Teoretiske Øvelsesopgaver:

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Teoretiske Øvelsesopgaver:"

Transkript

1 Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere end ét reciprokt element b 1? Tip: Betragt udtryk af formen -b 1 + b + -b 2 b 1 1 b b 1 2 benyt regnereglerne i legemer TØ-Opgave 2 Boolsk algebra Scheffer s streg: Legemer behøver ikke at bestå af tal Så vores lille legeme {0, 1} med additions- multiplikationstabellerne kunne feks bestå af sandhedsværdierne falsk 0 sand 1 Dvs + bliver de liske/boolske operatorer exclusive or and, vi har nu 10 lik-regler T1-10 for disse to operationer! Vi definerer nu en ny operation kaldet Sheffer s streg: Idet, betegner hhv de liske operatorer not, and or, bedes I vise følgende for alle sandhedsværdier a b : a a b = a b Sheffer s streg kaldes så nand b a a = a c a b = a b Tip: Se på tabeller for bla a b a b Benyt dette til at udtrykke a b a + b udelukkende via den nye operator I dette lille legeme har vi altså ikke brug for to forskellige operatorer, idet alle sædvanlige liske operatorer kan udtrykkes via Sheffer s streg! Har c net at gøre med følgende udsagn?: Hvis A B er to delmængder af rummet R 2, så er foreningsmængden A B lig med R 2 \ R 2 \ A R 2 \ B, hvor R 2 \ betegner komplementærmængde fællesmængde TØ-Opgave 3 Det irrationelle tal 2: I Forelæsningsnote 1 påstås det, at 2 ikke er et rationelt tal Vis, at dette er korrekt ved at antage, at der findes to heltal p q 0, så p = 2 q Tip: Vis, at denne antagelse medfører, at p 2 er et lige heltal, at p er lige, at q er lige, at brøken p derfor kan forkortes med en q faktor 2 i tæller nævner Hvorfor fører antagelsen tilsidst til en modstrid?

2 TØ-Opgave 4 Legemerne blandt ringene Z q : Når man heltalsdividerer et heltal p med et positivt heltal q N, får man en heltallig kvotient kvot = p div q en heltallig rest r = p mod q, hvor r {0, 1,, q 1}, p = kvot q + r Feks er 21 div 4 = 5 21 div 4 = -6, idet resterne er hhv 1 3 Lad nu et heltal q 2 være givet, betragt den endelige mængde Z q = {0, 1,, q 1} Vi definerer additionen + q multiplikationen q på denne mængde via de sædvanlige heltalsoperatorer + : a + q b = a + b mod q a q b = a b mod q får herved en ring med 1-element Dette behøver I ikke vise! Er Z q så et tallegeme? Svaret er ja, hvis q er et primtal, nej ellers, I skal nu vise nej et: Vis, at Z q ikke er et legeme, hvis q er delelig med et af tallene 2, 3,, q 1 Tip: Vis først, at produktet af to elementer a 0 b 0 i et tallegeme ikke kan være 0, idet a 1 b 1 eksisterer Har I set legemet Z 2 tidligere i dette kursus? Hvad er i legemet Z 7? TØ-Opgave 5 Legemet af orden primtal n, dvs 2, 3, 4, 5, 7, 8, 9, 11, 13, : Faktisk findes der for hvert primtal hvert n N kun ét endeligt legeme med primtal n elementer når vi ser bort fra omdøbning af elementer! Dette legeme dem, hvor elementerne har andre navne kaldes for Galois legemet af orden primtal n betegnes GFprimtal n Eng: field betyder bla algebraisk legeme Brug denne oplysning samt TØ-Opgave 4 Z 3 er et legeme til at afgøre hvilke af følgende mængder, der er legemer: 1 Mængden {a, b, c}, hvor + a b c a c a b b a b c c b c a a b c a c b a b b b b c a b c 2 Mængden {a, b, c}, hvor + a b c a a b c b b c a c c a b a b c a a a a b a b c c a c a 3 Mængden {a, b, c}, hvor + a b c a b c a b c a b c a b c a b c a a b c b b a c c c c c

3 TØ-Opgave 6 Eksempler på brug af punkt-matricer i grafteori: I grafteori benyttes ofte to-dimensionelle talsæt til at repræsentere grafen den information, der måtte findes i grafen Lad os feks se på nedenstående graf, der har 7 punkter/knuder et antal kanter mellem punkterne Da alle kanter er ensrettede, dvs gående fra eet punkt til et andet, siges grafen at være en orienteret graf Til at repræsentere grafen kan vi bruge en såkaldt punkt-matrix P, hvor P i,j = 1, hvis der findes en kant fra punkt i til punkt j, 0 ellers P = Til enhver matrix hører der jo en lineær afbildning f P x = P x, så man kunne måske være interesseret i at finde ud af, hvilken betydning f P har rent graf-teoretisk? a Hvis det reelle tal x i betegner en præmie/straf afhængig af x i s fortegn for at pege på knude nr i, i = 1, 2,, 7, hvad betegner f P x så? Tip: Hvad betegner x j f P e j? De spørgsmål, som graf-teoretikere er interesseret i, involverer d sjældent afbildningen f P direkte Derimod kan graf-teoretikere feks være interesserede i at finde ud af, om det er muligt at komme fra et vilkårligt punkt til et andet i en graf b Hvad kan vi læse ud af P 2 = ?

4 c Hvilken af de to matricer P 7 6 k=1 P k = P + P P 6 kan vi bruge til at finde ud af, om man kan komme fra punkt i til punkt j? Hvad betyder det, når det 3, 5 te 5, 3 te element i denne matrix er hhv 0 4? d Lad os udvide de reelle tal med + udfylde punkt-matricen med kantlængder i stedet for blot 0 1: P = Hvad tror I, det j, k te element i P repræsenterer, når følgende algoritme er udført? I behøver ikke bevise jeres formodning Algoritmen har ikke meget med lineær algebra at gøre! for i from 1 to 7 do for j from 1 to 7 do for k from 1 to 7 do P[j, k] := min{ P[j, k], P[j, i] + P[i, k] } end do; end do; end do; TØ-Opgave 7 Eksempel på brug af grafteori til omordning af matrix-elementer: Som vi så i foregående opgave, så benyttes der somme tider matricer inden for graf-teorien, men det forekommer d oftere, at graf-teori benyttes til at undersøge matricer! Hvis vi har en stor, sparse n n matrix A dvs n er stor, mange af A s elementer er 0, så kan vi ud fra en graf relativt let se, om en omordning af rækker søjler i matricen kunne give en matrix, der i en eller anden sammenhæng ville gøre vores matrix-beregninger lettere Betragt feks den reelle matrix A = π exp Grafen i TØ-Opgave 6 viser, hvorvidt element A i,j er forskellig fra 0, ud fra en af matricerne i spørgsmål c kan vi konkludere, at der ingen veje er fra punkterne {1, 3, 6, 7} til punkterne {2, 4, 5} Hvis vi derfor skriver matricens rækker søjler i rækkefølgen 1, 3, 6, 7, 2, 4, 5 får vi en såkaldt blok-matrix, der har kvadratiske blok-matricer i øverste venstre nederste højre hjørne:

5 Ā = Ā 1,1 0 Ā 2,1 Ā 2,2 = π exp Antag nu, at vi ønsker at finde løsningsmængden til et givet lineært ligningssystem A x = b, hvor højreside-vektoren b er givet Vi kan omordne ligningerne uden at ændre løsningsmængden, vi kan så ændre nummereringen af de ubekendte i x-vektoren, så vi i stedet betragter et ligningssystem af formen Ā x = b, hvor x = x 1, x 3, x 6, x 7, x 2, x 4, x 5 a Vis, at der ikke er løsninger til A x = b for vilkårlige reelle b ved kun at se på de øverste 4 ligninger i Ā x = b b Vis, at den linære afbildning f A x = A x ikke er surjektiv c Find løsningsmængden {x A x = b}, når b = 473, 90, 567, 0, 5, 3 2, 3 d Vis, at den lineære afbildning f A x = A x ikke er injektiv e Vis, at løsningsmængden ker f = {x f A x = 0} så kaldet kernen for f eller nulrummet for matricen A er 1-dimensionelt, dvs at der eksisterer een egentlig basis-vektor u, så ethvert x i ker f kan skrives på entydig måde som et tal gange u Det følger da af Sætning 487, at mængden af de højresidevektorer b, for hvilke der er løsninger til ligningssystemet, kun er 6-dimensionelt, at der derfor ikke er løsninger for vilkårlige b i det 7-dimensionelle R 7, men den sætning har vi jo endnu ikke gennemgået TØ-Opgave 8 Tidskompleksitet af visse matrix-operationer: Hvis den absolutte værdi af en funktion f : R R er begrænset af en positiv konstant k + gange en funktion g i en omegn af et reelt tal x 0, har vi, at fx k + gx for alle x, når x x 0 < ε, for et eller andet ε > 0 Dette skrives oftest kortere på følgende måde: fx = Ogx for x x 0 Feks har vi ved brug af denne såkaldte store-o-notation, at

6 10x 4 355x = O1 for x 0, 27 = O1 for x 1, x 3 x x 2 x 1 = Ox 2 for x 0 Når man skal vurdere, hvor megen tid eller plads udførelsen af en algoritme kræver dvs dens tids- eller pladskompleksitet, er det som regel kompleksiteten for løsningen af de store problemer, der er interessant Dvs hvis fx feks angiver den tid, der kræves for at løse det værst tænkelige problem af størrelse x, vil man gerne finde en simpel funktion gx á la x 4, x! eller expx, hvor der gælder, at fx c gx for alle x > et eller andet x 0 Også i denne situation benyttes O-notationen, så: 10x 4 355x = Ox 4 for x, 27 = Ox 3 for x, x 3 x = Ox 3 for x 27 x 2 x 1 a I NVP, Afsnit 37, skal vi lære om en rekursiv algoritme til at regne den såkaldte determinant ud for en n n matrix Hvis n er 2, kræver algoritmen 3 simple regneoperationer multiplikation addition/subtraktion af tal, men for større n kræver den, at man først regner determinanterne af n stk n 1 n 1 matricer ud, derefter udfører 2n 1 simple regneoperationer Idet vi antager, at hver regneoperation tager højst k + tidsenheder, har vi altså følgende for algoritmens tidsfunktion f: f2 3k +, fn n fn 1 + 2n 1k + Vis pr induktion, at fn gn n!, hvor 1 gn = 25k + + 2k + i! i=0 Da gn k + 2exp1 25 er fn altså On! b Vi ved, at en vilkårlig n n matrix A kan omformes til en trappematrix via Gauss-elimination Da elementerne a i,j i en sådan n n trappematrix er 0, hvis i > j, kaldes en trappematricen for en øvre trekantsmatrix, dennes determinant koster kun n 1 multiplikationer at beregne Sætning 344! Determinanten for A fås som ±determinanten for trappematricen, hvor + benyttes, hvis omformningen krævede et lige antal rækkeombytninger, ellers Dvs tidskompleksiteten af denne algoritme til beregning af determinanten for A er: fn = Gauss eliminationn + On

7 Benyt O-notationen, følgende formler evt så prramskitsen til at vise, at dette fn kun er On 3 n k=i+1 n i = 2n i = i = 1 2 n 1n = On2 2n in i = 2 i 2 = 1 3 n 1n2n 1 for i from 1 to n 1 do # danne 0 er under element i, i find maxi [i, n] så A[maxi, i] er maksimal : if maxi <> i then byt elementerne A[i, j] A[maxi, j] for j = i, i + 1,, n end if: if A[i, i] <> 0 then # operationer er da nødvendige for k from i + 1 to n do # addere til række k c := A[k, i] / A[i, i]: # c beregnes så A[k, i] bliver 0 for j from i to n do # addition af c gange række i A[k, j] := A[k, j] + c A[i, j] # til række k end do end do end if end do c Vis ved brug af formlerne i b, at det kun koster n 2 simple regneoperationer at løse et lineært ligningssystem med en n n trappematrix som koefficientmatrix, konkludér at en evt løsning til et generelt n n ligningssystem kan findes via On 3 simple regneoperationer d Antag, at vi skal have beregnet A 1 ganget en vektor b Vi finder en effektiv algoritme til at beregne A 1 via 2n 3 + On 2 simple regneoperationer ganger denne matrix på vektoren b Kunne vi have sparet nle beregninger, når Gauss-elimination nu kun koster 2 3 n3 + On 2 operationer? TØ-Opgave 9 Determinant som biprodukt ved Gauss-elimination: Lav nle få udvidelser af prramskitsen i TØ-Opgave 8, så determinanten af koefficientmatricen beregnes lige efter Gauss-eliminationen TØ-Opgave 10 Determinanter, der er lette at beregne: Bestem, uden at regne ret meget, værdien af følgende determinanter Brug NVP eller definitionen på deta i Forelæsningsnote 4 a e b f c g d h

8 TØ-Opgave 11 Række- eller søjleudvikling af determinant: Udregn følgende determinant ved at udvikle efter en passende række eller søjle jf NVP, Afsnit 37 31: TØ-Opgave 12 En lineær afbildning fra R 2 2 til R 2 2 : Betragt følgende afbildning fra R 2 2 til R 2 2 : x1 x f 2 x1 + x = 2 0 x 3 x 4 2x 1 + 2x 2 x 1 x 2 a Vis, at f er en lineær afbildning b Find via en isomorfi φ : R 2 2 R 4 baser for underrummene fr 2 2 ker f Tip: Se på Isof = φ f φ 1 : R 4 R 4 c Check at Dimensionssætningen er opfyldt for f d Er f surjektiv, injektiv eller bijektiv? e Vis, at to endeligt-dimensionelle isomorfe underrum altid har samme dimension Tip: Definition 432 Sætning 425 f Lad f t : R 2 2 R 2 2 være afbildningen f t = φ 1 Isof t φ Vis ved kun at bruge sætninger fra NVP, at f t R 2 2 ker f t er 2-dimensionelle, find den omvendte afbildning til f indskrænk : f t R 2 2 fr 2 2, hvor f indskrænk har samme værdier som f Tip: f t R 2 2 fr 2 2 består hhv af matricerne a b 0 0 c 0 2c d, hvor a, b, c, d R g Udvid basen for ker f til en basis for R 2 2 TØ-Opgave 13 Beregninger i vektorrummene C n C m n : Idet der henvises til Forelæsningsnote 5 vedr vektorrummene C n C m n, bedes I udregne x y, y x, 2 + 5ix y, x 2 + 5iy, x x, x, 2 + 5ix 2 + 5ix 2 + 5ix, når x = 2 + 3i i 2 i y = 1 i 2 + 2i 3

9 TØ-Opgave 14 Determinanter af Hermiteske hhv symmetriske matricer: Idet der henvises til Forelæsningsnote 5 vedr Hermiteske matricer, bedes I vise, at følgende Hermiteske matricer har reelle determinanter ved at udregne dem: i 3 4i i i 3 4i 3 + 2i 3 I bedes så vise, at følgende symmetriske matricer ikke har reelle determinanter ved at udregne dém: i 3 + 4i i i 0 2 i 3 2i 3 + 4i 3 2i 3 + i TØ-Opgave 15 Fra komplekse vektorer matricer til reelle: Følgende observation kan være nyttig, når man skal arbejde med komplekse vektorer matricer i prrammeringsspr, hvor typen complex mangler: En vilkårlig vektor z C n matrix C C m n kan skrives på formen z = x+i y C = A+i B, hvor x, y R n A, B R m n Ved at samle de reelle led de imaginære led i ligningssystemet A + i Bx + i y = b + i c, får man da omformet det komplekse ligningssystem til et reelt system: A B B A x y = b c Løs følgende ligningssystem ved udelukkende at arbejde på reelle tal: i 3i 1 5i z1 TØ-Opgave 16 Eksisterer tallet 1?: z 2 = 8i 5i 4 Diskutér følgende bevis for, at 1 = 1 medfører 1 = 1: 1 = 1 1 = = = 1 1 = = 1

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Opgaven består af et antal delopgaver Disse er af varierende omfang Der er også en

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

LINALG JULENØD 2013 SUNE PRECHT REEH

LINALG JULENØD 2013 SUNE PRECHT REEH LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som

Læs mere

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl 2. udgave, oktober 207 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages

Læs mere

DesignMat Uge 11 Lineære afbildninger

DesignMat Uge 11 Lineære afbildninger DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe.

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe. 0.1: Ringe 1. Definition: Ring En algebraisk struktur (R, +,, 0,, 1) kaldes en ring hvis (R, +,, 0) er en kommutativ gruppe og (R,, 1) er en monoide og hvis er såvel venstre som højredistributiv mht +.

Læs mere

To ligninger i to ubekendte

To ligninger i to ubekendte Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Matematik H1. Lineær Algebra

Matematik H1. Lineær Algebra Matematik H Forelæsningsnoter til Lineær lgebra Niels Vigand Pedersen Udgivet af smus L Schmidt Københavns Universitet Matematisk fdeling ugust ii oplag, juli 4 Forord Gennem en særlig aftale varetages

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Vektorrum. enote Generalisering af begrebet vektor

Vektorrum. enote Generalisering af begrebet vektor enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

Indhold. 5. Vektorrum og matricer Koordinattransformationer

Indhold. 5. Vektorrum og matricer Koordinattransformationer Indhold Lineære afbildninger og matricer Talrummene R n, C n Matricer 8 3 Lineære afbildninger 4 Matrix algebra 8 5 Invers matrix 6 6 Transponeret og adjungeret matrix 9 Række- og søjleoperationer Lineære

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2 M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

De fire elementers kostbare spejl

De fire elementers kostbare spejl Projekt.6 Lineær algebra moderne og klassisk kinesisk De fire elementers kostbare spejl "Som bekendt anses matematikken for at være en meget vigtig videnskab. Denne bog om matematik vil derfor være af

Læs mere

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober 2017 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne de små opgaver i afsnittene 1 5 i løbet af de første 4 halve dage. Dernæst tilføjes

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Matroider Majbritt Felleki

Matroider Majbritt Felleki 18 Rejselegatsformidlingsaktivitet Matroider Majbritt Felleki Den amerikanske matematiker Hassler Whitney fandt i 1935 sammenhænge mellem sætninger i grafteori og sætninger i lineær algebra. Dette førte

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation

Læs mere

Matricer og Matrixalgebra

Matricer og Matrixalgebra enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum)

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum) Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Forelæsningsnote 8 NB: Noten er ikke en del af pensum Eksempel på brug af egenværdier og egenvektorer Måske er det stadig

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

Fejlkorligerende køder Fejlkorrigerende koder

Fejlkorligerende køder Fejlkorrigerende koder Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget

Læs mere

Exponentielle familer, ark 2

Exponentielle familer, ark 2 1 Exponentielle familer, ark 2 Eksponentielle familier OPGAVE 21 Beksriv den eksponentielle familie på (R, B) givet ved følgende data: V er R med det sædvanlige indre produkt, den kanoniske stikprøvefunktion

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne en mængde af opgaver, som tilsammen dækker 100 point. De små opgaver giver hver 5 point,

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001. Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r))

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r)) GEOMETRI-TØ, UGE 12 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1, [P] 632 Vis at Ennepers flade σ(u, v) = ( u u 3 /3

Læs mere

Fejlkorligerende køder Fejlkorrigerende koder

Fejlkorligerende køder Fejlkorrigerende koder Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere