binære talsystem...2 Lidt om, hvorledes computeren anvender det binære talsystem...5 Lyst til at lege med de binære tal?...7 Addition:...7

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Lektion 1 Grundliggende regning

Lektion 1 Grundliggende regning Lektion 1 Grundliggende regning Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division - brug af regnemaskine... Talsystemets opbygning - afrunding af tal... Store tal og negative tal...

Læs mere

Kompendium. Gates og Boolsk algebra

Kompendium. Gates og Boolsk algebra Version /7-5 Kompendium Gates og oolsk algebra Rettelser og tilføjelser modtages gerne / Valle Generelt: I digital elektronik er kredsløb opbygget af gates. Gates kan godt opfattes som porte, hvis blot

Læs mere

Kapitel 3 Betinget logik i C#

Kapitel 3 Betinget logik i C# Kapitel 3 i C# er udelukkende et spørgsmål om ordet IF. Det er faktisk umuligt at programmere effektivt uden at gøre brug af IF. Du kan skrive små simple programmer. Men når det bliver mere kompliceret

Læs mere

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Algebra med Bea Bea Kaae Smit nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende regler 7 3.1 Tal..........................

Læs mere

Tal i det danske sprog, analyse og kritik

Tal i det danske sprog, analyse og kritik Tal i det danske sprog, analyse og kritik 0 Indledning Denne artikel handler om det danske sprog og dets talsystem. I første afsnit diskuterer jeg den metodologi jeg vil anvende. I andet afsnit vil jeg

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Vis, hvilke tal pilen peger på.

Vis, hvilke tal pilen peger på. Talforståelse opgave 1 Vis, hvilke tal pilen peger på. Opgave 1 Side 1 Fagligt område: Talforståelse Dele lige. Mulige besvarelser Eleven er ikke i stand til at bestemme, hvilket tal pilen peger på. Eleven

Læs mere

User Guide AK-SM 720 Boolean logic

User Guide AK-SM 720 Boolean logic User Guide AK-SM 720 Boolean logic ADAP-KOOL Refrigeration control systems Anvendelse Funktionen er indeholdt i Systemmanager type AK-SM 720, og kan anvendes til brugerdefinerede funktioner. Funktionerne

Læs mere

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point:

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point: Matematik / Basal Matematik Navn: Klasse: Matematik Opgave Kompendium Basal Matematik Følgende gennemgås De regnearter Afrunding af tal Større & mindre end Enheds omregning Regne hierarki Brøkregning Potenser

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens.

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens. Rapport Bjælken Indledning Vi arbejdede med opgaverne i grupper. En gruppe lavede en tabel, som de undersøgte og fandt en regel. De andre grupper havde studeret tegninger af bjælker med forskellige længder,

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Logik Rapport - Alarm. Klaus Jørgensen Itet. 1a. Klaus Jørgensen & Ole Rud 9/9-2002 Vejledere: PSS & SKH

Logik Rapport - Alarm. Klaus Jørgensen Itet. 1a. Klaus Jørgensen & Ole Rud 9/9-2002 Vejledere: PSS & SKH - Alarm Klaus Jørgensen Itet. 1a. Klaus Jørgensen & Ole Rud 9/9-2002 Vejledere: PSS & SKH Indholdsfortegnelse. Side 2. Side 2. Side 3. Side 3. Side 4. Side 4. Side 5. Side 6. Side 7. Side 8. Side 9. Side

Læs mere

de fire regnearter basis brikkerne til regning & matematik preben bernitt

de fire regnearter basis brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik de fire regnearter basis preben bernitt brikkerne til regning & matematik de fire regnearter, basis ISBN: 978-87-92488-01-5 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Niveauer af abstrakte maskiner

Niveauer af abstrakte maskiner Det digitale niveau Niveauer af abstrakte maskiner Digitale kredsløb Logiske tilstande: (- V), (2-5 V) Kombinatoriske kredsløb Logiske tilstande: (- V), (2-5 V) Registre Logiske tilstande: (- V), (2-5

Læs mere

dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet)

dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet) dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet) Efterår 2009 1 Simpel aritmetik på maskinniveau I SCO, appendix A, er det beskrevet, hvordan man adderer ikke-negative heltal

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1.

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1. Læringsprogram Talkonvertering Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen Klasse 2.4 1. marts 2011 Fag: Vejleder: Skole: Informationsteknologi B Karl G. Bjarnason Roskilde

Læs mere

Det Digitale Niveau. Niels Olof Bouvin Institut for Datalogi Aarhus Universitet

Det Digitale Niveau. Niels Olof Bouvin Institut for Datalogi Aarhus Universitet Det Digitale Niveau Niels Olof Bouvin Institut for Datalogi Aarhus Universitet Level : Det digitale niveau Level 5 Problem-oriented language level Translation (compiler) Level 4 Assembly language level

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

Lyskryds. Thomas Olsson Søren Guldbrand Pedersen. Og der blev lys!

Lyskryds. Thomas Olsson Søren Guldbrand Pedersen. Og der blev lys! Og der blev lys! OPGAVEFORMULERING:... 2 DESIGN AF SEKVENS:... 3 PROGRAMMERING AF PEEL KREDS... 6 UDREGNING AF RC-LED CLOCK-GENERAOR:... 9 LYSDIODER:... 12 KOMPONENLISE:... 13 DIAGRAM:... 14 KONKLUSION:...

Læs mere

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder 3 Algebra Faglige mål Kapitlet Algebra tager udgangspunkt i følgende faglige mål: Variable og brøker: kende enkle algebraiske udtryk med brøker og kunne behandle disse ved at finde fællesnævner. Den distributive

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang 16. marts Resume sidste gang Abstrakt problem konkret instans afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Sammensætning af regnearterne

Sammensætning af regnearterne Sammensætning af regnearterne Plus, minus, gange og division... 19 Negative tal... 0 Parenteser og brøkstreger... Potenser og rødder... 4 Sammensætning af regnearterne Side 18 Plus, minus, gange og division

Læs mere

Analyseopgaver. Forklar kredsløbet. Forklar kredsløbet. 3.0 DC Adapter med Batteri Backup.

Analyseopgaver. Forklar kredsløbet. Forklar kredsløbet. 3.0 DC Adapter med Batteri Backup. Analyseopgaver. Simpel NiMH lader. Forklar kredsløbet.. Infrarød Remote Control tester Forklar kredsløbet.. DC Adapter med Batteri Backup. Der bruges en ustabiliseret Volt adapter. Den giver normalt ca.

Læs mere

DM13-1. Obligatoriske Opgave - Kredsløbs design

DM13-1. Obligatoriske Opgave - Kredsløbs design DM13-1. Obligatoriske Opgave - Kredsløbs design Jacob Christiansen moffe42@imada.sdu.dk Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense 1. Opgaven Opgaven består i at designe et kredsløb,

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

IT/Regneark Microsoft Excel 2010 Grundforløb

IT/Regneark Microsoft Excel 2010 Grundforløb Januar 2014 Indhold Opbygning af et regneark... 3 Kolonner, rækker... 3 Celler... 3 Indtastning af tekst og tal... 4 Tekst... 4 Tal... 4 Værdier... 4 Opbygning af formler... 5 Indtastning af formler...

Læs mere

Vektorer og rumgeometri med. TI-Interactive!

Vektorer og rumgeometri med. TI-Interactive! Vektorer og rumgeometri med TI-Interactive! Indtastning af vektorer Regning med vektorer Skalarprodukt og vektorprodukt Punkter og vektorer Rumgeometri med ligninger Jan Leffers (2007) Indholdsfortegnelse

Læs mere

Matricer og Matrixalgebra

Matricer og Matrixalgebra enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

1 Bits og Bytes Computere er fortræffelige til at opbevare data og behandle data Af data vil vi i dette afsnit primært beskæftige os med billeder, tekst og lyd, og se på, hvordan sådanne data lagres i

Læs mere

CPUer og maskinkode DM534. Rolf Fagerberg

CPUer og maskinkode DM534. Rolf Fagerberg CPUer og maskinkode DM534 Rolf Fagerberg CPUers opbygning En CPU er bygget op af elektriske kredsløb (jvf. sidste forelæsning), som kan manipulere bits. En CPU manipulerer flere bits ad gangen, deres antal

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

Montørvejledning for DTC2100 Temperaturtyring - Version 1. Generel beskrivelse

Montørvejledning for DTC2100 Temperaturtyring - Version 1. Generel beskrivelse 1 2 3 R DTC2100 Danotek Generel beskrivelse DTC2100 er udviklet til væskebaseret solfangersystemer, men kan også benyttes til anden temperatur styring med op til tre temperatur målinger og en relæudgang.

Læs mere

Det vigtigste ved læring af subtraktion er, at eleverne

Det vigtigste ved læring af subtraktion er, at eleverne Introduktion Subtraktion er sammen med multiplikation de to sværeste regningsarter. Begge er begrebsmæssigt sværere end addition og division og begge er beregningsmæssigt sværere end addition. Subtraktion

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 VisiRegn ideer 1 Talregning Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 Vejledning til Talregning

Læs mere

Ligeværdige udtryk. Aktivitet Emne Klassetrin Side. Vejledning til Ligeværdige udtryk 2

Ligeværdige udtryk. Aktivitet Emne Klassetrin Side. Vejledning til Ligeværdige udtryk 2 VisiRegn ideer 4 Ligeværdige udtryk Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Ligeværdige udtryk 2 Elevaktiviteter til Ligeværdige udtryk 4.1 Ligeværdige

Læs mere

Excel - begynderkursus

Excel - begynderkursus Excel - begynderkursus 1. Skriv dit navn som undertekst på et Excel-ark Det er vigtigt når man arbejder med PC er på skolen at man kan få skrevet sit navn på hver eneste side som undertekst.gå ind under

Læs mere

Årsplan 5. Årgang

Årsplan 5. Årgang Årsplan 5. Årgang 2016-2017 Materialer til 5.årgang: - Matematrix grundbog 5.kl - Matematrix arbejdsbog 5.kl - Skrivehæfte - Kopiark - Færdighedsregning 5.kl - Computer Vi skal i løbet af året arbejde

Læs mere

Matematik 3. klasse Årsplan

Matematik 3. klasse Årsplan Matematik 3. klasse Årsplan Årets overordnede mål inddelt i faglige kategorier: Tal og algebra Kende positionssystemet. Kunne veksle mellem titusinder og hundredetusinder. Kunne gange med 10. Kunne gange

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

Mattip om. Ligninger 1. Du skal lære: Kan ikke Kan næsten Kan. Hvad en ligning er. Hvordan du kan genkende en ligning

Mattip om. Ligninger 1. Du skal lære: Kan ikke Kan næsten Kan. Hvad en ligning er. Hvordan du kan genkende en ligning Mattip om Ligninger 1 Du skal lære: Hvad en ligning er Kan ikke Kan næsten Kan Hvordan du kan genkende en ligning Ligningsløsning ved gæt og kontrol Reducering og løsning af ligninger 2016 mattip.dk 1

Læs mere

TeleSwitch M2. TeleSwitch er en ideel fjernstyret strømafbryder og tilbagemelder til hjemmet, fritidshuset, kontoret og værkstedet.

TeleSwitch M2. TeleSwitch er en ideel fjernstyret strømafbryder og tilbagemelder til hjemmet, fritidshuset, kontoret og værkstedet. TeleSwitch M TeleSwitch er en ideel fjernstyret strømafbryder og tilbagemelder til hjemmet, fritidshuset, kontoret og værkstedet. Med TeleSwitch kan du tænde og slukke for elektriske apparater via telefonen,

Læs mere

BRUGERVEJLEDNING TÆND-SLUK ENHED

BRUGERVEJLEDNING TÆND-SLUK ENHED BRUGERVEJLEDNING TÆND-SLUK ENHED Side 1 til tænd-sluk enheden Introduktion Med tænd-sluk enheden fra LOCKON kan du styre strømmen i din bolig. Du kender princippet fra de traditionelle tænd-sluk ure, der

Læs mere

16. december. Resume sidste gang

16. december. Resume sidste gang 16. december Resume sidste gang Abstrakt problem, konkret instans, afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor

Læs mere

Matematik. på AVU. Eksempler til niveau G. Niels Jørgen Andreasen

Matematik. på AVU. Eksempler til niveau G. Niels Jørgen Andreasen Matematik på AVU Eksempler til niveau G Niels Jørgen Andreasen Om brug af denne eksempelsamling Matematik-niveauerne på Almen Voksenuddannelse hedder nu Basis, G og FED. Indtil sommeren 009 hed niveauerne

Læs mere

Manual til: Miracas DK080 GSM Tyverialarm

Manual til: Miracas DK080 GSM Tyverialarm Manual til DK080 Indhold Forord... 4 Alarmens generelle opbygning... 5 Placering af alarmen... 7 Oversigt over alarmen... 8 Tag alarmen i brug... 9 Programering af alarmen... 10 Indtastning af egen kode...

Læs mere

matematik grundbog Demo trin 2 preben bernitt

matematik grundbog Demo trin 2 preben bernitt matematik grundbog trin preben bernitt matematik grundbog -udgave 00 by bernitt-matematik.dk Kopiering og udskrift af denne bog er kun tilladt efter aftale med bernitt-matematik.dk Læs nærmere om dette

Læs mere

ÅRSPLAN MATEMATIK 5.KLASSE

ÅRSPLAN MATEMATIK 5.KLASSE ÅRSPLAN MATEMATIK 5.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

Klasse 1.4 Michael Jokil 03-05-2010

Klasse 1.4 Michael Jokil 03-05-2010 HTX I ROSKILDE Afsluttende opgave Kommunikation og IT Klasse 1.4 Michael Jokil 03-05-2010 Indholdsfortegnelse Indledning... 3 Formål... 3 Planlægning... 4 Kommunikationsplan... 4 Kanylemodellen... 4 Teknisk

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

matematik Demo excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk

matematik Demo excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk matematik excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk matematik excel 2 1. udgave som E-bog 2007 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale

Læs mere

Årsplan for matematik i 1. klasse 2011-12

Årsplan for matematik i 1. klasse 2011-12 Årsplan for matematik i 1. klasse 2011-12 Klasse: 1. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 5 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer

Læs mere

matematik grundbog trin 2 preben bernitt

matematik grundbog trin 2 preben bernitt matematik grundbog trin 2 preben bernitt matematik grundbog 2 3. udgave som E-bog ISBN: 978-87-92488-29-9 2006 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

matematik Demo excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk

matematik Demo excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk matematik excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk matematik excel 1 1. udgave som E-bog 2007 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit.

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit. Kapitel 20: Talsystemer 20 Resumé af talsystemer... 344 Indtastning og omregning af talsystemer... 345 Udførelse af matematiske beregninger med hexadecimale og binære tal... 346 Sammenligning eller manipulation

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Logik. Af Peter Harremoës Niels Brock

Logik. Af Peter Harremoës Niels Brock Logik Af Peter Harremoës Niels Brock December 2009 1 Indledning Disse noter om matematisk logik er en videreudbygning af det, som står i bogen MAT A [1]. Vi vil her gå lidt mere systematisk frem og være

Læs mere

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt brikkerne til regning & matematik tal og algebra F+E+D preben bernitt 1 brikkerne. Tal og algebra E+D 2. udgave som E-bog ISBN: 978-87-92488-35-0 2010 by bernitt-matematik.dk Kopiering af denne bog er

Læs mere

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING MANDATFORDELING Dette materiale er lavet som supplement til Erik Vestergaards hjemmeside om samme emne. 1 http://www.matematiksider.dk/mandatfordelinger.html I dette materiale er en række øvelser der knytter

Læs mere

Montørvejledning for DTC2102 Temperaturtyring - Version 1. Generel beskrivelse

Montørvejledning for DTC2102 Temperaturtyring - Version 1. Generel beskrivelse 1 2 3 R E DTC2102 Danotek Generel beskrivelse DTC2102 er udviklet til væskebaseret solfangersystemer, men kan også benyttes til anden temperatur styring med op til tre temperatur målinger og to relæudgange.

Læs mere

Excel-6: HVIS-funktionen

Excel-6: HVIS-funktionen Excel-6: HVIS-funktionen Regnearket Excel indeholder et væld af "funktioner" som kan bruges til forskellige ting indenfor f.eks. finans, statistik, logiske beregninger, beregninger med datoer og meget

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere