Boolesk Algebra og det binære talsystem - temahæfte informatik. Oprindelse.

Størrelse: px
Starte visningen fra side:

Download "Boolesk Algebra og det binære talsystem - temahæfte informatik. Oprindelse."

Transkript

1 Boolesk Algebra og det binære talsystem - temahæfte informatik. I dette hæfte arbejdes der med to-tals systemet og logiske udtryk. Vi oplever at de almindelige regneregler også gælder her, og vi prøver at nedskrive simple apparaters opførsel vha. booleske udtryk. Normalt vil det tage 2-3 moduler (á 90 minutter) at gennemgå hele hæftet. 1.0 Opbygning af 2-talsystemet Konvertering fra ti-talsystem til to-talsystem Addition Subtraktion Multiplikation Boolesk Algebra og gates OR gate AND gate NOT - Inverter Opbygning af sandhedstabeller Boolesk Algebra. Definitioner Booleske Regneregler De Morgans regel - ophævelse af Inverteringsbjælke Logiske skrivemåder Karnaughkort Oprindelse. I 1854 var der en engelsk matematiker og logiker ved navn George Boole ( ) der lavede en algebraisk beskrivelse af logiske love - det der i dag kaldes Boolesk Algebra. George Boole var autodidakt (senere matematik professor ved Queens College i Irland) og det var diskussioner med filosoffer og logikere, der fik Boole i gang med at opstille de logiske regler.

2 Ken Mathiasen 26/ Må gerne kopieres :) Side 2 af 28

3 1.0 Opbygning af 2-talsystemet. Vi begynder med ti-talsystemet. Når man skriver 3146 i vores normale ti-talsystem betyder det, at der er seks enere, fire tiere, en hundrede og tre tusinder. Når vi lægger de individuelle tal sammen, giver det På skemaform kan det skrives på følgende vis: = 3146 På tilsvarende måde gælder det i to-talsystemet. Vi tæller ikke fra 0 til 9, men fra 0 til 1. Et ciffer kan have værdien 1 eller 0. I ti-talsystemet kan et ciffer have værdien 0,1,2,3,4,5,6,7,8,9. I totalsystemet er der kun; 0, 1 - nul og en - falsk eller sandt - high eller low - lys eller mørke. Kun 0 og 1. Tallet 6 i ti-talsystemet skrives som 0110 i to-talsystemet. To-talsystemet kaldes også det binære talsystem. Tallet 3 i ti-talsystemet skrives som 0011 i det binære talsystem. 2.0 Konvertering fra ti-talsystem til to-talsystem Man konvertere et tal i 2-talsystemet til 10-talsystemet ved at indsætte 2-talsystemtallet i tabellen og lægge kolonneoverskrifterne sammen de steder der er "1" i cellen. Således bliver tallet i 2-talsystemet til 5 i 10-talsystemet = 5 I 10-talsystemet hedder et enkelt tal, et ciffer. I 2-talsystemet kalder vi det et bit. Normalt arbejder man i 2-talsystemet med 8 bit ad gangen - det kaldes en byte. 1 G Byte er med andre ord 8 G Bit. Ken Mathiasen 26/ Må gerne kopieres :) Side 3 af 28

4 2.1 Konverter følgende binære tal til 10-tal system a) b) c) d) Konverter følgende decimaltal til 2-tal system a) b) c) d) b) c) Ken Mathiasen 26/ Må gerne kopieres :) Side 4 af 28

5 2.3 Addition To tal lægges sammen på gammeldags måde ved at stille dem over hinanden altså = =5 Læg følgende tal sammen og konverter til 10-tal system a) = b) = 2.4 Addition med "carry" (mente) Når vi lægger to store tal sammen på den gammeldags metode skubber vi en ti'er, hvis resultatet af to cifre bliver for stort. Man begynder altid bagfra: et tal NB! flyttes (mente) = 2 = 62 = 462 = = 2462 = a) Læg følgende tal sammen på den gammeldags metode. Begynd bagfra - tjek efterfølgende svaret med din lommeregner: = = = Læg nu følgende 2-talsystems tal sammen - "med carry" b) = c) = Ken Mathiasen 26/ Må gerne kopieres :) Side 5 af 28

6 2.5 Subtraktion Det samme gælder når vi subtraherer (minusstykker). Vi starter bagfra og så "låner" vi nogle gange fra naboen. I totalssystemet får vi to når vi låner. 10 (altså vi lånte ti) 11 (og her lånte vi to stk) = 1 = 1191 = Multiplikation Multiplikation (gangestykker) forløber problemfrit i forhold til regnereglerne. At gange med 0 eller 1 er enkelt - det kender vi fra 10-talsystemet = 0 og = = = 4 Skal man gange med 2, svarer det til at lægge det oprindelige tal sammen to gange = = altså = =8 Hvis vi ganger med 3, så skal det oprindelige tal lægges sammen tre gange. I computeren udnytter man dette forhold. Hvis der skal gange med 2, så skifter man de enkelte bit én gang til venstre (left shift). Lidt ligesom vi flytter kommaet, når vi normalt ganger med skiftet en gang til venstre bliver man sætter "0" ind på den nye plads så svaret bliver Hvis man skal dele med 2, skifter man bare en gang til højre (right shift). Ken Mathiasen 26/ Må gerne kopieres :) Side 6 af 28

7 3.0 Boolesk Algebra og gates. Foruden de normale regneregler har man i to-talsystemet og så Booleske regneregler - Boolesk algebra. Disse regneregler er en stor hjælp når en computer skal arbejde. Boolesk algebra er logik-baseret. Man taler om "et udsagn". Et udsagn kan være sandt eller falsk. Sandt/rigtigt kan symboliseres ved lys i lampen på en sandhedsdetektor (ved løgn eller forkert svar, forbliver lampen slukket) Et falsk udsagn: Peter kan trække vejret under vandet. Et sandt udsagn: Peter kan drikke en cola. Et sandt udsagn er: = Sandt medfører lampen lyser Stærkt simplificeret kan man sige at det eneste en computer gør, er at kigge på en række udsagn (nogle input) og derefter udføre en ordre (output) der er afhængig af udsagnet. Den gør det bare en million gange i sekundet. Der er grundlæggende tre Booleske udtryk. Til hvert udtryk hører et symbol og en sandhedstabel. a) AND b) OR c) NOT (også kaldet Inverter) Ken Mathiasen 26/ Må gerne kopieres :) Side 7 af 28

8 3.1 OR gate Udgangen af en gate er enten 0 eller 1 (falsk eller sandt). Det er indgangsforholdene (kaldet A, B) der bestemmer hvad udgangen skal være. Udgangen kaldes Q. Udgangen, Q på en OR gate er altid 1 - på nær når begge indgange er 0. Med andre ord så er udgangen på en OR gate 1, når indgang A eller indgang B er 1 (på engelsk bliver det A or B). Hvis A = 1 og B = 0, bliver Q = 1: Det modsatte er også tilfældet. Hvis A = 0 og B = 1, så bliver Q = 1 (hvis A OR B er 1, bliver Q = 1). De forskellige kombinationer af A og B kan skrives op i en sandhedstabel. B A Q Sandhedstabel for en OR gate 3.2 AND gate Tilsvarende haves en kombination, hvor både A og B skal være 1, før udgangen, Q også bliver 1. Så man kan sige at udgangen på en AND gate altid er 0, på nær når A og B = 1 (på engelsk bliver det A and B). Hvis A = 1 og B = 0, bliver Q = 0 (fordi både A og B skal være 1 før Q bliver 1): Modsat, hvis A = 0 og B = 1, forbliver Q = 0. De forskellige kombinationer af A og B kan skrives op i en sandhedstabel. B A Q Sandhedstabel for en AND gate Ken Mathiasen 26/ Må gerne kopieres :) Side 8 af 28

9 3.3 NOT - Inverter Den sidste gate-type er en Inverter. En inverter inverterer - med andre ord så vender Inverteren indgangssignalet. Hvis indgangen er 1 bliver udgangen 0. Hvis indgang er 0, bliver udgangen 1. A Q Sandhedstabel for en Inverter Udgangen er det modsatte af indgangen. Så hvis A er 1, så er Q "not 1". _ NOT A kan også skrives som A. En bjælke over et udtryk betyder at det skal inverteres. _ A = 1 medfører at A = 0 Ken Mathiasen 26/ Må gerne kopieres :) Side 9 af 28

10 3.4 Opgaver - Sandhedstabeller vist med batterier, kontakter og pærer Kig på el-diagrammet. Når man trykker på en af knapperne (fx knappen SW 1), så lyser pæren. Hvis man trykker på den anden knap, SW 2 lyser pæren også. Hvis man trykker begge knapper samtidig, lyser pæren. Er ingen knapper trykkede, er der ingen lys. Man kan sammenligne kredsløbet med en gate og lave en sandhedstabel. Når man aktiverer en knap (når man trykker på den) svarer det til at indgang A på en gate, er 1. a) Prøv de forskellige knap kombinationer og skriv resultatet i tabellen B A Q b) Hvilken gate opfører sig som det kredsløb der er vist herover? Ken Mathiasen 26/ Må gerne kopieres :) Side 10 af 28

11 3.5 Opgave - Herunder er et nyt kredsløb. Når man trykker på SW 1 sker der ingen ting (ingen lys) a) Hvordan får man lys i pæren. b) Hvilken gate har en tilsvarende opførsel? 3.6 Inverter kredsløbet laves med et relæ. Herunder er vist et kredsløb der simulerer en Inverters opførsel. Pæren lyser hele tiden - selvom knappen SW 1 ikke er trykket ned. Når man trykker på knappen aktiveres relæet og så svinger kontakten væk fra pæren (den kontakt der er inde i RLY2, lige over lampen). Det er lidt ligesom et skiftespor til et tog. Pæren mister forbindelsen og slukkes når relæet aktiveres. Med andre ord; når man trykker på knappen, slukkes lampen. Ken Mathiasen 26/ Må gerne kopieres :) Side 11 af 28

12 4.0 Opbygning af sandhedstabeller. Her er to gate kombineret. Udgangen af en AND gate (kaldet P) er brugt som indgang på en Inverter. P Skal man lave en sandhedstabel, begynder man fra input (A, B) og bevæger sig mod output (Q). Først skrives AND gatens sandhedstabel op: B A P Q Bagefter tilføjes en kolonne Q, hvor man kigger på P og bruger P kolonnen som input til Inverteren. Kolonne Q er med andre ord blot det modsatte af P. Ovenstående sandhedstabel er meget anvendt. Den gælder en gate der hedder NAND gate (navnet er sammensat af "not" og "and" ) 4.1 Opgave - Lav en sandhedstabel for nedenstående kredsløb: P B A P Q Kredsløbet betegnes også NOR gate. Ken Mathiasen 26/ Må gerne kopieres :) Side 12 af 28

13 4.2 Kompressorens virkemåde. En hobby kompressor fungerer ved, at den tænder en luftpumpe der fylder luft i en tank. Når trykket i tanken er 6 bar eller mere (input A = 1), slukkes luftpumpen. Når trykket kommer under 6 bar tændes kompressoren igen. Lav en sandhedstabel for luftpumpen: Tryk 0 1 Luftpumpe 4.3 Opgave - El-radiatorens virkemåde Hvis hovedafbryderen i el-skabet er tændt (input A), så fungerer en el-radiator ved at den tænder automatisk når temperaturen i stuen kommer under 20 C. Når temperaturen kommer over 20 C igen (giver "temperatur > 20 C" = 1), slukkes radiatoren. Hvis hovedafbryderen i el-skabet er slukket (0), er el-radiatoren også slukket (0), uanset hvad temperaturen i rummet er. a) Lav en sandhedstabel for hele kredsløbet; el-radiator og hovedafbryder. Temperatur > 20 C Hovedafbryder Radiator der varmer Ken Mathiasen 26/ Må gerne kopieres :) Side 13 af 28

14 4.4 Opgave- Lav en sandhedstabel for nedenstående kredsløb: B A P B Q P ,5 Opgave - Lav en sandhedstabel for nedenstående kredsløb: A B C D E Z Ken Mathiasen 26/ Må gerne kopieres :) Side 14 af 28

15 4.6 Opgave - Lav en sandhedstabel for et køleskab der er tilsluttet en stikkontakt i væggen. Når temperaturen i et køleskab er over 5 C skal kompressoren tændes. Når temperaturen er under 5 C skal kompressoren slukkes - hvis altså stikkontakten er tændt. a) Bestem hvad der er A og B og Q. b) Lav en sandhedstabel for systemet. Ken Mathiasen 26/ Må gerne kopieres :) Side 15 af 28

16 5.0 Boolesk Algebra. Definitioner Forskellige gates opfylder forskellige Booleske regneregler. 1 0 = 0 (det er en AND gate) = 1 (det er en OR gate) 1 1 = = 1 0 = 1 (stegen over 0 læses som "0 negeret") 1 = 0 "0 negeret" kan også siges som "ikke 0". På samme måde kan "1 negeret" siges som "ikke 1." 5.1 Opgave - Udregn følgende Booleske udtryk: a) 0 1 = b) 1 1 = c) 1 1 = d) = _ e) 1 0 = f) ( 1 0 ) + ( 1 1) = g) (1 0 ) + (1 1 ) = h) ( 0 1 ) + ( 1 1 ) + ( 0 0 ) = _ i) ( ) (1 1 1) = j) ) (1 + 1 ) = 5.2 Opgave - Logiske opgaver fra hverdagen a) Lav et gate kresløb der blokerer lågen i en vaskemaskine, hvis der er vand i vaskemaskinen og man prøver at åbne lågen. Kredsløbet skal også blokere lågen hvis tromlen kører. Beskriv kredsløbet med Booleske udtryk. b) Lav et lille gate kredsløb der tænder for lyset i en carport hvis der er bevægelse foran en bevægelsessensor. Kredsløbet skal kun virke når der er mørkt (måles med en lyssensor). Beskriv kredsløbet med Booleske udtryk og tegn kredsløbet med gates. Ken Mathiasen 26/ Må gerne kopieres :) Side 16 af 28

17 5.3 Brug Boolesk regneregler på følgende udtryk (" " angiver OR. " " angiver AND) a) = b) = c) = d) = e) = f) = 5.4 Opgave - Logiske opgaver fra hverdagen a) Et netstik til en stuelampe stikkes i væggen i en stikkontakt. Når man tænder og slukker på stikkontakten i væggen tænder og slukker lampen. MEN på ledningen er der monteret en afbryder. Når ledningsafbryderen er tændt, fungerer stikkontaktkontakten normalt. Hvis ledningsafbryderen er slukket kan lampen ikke tændes. Lav et lille gatekredsløb der opfører sig på tilsvarende måde. Beskriv kredsløbet med Booleske udtryk og tegn kredsløbet med gates. b) Lav et lille gate kredsløb der giver alarm, hvis lygterne i en gammel bil er tændt, selvom der ikke er tænding på (altså beep-beep, hvis man glemmer at slukke lyset når man har kørt en tur). Kredsløbet skal også give alarm, når der er tænding på, men med samtidig slukkede lygter (altså også en beep-beep, når man kører en tur med slukkede lygter). Beskriv kredsløbet med Booleske udtryk. Ken Mathiasen 26/ Må gerne kopieres :) Side 17 af 28

18 6.0 Booleske Regneregler. Rækkefølgen. Når man regner med booleske udtryk løser man parenteserne først (ligesom vi plejer - lidt som en mellemregning) ( 1 0 ) + ( 1 1) = efterfølgende løser man udtrykket = 1 Vis at følgende udtryk giver 1: a) ( 1 1 ) + ( 0 1) = b) ( 0 0 ) + ( 0 1) + ( 1 1 ) = _ c) ( 1 0 ) ( 1 1) = d) ( ) + (0 0) + 1= 6.1 AND ( ) "binder" mere end OR (+). Vi begynder med at udregne AND ( ) først, og bagefter udregner vi OR (+). Det kender vi fra den normale matematik, hvor vi udregner gange og division, før vi lægger tallene sammen. Normalt udregnes ved at man først siger 2 10 = 20 og 4 3 = 12. Når det er gjort, lægger vi tallene sammen = 32. Så = 32. I Boolesk algebra kan det se således ud: udregnes ved først at sige 1 0 = 0 og 1 1 = 1. Når det er gjort, OR'es de to tal sammen = 1. Med andre ord så er = 1. Vis at følgende udtryk giver 1: a) = b) = _ c) = d) ( 1 0 ) ( 0 1) ( 1 1 ) = Ken Mathiasen 26/ Må gerne kopieres :) Side 18 af 28

19 6.2 Inverteringsbjælken fungerer som en parentes. Det bjælken dækker, skal inverteres (det der står i ly af bjælken hvis det regner, skal vendes om). 0 bliver til 1. Ligesom 1 bliver til 0 (1 + 1) bliver til (1) altså Først løses det der står under bjælken - ligesom parenteser (dvs 1 1 = 1): _ Herefter fjerner vi bjælken (1 bliver til 0): og nu kan udregningen laves = De Morgans regel - ophævelse af Inverteringsbjælke En Inverteringsbjælke der dækker to pladser, kan fjernes ved at den "falder ned". De fortegn den dækker (de fortegn stumperne fra bjælken rammer, når den falder ned) skal ændres. _ = (så nu er bjælken delt i to og fortegnet under den er skiftet) _ = To bjælker går ud med hinanden: = først lader man bjælken falde ned: så udregning: = 0 Vis at følgende udtryk kan reduceres ned til 0 a) = b) (0 + 1) = c) (1 + 0 ) (1 1 1) + 0= d) (1 + 0) = Ken Mathiasen 26/ Må gerne kopieres :) Side 19 af 28

20 I Boolesk algebra anvender man A, B, C osv. for de forskellige indgange når man tegner gates. Hver indgang kan være 1 eller 0. Skriver man regnereglerne op med bogstaver (ligesom vi normalt bruger bogstaver i formlerne), kommer den første regel til at se således ud: = 1 0 med bogstaber bliver det til A + B = A B Herefter kan man tegne udtrykket med gates og lave en sandhedstabel til: A P A A Q B B B Q B A P Q B A B A Q _ A + B = A B De to kredsløb er altså ens - set med logiske øjne 6.4 Opgave a) Tegn de to Boelske udtryk med gates A B = A + B b) Lav de tilsvarende sandhedstabeller: B A P Q B A B A Q Ken Mathiasen 26/ Må gerne kopieres :) Side 20 af 28

21 6.5 Opgave En anden Boolesk regel er at: A + A B = A. a) Tegn udtrykket "A + A B" med gates b) Lav en sandhedstabel for de to udtryk B A P Q A Q c) Tegn derefter sandhedstabellen for A = A 6.6 Opgave a) Opskriv sandhedstabellen for følgende udtryk: Q = C (B + A) C B A C (B+A) Q b) Tegn kredsløbet med gates Ken Mathiasen 26/ Må gerne kopieres :) Side 21 af 28

22 6.7 Opgave a) Opskriv sandhedstabellen for følgende udtryk: Q = B + (C A) C B A A (C A) Q b) Tegn kredsløbet 6.8 Opgave Opstil det Booleske udtryk bag følgende kredsløb og lav den tilhørende sandhedstabel: A A + B C B A C (A+B) Q Q B C C Ken Mathiasen 26/ Må gerne kopieres :) Side 22 af 28

23 6.9 Opgave Opstil det Booleske udtryk bag følgende kredsløb og lav den tilhørende sandhedstabel: A C B A Q B C Ken Mathiasen 26/ Må gerne kopieres :) Side 23 af 28

24 7.0 Logiske skrivemåder Først et par regneregler - er man i tvivl kan man altid teste en regel med en sandhedstabel: 1) En Inverteringsbjælken kan falde ned og ændre fortegn: A + B = A B 2) Optræder en variabel alene (OR) kan de andre variable slettes A + A B = A 3) En operator OR'ed med sig selv, giver det oprindelige A + A = A 4) En operator AND'ed med sig selv, giver det oprindelige A A = A 5) Man kan gange (AND) ind i en parentes: A (B + C) = A B + A C 6) Man kan OR en parameter ind i en parentes: A + (B C) = (A+B) (A+C) Eksempel på reduktionsstykke: Q = A (B + C) + A C vi AND'er parentesen ud (regel 5): A B + A C + A C Q = A B + A C + A C så samler vi de to ens operatorer (regel 3): A B + A C Q = A B + A C så sætter vi A uden for en parentes (regel 5): Q = A (B+C) Tegner man opgaven, ser det således ud. Det der kommer igennem de to kredsløb er det samme: A A (B+C) A A (B+C) B+C B+C B B C A C C 7.1 Opgave - Reducer følgende udtryk: a) Q = A + B b) Q = B + A B c) Q = (A B) + C D + A d) Q = ( A B ) + ( A C ) (her begynder man med at sættes A udenfor en parentes) e) Q = ABC + ABC + ABC + ABC _ f) Q = ABC + ABC + ABC + ABC Ken Mathiasen 26/ Må gerne kopieres :) Side 24 af 28

25 8.0 Karnaughkort Logiske reduktionsopgaver kan løses grafisk med Karnaughkort. Sandhedstabellen skrives op og indsættes i derefter en matrice. Det er ofte nemmere end at foretage udregningen. Eksempel på reduktion af: Q = ABC + ABC + ABC + ABC C B A Q Hver celle repræsenterer Q i en linje af sandhedstabellen BA BA BA BA C C Karnaughkort for Nu samles (grupperes) alle "1" i Karnaughkortet. Det ses at når C = 0 er det lige meget hvad "A" er i BA, bare B = 1. Så første led i løsningen er at Q = C B +... BA BA BA BA C C Karnaughkort for Næste gruppe med "1" findes: BA BA BA BA C C Karnaughkort for Det ses at når C = 1 er det lige meget hvad "B" er i BA, når bare A = 1. Så andet led i løsningen er at Q = C B + C A Nu kan der ikke laves flere sløjfer - vi er færdige. Så svaret er Q = CB + CA Ken Mathiasen 26/ Må gerne kopieres :) Side 25 af 28

26 8.1 Karnaughkort regler Ved brug af Karnaughkort skal man altid lave de største sløjfer først. Sløjferne skal være rektangulære eller kvadratiske. Alle ettaller skal sløjfes. Samme ettal må gerne indgå i flere sløjfer. 8.2.a) Reducer følgende udtryk med Karnaughkort: Q = ABC + ABC + ABC + ABC C B A Q Karnaughkort for C 0 C 1 BA BA BA BA _ 8.2.b) Reducer følgende udtryk med Karnaughkort: Q = ABC + ABC + ABC + ABC C B A Q Karnaughkort for C 0 C 1 BA BA BA BA _ 8.2.c) Reducer følgende udtryk med Karnaughkort: Q = ABC + ABC + ABC + ABC C B A Q Karnaughkort for C 0 C 1 BA BA BA BA Ken Mathiasen 26/ Må gerne kopieres :) Side 26 af 28

27 _ 8.2.d) Reducer følgende udtryk med Karnaughkort: Q = ABC + ABC + ABC + ABC C B A Q Karnaughkort for BA BA BA BA C C Her er et værktøj der kan hjælpe med reduktionsstykkerne: are only 010 kind of people: Those who understand binary and those who don t. Ken Mathiasen 26/ Må gerne kopieres :) Side 27 af 28

28 OR gate B A Q = 1 (det er en OR gate) = 1, = 0 AND gate B A Q = 0 (det er en AND gate). 1 1 = 1, 0 0 = 0 Inverter (NOT gate) A Q = 1 (stegen over 0 læses som "0 negeret") 1 = 0 Boolesk Algebra (digital), regneregler 1) En Inverteringsbjælken kan falde ned og ændre fortegn: A + B = A B 2) Optræder en variabel alene (OR) kan de andre variable slettes A + A B = A 3) En operator OR'ed med sig selv, giver det oprindelige A + A = A 4) En operator AND'ed med sig selv, giver det oprindelige A A = A 5) Man kan gange (AND) ind i en parentes: A (B + C) = A B + A C 6) Man kan OR en parameter ind i en parentes: A + (B C) = (A+B) (A+C) Dette kompendium er udarbejdet af adjunkt ved Sønderborg Statsskole, Ken Mathiasen (cand IT). Kopiering og af kompendiet må gerne finde sted, men husk at bibeholde navnereferencen :) Ken Mathiasen 26/ Må gerne kopieres :) Side 28 af 28

På en digital indgang kan en computer kun se forskel på, om en kontakt er tændt eller slukket. Men til gengæld er den hurtig og god til at regne.

På en digital indgang kan en computer kun se forskel på, om en kontakt er tændt eller slukket. Men til gengæld er den hurtig og god til at regne. Boolesk Algebra og det binære talsystem - temahæfte informatik Dette temahæfte introducerer to-talsystemet og logiske udtryk (Boolesk algebra). Vi oplever, at de almindelige regneregler også gælder i to-talsystemet,

Læs mere

ITS MP 013. Talsystemer V009. Elevens navn. IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44

ITS MP 013. Talsystemer V009. Elevens navn. IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44 ITS MP 013 V009 Elevens navn IT Skolen Boulevarden 19A-C 7100 Vejle Tel.:+45 76 42 62 44 ITS MP 013 Udarbejdet af Søren Haahr, juni 2010 Copyright Enhver mangfoldiggørelse af tekst eller illustrationer

Læs mere

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM526 Rolf Fagerberg, 2009 Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program)

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Talsystemer I V X L C D M 1 5 10 50 100 500 1000. Hvad betyder halvanden??. Kan man også sige Halvtredie???

Talsystemer I V X L C D M 1 5 10 50 100 500 1000. Hvad betyder halvanden??. Kan man også sige Halvtredie??? Romertal. Hvordan var de struktureret?? Systematisk?? I V X L C D M 1 5 10 50 100 500 1000 Regler: Hvis et lille tal skrives foran et stort tal trækkes tallet fra: IV = 5-1 = 4 Hvis et lille tal skrives

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Det binære talsystem og lidt om, hvordan computeren virker

Det binære talsystem og lidt om, hvordan computeren virker Det binære talsystem og lidt om, hvordan computeren virker Det binære talsystem...2 Lidt om, hvorledes computeren anvender det binære talsystem...5 Lyst til at lege med de binære tal?...7 Addition:...7

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

Lektion 1 Grundliggende regning

Lektion 1 Grundliggende regning Lektion 1 Grundliggende regning Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division - brug af regnemaskine... Talsystemets opbygning - afrunding af tal... Store tal og negative tal...

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

Logik Rapport - Alarm. Klaus Jørgensen Itet. 1a. Klaus Jørgensen & Ole Rud 9/9-2002 Vejledere: PSS & SKH

Logik Rapport - Alarm. Klaus Jørgensen Itet. 1a. Klaus Jørgensen & Ole Rud 9/9-2002 Vejledere: PSS & SKH - Alarm Klaus Jørgensen Itet. 1a. Klaus Jørgensen & Ole Rud 9/9-2002 Vejledere: PSS & SKH Indholdsfortegnelse. Side 2. Side 2. Side 3. Side 3. Side 4. Side 4. Side 5. Side 6. Side 7. Side 8. Side 9. Side

Læs mere

Det vigtigste ved læring af subtraktion er, at eleverne

Det vigtigste ved læring af subtraktion er, at eleverne Introduktion Subtraktion er sammen med multiplikation de to sværeste regningsarter. Begge er begrebsmæssigt sværere end addition og division og begge er beregningsmæssigt sværere end addition. Subtraktion

Læs mere

Niveauer af abstrakte maskiner

Niveauer af abstrakte maskiner Det digitale niveau Niveauer af abstrakte maskiner Digitale kredsløb Logiske tilstande: (- V), (2-5 V) Kombinatoriske kredsløb Logiske tilstande: (- V), (2-5 V) Registre Logiske tilstande: (- V), (2-5

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

DM13-1. Obligatoriske Opgave - Kredsløbs design

DM13-1. Obligatoriske Opgave - Kredsløbs design DM13-1. Obligatoriske Opgave - Kredsløbs design Jacob Christiansen moffe42@imada.sdu.dk Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense 1. Opgaven Opgaven består i at designe et kredsløb,

Læs mere

ÅRSPLAN MATEMATIK 5.KLASSE

ÅRSPLAN MATEMATIK 5.KLASSE ÅRSPLAN MATEMATIK 5.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet)

dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet) dcomnet-nr. 8 Simpel aritmetik på maskinniveau Computere og Netværk (dcomnet) Efterår 2009 1 Simpel aritmetik på maskinniveau I SCO, appendix A, er det beskrevet, hvordan man adderer ikke-negative heltal

Læs mere

1 Bits og Bytes Computere er fortræffelige til at opbevare data og behandle data Af data vil vi i dette afsnit primært beskæftige os med billeder, tekst og lyd, og se på, hvordan sådanne data lagres i

Læs mere

Tal i det danske sprog, analyse og kritik

Tal i det danske sprog, analyse og kritik Tal i det danske sprog, analyse og kritik 0 Indledning Denne artikel handler om det danske sprog og dets talsystem. I første afsnit diskuterer jeg den metodologi jeg vil anvende. I andet afsnit vil jeg

Læs mere

matematik Demo excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk

matematik Demo excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk matematik excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk matematik excel 1 1. udgave som E-bog 2007 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Analyseopgaver. Forklar kredsløbet. Forklar kredsløbet. 3.0 DC Adapter med Batteri Backup.

Analyseopgaver. Forklar kredsløbet. Forklar kredsløbet. 3.0 DC Adapter med Batteri Backup. Analyseopgaver. Simpel NiMH lader. Forklar kredsløbet.. Infrarød Remote Control tester Forklar kredsløbet.. DC Adapter med Batteri Backup. Der bruges en ustabiliseret Volt adapter. Den giver normalt ca.

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

IT/Regneark Microsoft Excel 2010 Grundforløb

IT/Regneark Microsoft Excel 2010 Grundforløb Januar 2014 Indhold Opbygning af et regneark... 3 Kolonner, rækker... 3 Celler... 3 Indtastning af tekst og tal... 4 Tekst... 4 Tal... 4 Værdier... 4 Opbygning af formler... 5 Indtastning af formler...

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

TeleSwitch M2. TeleSwitch er en ideel fjernstyret strømafbryder og tilbagemelder til hjemmet, fritidshuset, kontoret og værkstedet.

TeleSwitch M2. TeleSwitch er en ideel fjernstyret strømafbryder og tilbagemelder til hjemmet, fritidshuset, kontoret og værkstedet. TeleSwitch M TeleSwitch er en ideel fjernstyret strømafbryder og tilbagemelder til hjemmet, fritidshuset, kontoret og værkstedet. Med TeleSwitch kan du tænde og slukke for elektriske apparater via telefonen,

Læs mere

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit.

Med TI-89 / TI-92 Plus kan du også sammenligne eller manipulere binære tal bit for bit. Kapitel 20: Talsystemer 20 Resumé af talsystemer... 344 Indtastning og omregning af talsystemer... 345 Udførelse af matematiske beregninger med hexadecimale og binære tal... 346 Sammenligning eller manipulation

Læs mere

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1.

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1. Læringsprogram Talkonvertering Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen Klasse 2.4 1. marts 2011 Fag: Vejleder: Skole: Informationsteknologi B Karl G. Bjarnason Roskilde

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter uden regnemaskine...2 De fire regnearter nu må du godt bruge regnemaskine...5 10-tals-systemet...7 Decimaler og brøker...9 Store tal...1 Gange

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Matematik og Fysik for Daves elever

Matematik og Fysik for Daves elever TEC FREDERIKSBERG www.studymentor.dk Matematik og Fysik for Daves elever MATEMATIK... 2 1. Simple isoleringer (+ og -)... 3 2. Simple isoleringer ( og )... 4 3. Isolering af ubekendt (alle former)... 6

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Indhold. Selandia-CEU Side 2

Indhold. Selandia-CEU Side 2 Excel 2007 Indhold Excel 2007... 4 Start Excel... 4 Luk Excel... 4 Skærmbilledet i Excel 2007... 5 Titellinjen... 5 Båndet... 5 Formellinjen... 6 Celler... 6 Ark... 7 Mus og markør... 7 Fyldhåndtaget...

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

Kom godt i gang. Mellemtrin

Kom godt i gang. Mellemtrin Kom godt i gang Mellemtrin Kom godt i gang Mellemtrin Forfatter Karsten Enggaard Redaktion Gert B. Nielsen, Lars Høj, Jørgen Uhl og Karsten Enggaard Fagredaktion Carl Anker Damsgaard, Finn Egede Rasmussen,

Læs mere

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring Hovedemne 1: Talsystemet og at gange kan anvende flercifrede naturlige tal til at beskrive antal og rækkefølge udvikle metoder til multiplikation og division med naturlige tal udføre beregninger med de

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

T ALKUNNEN. Tilnærmede tal og computertal

T ALKUNNEN. Tilnærmede tal og computertal T ALKUNNEN 6 Allan C Allan C.. Malmberg Tilnærmede tal og computertal INFA Matematik - 2000 1 INFA - IT i skolens matematik Projektledelse: Allan C. Malmberg Inge B. Larsen INFA-Klubben: Leif Glud Holm

Læs mere

Excel - begynderkursus

Excel - begynderkursus Excel - begynderkursus 1. Skriv dit navn som undertekst på et Excel-ark Det er vigtigt når man arbejder med PC er på skolen at man kan få skrevet sit navn på hver eneste side som undertekst.gå ind under

Læs mere

VisiRegn: En e-bro mellem regning og algebra

VisiRegn: En e-bro mellem regning og algebra Artikel i Matematik nr. 2 marts 2001 VisiRegn: En e-bro mellem regning og algebra Inge B. Larsen Siden midten af 80 erne har vi i INFA-projektet arbejdet med at udvikle regne(arks)programmer til skolens

Læs mere

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik potenstal og rodtal trin 2 preben bernitt brikkerne til regning & matematik potenstal og rodtal, trin 2 ISBN: 978-87-92488-06-0 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

BRUGERVEJLEDNING TÆND-SLUK ENHED

BRUGERVEJLEDNING TÆND-SLUK ENHED BRUGERVEJLEDNING TÆND-SLUK ENHED Side 1 til tænd-sluk enheden Introduktion Med tænd-sluk enheden fra LOCKON kan du styre strømmen i din bolig. Du kender princippet fra de traditionelle tænd-sluk ure, der

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING MANDATFORDELING Dette materiale er lavet som supplement til Erik Vestergaards hjemmeside om samme emne. 1 http://www.matematiksider.dk/mandatfordelinger.html I dette materiale er en række øvelser der knytter

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3.

tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3. Den tråd i matematik Hørsholm Skole har lavet den røde tråd for undervisningen i matematik fra 1.-9. klasse 1. klasse 2. klasse 3. klasse 4. klasse 5. klasse 6. klasse 7. klasse 8. klasse 9. klasse 1.klasse

Læs mere

formler og ligninger basis brikkerne til regning & matematik preben bernitt

formler og ligninger basis brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger basis preben bernitt brikkerne til regning & matematik formler og ligninger, basis ISBN: 978-87-92488-07-7 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Lektion 6 / Analog Arduino

Lektion 6 / Analog Arduino 1 Jeremiah Teipen: Electronic Sandwich BSPR11 Lektion 6 / Analog Arduino Mogens Jacobsen / moja@itu.dk Siden sidst 2 Har I fået nogle LEDs til at blinke? Har I brugt kontakter? Hvad har I eksperimenteret

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Manual til: Miracas DK080 GSM Tyverialarm

Manual til: Miracas DK080 GSM Tyverialarm Manual til DK080 Indhold Forord... 4 Alarmens generelle opbygning... 5 Placering af alarmen... 7 Oversigt over alarmen... 8 Tag alarmen i brug... 9 Programering af alarmen... 10 Indtastning af egen kode...

Læs mere

Maskiner og robotter til hjælp i hverdagen

Maskiner og robotter til hjælp i hverdagen Elektronik er en videnskab og et fagområde, der beskæftiger sig med elektriske kredsløb og komponenter. I daglig tale bruger vi også udtrykket elektronik om apparater, der udnytter elektroniske kredsløb,

Læs mere

SSI-9001 IP65. Installations vejledning. SSIHuset v/svane Electronic ApS. GSM fjern kontrol og alarm system

SSI-9001 IP65. Installations vejledning. SSIHuset v/svane Electronic ApS. GSM fjern kontrol og alarm system SSI-9001 IP65 GSM fjern kontrol og alarm system Installations vejledning SSIHuset v/svane Electronic ApS Vejledning Kontakt Tænd/sluk 1 - Strømforsyning: Forbundet til egen 12V / 1.5A strømforsyning (*)

Læs mere

Installations- og bruger vejledning

Installations- og bruger vejledning Installations- og bruger vejledning Indhold: Tasternes funktioner...side 1 Om menuen...side 1 Vigtigt før du starter...side 2 Opsætning og tilkobling af boks og komponenter i hjemmet...side 2 Tilkobling

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Forenklede Fælles Mål. Matematik i marts 27. marts 2014

Forenklede Fælles Mål. Matematik i marts 27. marts 2014 Forenklede Fælles Mål Matematik i marts 27. marts 2014 Læringskonsulenter klar med bistand Side 2 Forenklede Fælles Mål hvad ligger der i de nye mål? Hvorfor nye Fælles Mål? Hvorfor? Målene bruges generelt

Læs mere

Kom godt i gang. Sluttrin

Kom godt i gang. Sluttrin Kom godt i gang Sluttrin Kom godt i gang Sluttrin Forfatter Karsten Enggaard Redaktion Gert B. Nielsen, Lars Høj, Jørgen Uhl og Karsten Enggaard Fagredaktion Carl Anker Damsgaard, Finn Egede Rasmussen,

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Affine - et krypteringssystem

Affine - et krypteringssystem Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Projekt Træningsmaskine

Projekt Træningsmaskine Computer- og El-teknik A. Holstebro Tekniske Gymnasium - HTX Projekt Træningsmaskine Afleveret: Fredag d. 10/10-2008. Udarbejdet af: Bent Arnoldsen, Holstebro HTX. Gruppemedlem: Hjalmar Krarup Andersen,

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Excel-6: HVIS-funktionen

Excel-6: HVIS-funktionen Excel-6: HVIS-funktionen Regnearket Excel indeholder et væld af "funktioner" som kan bruges til forskellige ting indenfor f.eks. finans, statistik, logiske beregninger, beregninger med datoer og meget

Læs mere

Matematik. på Åbent VUC. Trin 2 Eksempler

Matematik. på Åbent VUC. Trin 2 Eksempler Matematik på Åbent VUC Trin Indledning til kursister på Trin II Indledning til kursister på Trin II Dette undervisningsmateriale består af 10 moduler med opgaver beregnet til brug på Trin I og 7 moduler

Læs mere

Årsplan for matematik i 1.-2. kl.

Årsplan for matematik i 1.-2. kl. Årsplan for matematik i 1.-2. kl. Lærer Martin Jensen Mål for undervisningen Målet for undervisningen er, at eleverne tilegner sig matematiske kompetencer og arbejdsmetoder jævnfør Fælles Mål. Eleverne

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

WT-1011RC Programmer User Guide

WT-1011RC Programmer User Guide WT-1011RC Programmer User Guide Firmware Version 1.9 Note: 1. Information in this manual is subject to change without notice and does not represent a commitment of manufacturer. 2. Manufacturer shall not

Læs mere

3. Computerens opbygning.

3. Computerens opbygning. 3. Computerens opbygning. Computere er konstrueret med henblik på at skulle kunne behandle og opbevare data og det er de som nævnt i noterne om Bits og Bytes vældig gode til. Som overordnet model for computere

Læs mere

Sug det op. Sug det op. Ingeniørens udfordring Elevhæfte. Materialet er udarbejdet i forbindelse med EU- projektet;

Sug det op. Sug det op. Ingeniørens udfordring Elevhæfte. Materialet er udarbejdet i forbindelse med EU- projektet; hu6 1 Sug det op Sug det op Ingeniørens udfordring Elevhæfte Materialet er udarbejdet i forbindelse med EU- projektet; Engineer. Tekst og redaktion: Læringskonsulent, Experimentarium: Mette Rehfeld Meltinis

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

CITIZEN TM CX-85. Strimmelregner. Instruktionsmanual

CITIZEN TM CX-85. Strimmelregner. Instruktionsmanual ITIZEN TM X-85 Strimmelregner Instruktionsmanual BESKRIVELSE AF TASTATUR OG KNAPPER... Slettetast (clear entry / clear) Anvendes til at slette et forkert indtastet beløb. Øvrige indhold af hukommelsen

Læs mere

1121 PD L. Brugervejledning

1121 PD L. Brugervejledning 1121 PD L Brugervejledning Oversigt Generelle instruktioner... 2 Udskiftning af farvebånd........ 3 Isætning af papirrullen... 3 Display symboler... 4 Tastatur fortegnelse.... 5 Skydeknap funktioner......

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Procentregning. Procent Side 36

Procentregning. Procent Side 36 Procentregning Find et antal procent af.... 37 Procent, brøk og decimaltal... 38 Hvor mange procent udgør..?... 39 Find det hele..... 40 Promille... 40 Moms... 41 Forskel i procent... 42 Ændring i procent...

Læs mere

Kvadratrodsberegning ved hjælp af de fire regningsarter

Kvadratrodsberegning ved hjælp af de fire regningsarter Kvadratrodsberegning ved hjælp af de fire regningsarter Tidligt i historien opstod et behov for at beregne kvadratrødder med stor nøjagtighed. Kvadratrødder optræder i forbindelse med retvinklede trekanter,

Læs mere

brikkerne til regning & matematik tal og regning basis+g preben bernitt

brikkerne til regning & matematik tal og regning basis+g preben bernitt brikkerne til regning & matematik tal og regning basis+g preben bernitt brikkerne til regning & matematik tal og regning, basis ISBN: 978-87-92488-01-5 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Benyt evt. programmeringsguiden Kør frem vælg sekunder i stedet for rotationer.

Benyt evt. programmeringsguiden Kør frem vælg sekunder i stedet for rotationer. Lego Mindstorms Education NXT nat1 nat april 2014 Dette dokument ligger på adressen: http://www.frborg-gymhf.dk/eh/oev/legonxtnat1nat2014.pdf Følgende er en introduction til Lego Mindstorms NXT. Her er

Læs mere

brikkerne til regning & matematik potenstal og præfikser Demo trin 1 preben bernitt

brikkerne til regning & matematik potenstal og præfikser Demo trin 1 preben bernitt brikkerne til regning & matematik potenstal og præfikser trin 1 preben bernitt brikkerne til regning & matematik potenser og præfikser, trin 1 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering

Læs mere

Brugervejledning. Fjernbetjening display MT-5

Brugervejledning. Fjernbetjening display MT-5 Brugervejledning Fjernbetjening display MT-5 OVERSIGT Det digitale fjernbetjening display, der viser dig anlæggets driftsinformation, system fejl og selvdiagnostik udlæsning. Oplysningerne vises på et

Læs mere

Programmeringseksempel tl BCxxxx (Seriel)

Programmeringseksempel tl BCxxxx (Seriel) APP-NOTE 600005 Beckhoff Application Note Date: 8/28/2006 Document Status: First Draft Beckhoff Automation Aps Naverland 2, DK-2600 Glostrup Phone +45 43 46 76 20 Fax +45 43 46 63 35 Programmeringseksempel

Læs mere

Matematik. på AVU. Eksempler til niveau G, F, E og D. Niels Jørgen Andreasen

Matematik. på AVU. Eksempler til niveau G, F, E og D. Niels Jørgen Andreasen Matematik på AVU Eksempler til niveau G, F, E og D Niels Jørgen Andreasen Om brug af denne eksempelsamling Matematik-niveauerne på Almen Voksenuddannelse hedder nu Basis, G og FED. Indtil sommeren 009

Læs mere

Specielle tegn. Specielle tegn. Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5

Specielle tegn. Specielle tegn. Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5 Siede 1 af 6 Specielle tegn Indhold: Specielle tegn...1 Indhold:...1 Teori og praksis...1 Koder...2 Brug af symboler...5 Teori og praksis Man kan ind i mellem få brug for at kunne skrive specielle tegn.

Læs mere