Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Størrelse: px
Starte visningen fra side:

Download "Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2"

Transkript

1 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach

2 Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes til ikkekommercielle formål. Noterne er skrevet vha. tekstformateringsprogrammet LATEX, se og De anvendte skrifttyper er Utopia Regular og Paratype Sans Narrow. Figurer og diagrammer er fremstillet i pgf/tikz, se Disse og andre noter kan downloades fra cbna

3 Forord Disse noter er skrevet til undervisning i et forkortet stx-grundforløb på ca. 2½ måned (ét af undervisningsministeriets rammeforsøg) på Tornbjerg Gymnasium, efteråret Indholdet dækker grundlæggende matematiske redskaber (brøkregning, ligningsløsning, etc.) samt lineære funktioner. Det har ikke været tanken, at noterne skal læses kronologisk; man kan evt. begynde med kapitel 7 om lineære funktioner, og inddrage de andre kapitler, når det bliver relevant. Noterne er opbygget således, at i. definitioner og sætninger er fremhævet i grå kasser, ii. blå tekst er (klikbare) henvisninger, iii. afslutningen på et bevis er markeret med, og iv. afslutningen på et eksempel er markeret med. Mike Auerbach Tornbjerg Gymnasium 3

4

5 Indhold 1 Tal og regningsarter Addition Subtraktion og negative tal Multiplikation Division Potenser og rødder Regningsarternes hierarki Brøkregning At forkorte og forlænge Addition og subtraktion Multiplikation og division Hele tal og brøker Lidt om fortegn Potenser og rødder Heltallige eksponenter Det udvidede potensbegreb Algebra Ensbenævnte størrelser Parenteser Toleddede størrelser Ligninger Ligningsløsning Nulreglen Eksponentielle ligninger To ligninger med to ubekendte Grafer og funktioner Variable og sammenhænge Proportionalitet Grafisk afbildning Funktioner Skæringspunkter Grafisk løsning af ligninger Lineære funktioner Hældning og skæring med akserne Beregning af forskriften Lineær vækst Lineær regression Bibliografi 53 Indeks 54 Formeloversigt 56 5

6

7 1 Tal og regningsarter En af grundstenene i matematikken er tallene. Tal bruges til mange forskellige formål: til at tælle med, til at måle størrelser, til at opregne overskud og gæld. I de næste par afsnit ses på forskellige typer af tal samt de fire regningsarter: addition (at lægge sammen), subtraktion (at trække fra), multiplikation (at gange) og division (at dele/dividere). De første tal, man lærer at kende, er de tal, man kalder de naturlige tal. Det er de tal man bruger til at tælle med, dvs. 1,2,3,4,5,6,7,8,9,10,11,12,13,... Hvis man vha. et tal skal udtrykke, at der intet er, bruger man tallet 0, som dog ikke regnes med til de naturlige tal. 1.1 Addition Den simpleste af de fire regningsarter er addition, at lægge sammen. Denne regneoperation udtrykker på sin vis det samme, som man kan sige med ordet»og«. 1 Har man f.eks. en bunke med 7 stk. og en bunke med 11 stk. har man i alt»7 stk. og 11 stk.«, dvs. 18 stk. I matematikken skrives dette 1 Selve symbolet + kommer med al sandsynlighed fra ordet et, som betyder»og«på latin.[1] = 18. De to tal 7 og 11 kaldes led og resultatet 18 kaldes en sum. Da tegnet + udtrykker, at man lægger to værdier oven i hinanden, må det forventes, at rækkefølgen er ligegyldig, altså at Dette er også tilfældet = Subtraktion og negative tal Én ting, man ikke kan udtrykke vha. af de naturlige tal, er ideen om mangel eller gæld. Hertil kan man bruge de negative tal. 2 I første omgang kan 7 2 De negative tal er en forholdsvis ny opfindelse inden for matematikken. Helt op i det 18. århundrede, var der matematikere, der mente, at de negative tal ikke eksisterede.[3]

8 8 1 Tal og regningsarter man nøjes med at se på de negative hele tal: 1, 2, 3, 4, 5, 6,... 3 I regnestykket er der sat parentes om 3. Det gør man for at vise, at er et fortegn, dvs. det hører til tallet 3; en anden god grund er, at når man sætter parentesen, er det nemmere at se, at der både står et + og et. Helt generelt må man ikke skrive et fortegn lige efter et regnetegn uden at sætte en parentes. Man kan på sin vis sige, at ethvert negativt tal er et»modsat tal«til et positivt tal. Lægger man sammen får man f.eks ( 3) = 0 og ( 3) + 3 = 0. Man kan argumentere for, at ( 3) er det modsatte tal til 3, og at der derfor må gælde, at ( 3) + ( 3) = 0. Men fordi 3 + ( 3) = 0, må man have, at ( 3) = 3. Dette må gælde for alle tal (og ikke kun tallet 3). Vha. de negative tal kan man definere subtraktion som addition med det modsatte tal. Et eksempel kunne være 8 2 = 8 + ( 2). Dette kan også forklare hvorfor man ikke bare kan bytte rundt på tallene. 2 8 er ikke det samme som 8 2, da tegnet faktisk hører til 2-tallet. Når man lægger sammen er rækkefølgen til gengæld ligegyldig, så man kan gøre følgende 8 2 = 8 + ( 2) = Som man kan se, bliver tegnet ved med at stå foran 2-tallet. De to tal 8 og 2 i regnestykket kaldes ligesom ved addition for led, mens resultatet (6) kaldes en differens. 1.3 Multiplikation At gange to tal (multiplicere dem) er faktisk en udvidelse af at lægge sammen, idet f.eks. 7 gange { }} { 7 4 = = 28. Heraf ser man også, hvorfor tegnet» «kaldes»gange« Hvor man ved addition nemt kan argumentere for, at rækkefølgen er ligegyldig, er det måske lidt sværere umiddelbart at se, hvorfor 7 4 = 4 7, men det skyldes at tallet 4 7 kan betragtes som arealet af et rektangel, der er 4 på den ene led og 7 på den anden. Figur 1.1 giver et billede af denne ide. Figur 1.1: Man kan ud fra billedet argumentere for, at 7 4 = 4 7. Tallene, der ganges sammen (her 7 og 4) kaldes faktorer, og resultatet (28) kaldes produktet af de to tal.

9 1.4 Division 9 Fortegn Det er simpelt at argumentere for, hvordan man ganger positive tal sammen; men hvad sker der, når man blander negative tal ind i regnestykkerne? Hvis man ser på de negative tal som gæld, er det naturligt at fortolke et regnestykke som 6 3 på den måde, at man gør en gæld på 6 stk. 3 gange så stor, hvilket giver en gæld på 18. Dvs. 6 3 = 18. Da rækkefølgen, man ganger i, er ligegyldig, gælder der så også, at 4 3 ( 6) = 18. Hvis man ganger et positivt tal med et negativt (eller omvendt) bliver resultatet altså negativt. 4 Bemærk parentesen om 6; den sætter man for at vise at fortegnet hører til 6- tallet (og den er ikke valgfri). For at finde ud af, hvad der sker, når man ganger to negative tal med hinanden, kan man bruge følgende argument: 2 ( 4) må være det modsatte tal til 2 ( 4). Og da 2 ( 4) = 8, må 2 ( 4) = ( 8) = 8. Når man ganger to negative tal med hinanden, bliver resultatet altså positivt. Fortegnsreglerne for multiplikation kan ses samlet i tabel Division Hvis 2 venner skal dele 6 colaer får de 3 hver. Regnestykket man udfører, er en division: 6 2 = 3. Tallet, som bliver delt (her 6), kaldes en dividend, mens tallet der deles med (2) kaldes en divisor. Resultatet af divisionen kaldes en kvotient. At dividere (eller dele) er det modsatte af at gange. Det, man finder svaret på, er i virkeligheden spørgsmålet: Hvilket tal skal man gange med 2 for at få 6? 5 Division resulterer ikke altid i et helt tal. Det er derfor nødvendigt at indføre nogle flere tal, nemlig brøkerne, dvs. tal som f.eks. 1 2, 5 3 og Brøker er ikke helt så nemme at arbejde med som hele tal; hvordan lægger man f.eks. 1 2 og 2 3 sammen? De metoder, man anvender til det, kan faktisk udledes af alt det ovenstående. Da der er en del at argumentere for, følger det dog først i et senere afsnit. Tabel 1.1: Fortegnsregler for multiplikation. Regler Eksempler (+) (+) = (+) 2 3 = 6 (+) ( ) = ( ) 2 ( 4) = 8 ( ) (+) = ( ) ( 3) 5 = 15 ( ) ( ) = (+) ( 5) ( 2) = 10 5 Det forklarer også, hvorfor man ikke kan dividere med 0. Resultatet af regnestykket 4 0 er svaret på spørgsmålet: Hvad skal jeg gange med 0 for at få 4? Men da et tal ganget med 0 altid giver 0, kan et tal ganget med 0 aldrig give 4. Det giver derfor slet ikke mening at dividere med 0. Fortegn Man kan se division som en skjult multiplikation. Regnestykket 6 2 = 3 kan også skrives på følgende måde = 3.

10 10 1 Tal og regningsarter Men hvis division kan laves om til multiplikation, så må der gælde de samme fortegnsregler ved division som ved multiplikation. Tabel 1.2: Fortegnsregler for division Regler (+) Eksempler (+) = (+) 6 2 = 3 (+) ( ) = ( ) 10 5 = 2 ( ) (+) = ( ) 14 2 = 7 ( ) ( ) = (+) 18 3 = 6 Altså må f.eks = 4, 14 2 = 7 og 18 6 = 3. Fortegnsreglerne for division kan ses samlet i tabel 1.2. Decimaltal Ofte bliver tal, som ikke er hele, skrevet som decimaltal i stedet for som brøker. Et eksempel på et decimaltal kunne være 1,472. Dette tal kunne f.eks. være længden af et bord målt i meter. I princippet er et decimaltal en slags sum af brøker, idet 1,472 = Dette behøver man dog ikke tænke på, hver gang man anvender decimaltal. 6 Dette gælder også f.eks. for 1 2. Selv om dette kan skrives som 0,5 er det mere præcist at skrive 1 2. Skriver man 0,5 kan læseren ikke se, om tallet rent faktisk har uendeligt mange 0 er efter 5-tallet, eller man har rundet af fra f.eks. 0,496. I praksis kan ethvert tal skrives som decimaltal, f.eks. er 1 2 = 0,5 1 3 = 0, = 1, Som man kan se af de nederste to tal i eksemplet, har man dog nogle gange brug for at skrive uendeligt mange decimaler for at skrive tallet præcist som decimaltal. En brøk kan altså regnes for at være mere præcist end et decimaltal. 6 En anden ting, man kan se af eksemplet, er, at selvom f.eks ikke kan skrives præcist som decimaltal, så er der dog et mønster i decimalerne. Det er den samme række af tal, der bliver gentaget. Det gælder for alle tal, der kan skrives som en brøk, at når man skriver dem som decimaltal, vil de enten have et endeligt antal decimaler eller de vil gentage det samme mønster i det uendelige. Sådanne tal kaldes rationale tal. Irrationelle tal Hvis man skriver en brøk om til et decimaltal, så får man enten et endeligt antal decimaler, eller et uendeligt antal decimaler med et gentagende mønster. Heraf følger, at hvis man har et decimaltal med et uendeligt antal decimaler, som ikke har et mønster i decimalerne, så kan det pågældende tal ikke skrives som en brøk. Men kan man overhovedet forestille sig, at der findes tal, som ikke kan skrives som en brøk? Det viser sig, at der faktisk findes uendeligt mange af sådanne tal.

11 1.5 Potenser og rødder 11 Et meget kendt eksempel er tallet π, der er forholdet mellem diameteren og omkredsen i en cirkel. 7 Med 20 decimaler er π = 3, Her ses intet mønster i decimalerne, og det kommer der heller ikke, uanset hvor mange decimaler, man regner ud. 7 Det er en udbredt misforståelse, at tallet π er lig Men 22 7 er blot en tilnærmelse; faktisk er π og 22 7 forskellige allerede efter 3. decimal. De tal, som ikke kan skrives som brøker, kaldes for de irrationale tal. De rationale og de irrationale tal udgør tilsammen de tal, man kalder de reelle tal. Hvis man forestiller sig tallene som punkter på en tallinje, så udgår de reelle tal alle tallene på linjen. Ud fra ovenstående gennemgang kan man nu inddele tallene i forskellige grupper: De naturlige tal tælletallene, 1, 2, 3, 4,... De hele tal som også inkluderer de negative:..., 3, 2, 1,0,1,2,... De rationale tal alle de tal, der kan skrives som brøker også negative. 8 De reelle tal alle tal. 8 De hele tal er også rationale, idet ethvert helt tal kan skrives som en brøk; f.eks. er 4 = og 5 = Potenser og rødder Ligesom 4 3 kan ses som en kort måde at skrive på, har man en måde at skrive f.eks på. Da der er fire 5-taller, der ganges sammen, skriver man i stedet 5 4. Altså 9 4 gange { }} { 5 4 = Tallet 5 kaldes her grundtallet og 4 kaldes eksponenten. 5 4 kaldes»5 i fjerde«eller»den 4. potens af 5«. Den modsatte regneoperation kaldes roduddragning. Man kan f.eks. beregne den fjerde rod af 81, den tredje rod af 125, 10 Bemærk, at det ikke hedder den anden rod men kvadratroden, og at man her ikke skriver 2-tallet. Man skriver altså 49 og ikke den femte rod af 32, 49 kvadratroden af 49. Resultatet af regnestykkerne er 4 81 = 3 fordi 3 4 = = 5 fordi 5 3 = = 2 fordi 2 5 = = 7 fordi 7 2 = 49. Der er en masse regneregler, man kan bruge, når man regner med potenser og rødder; disse gemmes til et senere afsnit.

12 12 1 Tal og regningsarter 1.6 Regningsarternes hierarki Når man skal udføre et regnestykke som f.eks , bliver man nødt til at vide i hvilken rækkefølge, man skal udføre de forskellige trin. Skal man f.eks. lægge 7 og 5 sammen først, eller skal man udregne 3 2 først? 11 Rækkefølgen af regneoperationer følger af, at udregninger skal give logisk mening. At man skal gange, før man lægger sammen, kan man f.eks. se ved at huske, at 4 3 = Derfor må = , og derfor bliver man nødt til at gange sammen først (med mindre man vil skrive alle gangestykkerne om til plusstykker). Derfor har man nogle regler for, hvilken rækkefølge man skal regne i, sådan at man kan sikre sig, at alle får samme (og rigtige) resultat ud af et regnestykke. 11 Sætning 1.1 (Regningsarternes hierarki) Når man skal udføre et regnestykke, skal udregningerne foregå i denne rækkefølge: 1) Først udføres potensopløftning og roduddragning. 2) Dernæst udføres multiplikation (gange) og division. 3) Til sidst lægger man sammen og trækker fra. Denne rækkefølge kan kun ændres ved brug af parenteser. Står en del af en udregning i parentes, skal den betragtes som et lille regnestykke for sig selv, som altid skal udregnes først. Et par eksempler på udregninger kunne være, Eksempel 1.2 Et eksempel på anvendelse af regningsarternes hierarki: = Først beregnes potensopløfning. = Så ganges der. = 2 Til sidst trækkes der fra. Eksempel 1.3 Et eksempel, hvor der indgår parenteser: (6 + 2) = Parentesen udregnes først. = Så uddrages rødder. = Dernæst ganger man. = 52 Til sidst lægger man sammen. Man kan altså komme igennem et regnestykke ved at følge hierarkiet fra øverst til nederst og tage hensyn til eventuelle parenteser. Skjulte parenteser Når der i foregående afsnit tales om parenteser, gælder det også i de tilfælde, hvor man måske ikke umiddelbart tænker over, at der faktisk står en parentes.

13 1.6 Regningsarternes hierarki 13 I et regnestykke som er det givet, at man skal udregne først. Når en division er skrevet vha. en brøkstreg bliver der altså på sin vis introduceret parenteser, som man skal tage hensyn til, når man gennemfører udregningen. Det samme står man overfor, når man uddrager rødder. F.eks. skal man i regnestykket 17 8 beregne 17 8, før man tager kvadratroden. Eksempel 1.4 I de følgende fire regnestykker er det vist eksplicit, hvor man skal sætte de parenteser, som er underforståede: (3 + 9) = = 50 (7 2) = 7 (2+1) = (7 + 9) = (5 2) 8 Det er vigtigt at huske disse parenteser, når man regner; især hvis man taster regnestykket ind på en lommeregner. Eksemplet er ikke udtømmende, der kan sagtens findes andre typer af regnestykker, hvor der er en underforstået parentes. Som hovedregel gælder, at hvis noget ligner en afgrænset del af en udregning, så er det det nok også.

14

15 2 Brøkregning En brøk er et tal, der betegner et antal dele af en enhed. En brøk skrives som to hele tal med en vandret streg imellem: 2 3, 7 4, Den vandrette streg kaldes en brøkstreg, det øverste tal kaldes tælleren, og tallet under brøkstregen kaldes nævneren. 1 Brøken 2 3 er den størrelse, man får, når man deler 1 hel i 3 dele, og tager 2 af dem. En brøk kan også fortolkes som det præcise resultat, man får, når man dividerer tælleren med nævneren. Hvis man skal visualisere størrelsen af en brøk i forhold til de hele tal, kan det gøres vha. tallinjen (se figur 2.1). 2.1 At forkorte og forlænge Hvis en brøk kan fortolkes som det resultat, man får, når man dividerer tæller med nævner, så kan man jo forestille sig, at regnestykket går op, dvs. resultatet bliver et helt tal. Nogle brøker kan altså skrives om til hele tal, f.eks = 2, 36 9 = 4, 27 3 = 9. Selvom regnestykket ikke går op, så er det nogle gange muligt at gøre tæller og nævner mindre; det kalder man at forkorte brøken. Det kan man, når der findes et tal, som går op i både brøkens tæller og nævner. 1 Tæller og nævner kan være hvilke som helst hele tal, også negative; dog må nævneren ikke være Figur 2.1: De to tal 2 3 og 2 5 placeret på tallinjen. 2 Omvendt kan de hele tal forstås som de brøker, der har den underforståede nævner 1, f.eks 8 = 8 1. Situationen er illustreret på figur 2.2. Her kan man se, at 4 6 = 2 3. Det kan man også regne sig frem til, hvis man opdager, at tallet 2 går op i både tæller og nævner i brøken 4 6. Da en brøk er et udtryk for forholdet mellem tæller og nævner, ændrer den ikke størrelse, hvis tæller og nævner deles 4 med samme tal. Altså er = 4 / 2 6 / 2 = Man ændrer ikke brøkens værdi ved at forkorte. Tallet har præcis samme størrelse som før, man har blot gjort det mere læsevenligt og nemmere at regne med, idet tæller og nævner er blevet mindre. 0 1 Figur 2.2: Man kan se ud af de to tallinjer, at 4 6 =

16 16 2 Brøkregning Eksempel 2.1 Et par yderligere eksempler på, hvordan man forkorter brøker: = 15 / 3 36 / 3 = 5 12, = 24 / 8 56 / 8 = 3 7, = 27 / 9 18 / 9 = Det er vigtigt at huske, at man skal dividere eller gange med samme tal i både tæller og nævner. Ellers ændrer man brøkens værdi. Når man kan dividere med samme tal i tæller og nævner uden at ændre brøkens værdi, så kan man også gange. 3 Herved bliver både tæller og nævner større, og det virker ikke umiddelbart smart; men det viser sig at være brugbart, når man skal lægge brøker sammen mere om det i næste afsnit. Her vises blot et par eksempler på, hvordan man forlænger en brøk. Eksempel 2.2 Hvis man forlænger 3 4 med 5, får man Forlænger man 8 5 med 3, får man 3 4 = = = = Addition og subtraktion Figur 2.3: Regnestykket = 6 5 illustreret på tallinjen Det viser sig, at man kun kan lægge brøker sammen, hvis de har samme nævner. Hvis det er tilfældet, lægger man blot tællerne sammen. F.eks. er = = Dette regnestykke er illustreret på figur 2.3. Uanset hvor meget man gerne vil, kan man ikke lægge brøker sammen, der har forskellige nævnere. Ikke desto mindre ville det være rart at kunne beregne f.eks Hvis man kun kan lægge brøker sammen, der har samme nævner, må man derfor på en eller anden måde sørge for, at de to brøker får samme nævner. kan man for- Dette gør man ved at forlænge brøkerne. I tilfældet længe 1 4 med 3 og 2 3 med 4; så får man = = = Når man forlænger på denne måde, får begge brøkerne nævneren 12, og man kan så lægge dem sammen. 4 Men det er ikke altid nødvendigt. Nogle gange kan man nøjes med at forlænge med to mindre tal og stadig få samme nævner på de to brøker. I regnestykket ser man, at man forlænger den ene brøk med den andens nævner (og omvendt). Denne teknik virker altid. 4

17 2.3 Multiplikation og division 17 Eksempel 2.3 Et par eksempler på, hvordan man lægger brøker sammen: = = = 5 6, = = = 85 44, = = = I den sidste udregning ses, at det ikke altid er nødvendigt at forlænge begge brøker for at få fælles nævner. 5 Hvis man skal trække brøker fra hinanden, så fungerer det på samme måde, som når man lægger sammen. Man kan kun trække en brøk fra en anden brøk, hvis de har samme nævner. F.eks = = Det er ofte en fordel at forlænge med så små tal, som overhovedet muligt, fordi små tal simpelthen er nemmere at regne med. Har de to brøker ikke samme nævner, så må man forlænge, sådan at de får den samme nævner. Eksempel 2.4 Her er tre eksempler på, hvordan man trækker brøker fra hinanden = = = 14 15, = = = 3 8, = = = Det er i øvrigt god stil at forkorte resultatet så meget som muligt (hvis det kan forkortes). 2.3 Multiplikation og division En af de måder, man kan finde ud af, hvordan man ganger tal sammen på, er ved at betragte produktet som et areal. Man finder som bekendt arealet af et rektangel ved at gange længden med bredden. Resultatet af et regnestykke som vil altså være arealet af et rektangel, som er 4 5 langt og 2 3 bredt. På figur 2.4 kan man se resultatet af regnestykket illustreret. Her ses, at = Hvis man ser nærmere på figuren, kan man se, at antallet af fyldte rektangler (resultatets tæller) fås ved at gange de to tællere (4 og 2) sammen. Antallet af små rektangler som 1 hel deles op i finder man ved at gange de to nævnere (5 og 3). Samlet set er altså = = Figur 2.4: Illustration af =

18 18 2 Brøkregning Brøker bliver altså ganget sammen, ved at man ganger tæller med tæller og nævner med nævner. Eksempel 2.5 Et par eksempler på gangestykker: = = 15 14, = = 28 99, = = Den sidste type regnestykke, der gennemgås i dette kapitel er division. Som eksempel kan man se på regnestykket 6 Dette regnestykke er udtryk for en generel regel: Når man ganger en brøk med dens omvendte, bliver resultatet 1. 4 / For at finde ud af, hvad dette giver er det nødvendigt først at konstatere, at = = = 1. Hvis man tager det oprindelige regnestykke 4 2 7/ 5 og ganger det med 1, så ændrer man ikke noget ved resultatet, dvs. man kunne lige så godt have skrevet 4 / Men når man ved, at = 1, så kan man også skrive det som 4 / ( ). 2 Rækkefølgen, man ganger og dividerer i, er uden betydning. Så man kan uden videre flytte parentesen, så der i stedet står ( 4 / ) Nu står der inde i parentesen, at 4 7 skal divideres med 2 5, hvorefter man skal gange med 2 5. Da division og multiplikation virker modsat hinanden, gør det i virkeligheden intet ved tallet 4 7. Man kan derfor i virkeligheden fjerne det, og nøjes med at skrive ( ) , som er det samme som Hele vejen igennem er der regnet på det samme regnestykke. Derfor må man kunne konkludere, at 4 7 / 2 5 = Man dividerer altså med en brøk ved at gange med den omvendte brøk.

19 2.4 Hele tal og brøker 19 Eksempel 2.6 Et par eksempler: 3 / = = 15 56, 1 / 11 5 = = 5 22, / 3 13 = = Hele tal og brøker Hvis der indgår hele tal i en udregning med brøker, så er den nemmeste måde at regne videre på simpelthen at lave de hele tal om til brøker. Dette kan man gøre ved at give dem nævneren 1. F.eks. er 8 = 8 1, 12 = 12 1 og 3 = 3 1. Herefter bliver regnestykkerne nemmere, idet man jo nu kun har brøker. Eksempel 2.7 Som eksempel kan man se på regnestykket Laver man 2-tallet om til en brøk, får man For at man kan lægge de to brøker sammen, skal de have fælles nævner. Det kan man få ved at forlænge 2 1 med 4: Resultatet er altså Eksempel 2.8 Hvis man skal udføre divisionen 4 3 er Lidt om fortegn = = = / 5, så laves 5-tallet om til brøken 5 1. Så / 5 1 = = Hvis man skal regne med fortegn i brøkregnestykker, foregår det på nøjagtigt samme måde, som når man dividerer, idet en brøk kan fortolkes som en division. Når man dividerer et positivt tal med et negativt eller et negativt med et positivt, er resultatet negativt. Derfor er f.eks = Man skriver derfor som regel fortegnet uden for brøken, dvs. 6 11

20 20 2 Brøkregning Når der står et minus uden for brøken, betyder det altså blot, at resultatet er negativt; og da man får samme resultat, hvad enten minusset sættes på tælleren eller nævneren, er det i princippet ligegyldigt, hvor minusset står, så længe der kun er ét. Er der placeret et minus på både tæller og nævner, dividerer man to negative tal med hinanden, og så bliver resultatet positivt. Altså 13 7 = Hvis man har et længere gange- og divisionsstykke, kan man afgøre fortegnet for resultatet ved at huske, at alle par af minusser»forsvinder«. Hvis der er et lige antal minusser i regnestykket, bliver resultatet positivt, er antallet af minusser ulige, bliver resultatet negativt.

21 3 Potenser og rødder I dette kapitel beskrives nogle af de regneregler, der gælder for potenser og rødder. Først gennemgås potenser med heltallig eksponent, derefter ses på, hvordan dette kan udvides til også at omfatte eksponenter, som er brøker eller negative tal. 3.1 Heltallige eksponenter Potensopløftning virker som bekendt på følgende måde: 1 5 gange { }} { 3 5 = I regnestykket 3 5 kaldes 3 for grundtallet og 5 kaldes eksponenten. Roduddragning er den modsatte regneoperation, så f.eks. er 4 16 = 2, fordi 2 4 = 16. Hvis man ganger to potenser med samme grundtal, kan man f.eks. gøre følgende: = 6 gange { }} { = }{{} } 7 {{ 7 7 } = gange 4 gange Dividerer man to potenser med samme grundtal, kan man lave en udregning som denne: dvs = = 4 4 = 4 2, = Har man to potensopløftninger efter hinanden, får man: 3 gange à 4 { }} { (2 4 ) 3 = (2 } 2 {{ 2 2 } ) (2 } 2 {{ 2 2 } ) (2 } 2 {{ 2 2 } ) = = gange 4 gange 4 gange Når man har set på, hvad der sker, når man regner på to potenser med samme grundtal, er det næste, man kan se på, hvad der sker, når man har to potenser med samme eksponent. 21

22 22 3 Potenser og rødder Ganger man to potenser med samme eksponent, kan man f.eks. få følgende: = = = (5 2) (5 2) (5 2) = (5 2) 3. Ved division, sker dette: = = ( ) =. 3 Alle disse udregninger kan generaliseres til 5 regneregler for potenser. Sætning 3.1 Hvis m og n er to naturlige tal og a og b er to vilkårlige tal, gælder følgende 1) a m a n = a m+n. 2) Hvis a er forskellig fra 0 og m > n er am a n = a m n. 3) (a m ) n = a m n. 4) a n b n = (a b) n. 5) Hvis b er forskellig fra 0 er an b = ( ) a n. n b 3.2 Det udvidede potensbegreb I dette afsnit udvides potensbegrebet til også at omfatte eksponenter, som ikke er hele, positive tal. Her opstår der et interessant spørgsmål: Hvad der menes med 5 4 er til at forstå; men hvordan skal man fortolke f.eks. 2 7 eller 3 1 4? Det, man gør i praksis for at definere, hvordan disse»skæve«eksponenter skal forstås, er at kræve, at regnereglerne i sætning 3.1 skal gælde, uanset hvilke værdier eksponenterne har. Ud fra dette finder man, at potensopløftning, hvor eksponenten er et negativt tal eller en brøk, kun kan fortolkes på én måde. Regner man f.eks. på 5 0, finder man vha. regel 2 i sætning 3.1, at 2 Bortset fra 0, da man ikke må dividere med 0. 3 Her udnytter man, at det lige er vist, at 5 0 = 1, 6 0 = 1, 43 0 = 1, osv. 5 0 = = = 1. Man kunne her lige så godt have set på et andet grundtal end 5; vha. samme type udregning kan man f.eks. vise, at 7 0 = 1. Udregningen vil altså kunne generaliseres til alle tal. 2 Har man en potensopløftning med en negativ eksponent, kan man igen udnytte samme regneregel og få = = = Dette regnestykke kan også gennemføres med andre tal, så man f.eks. finder, at 13 7 = Argumentet går godt for alle grundtal bortset fra 0.

23 3.2 Det udvidede potensbegreb 23 For at man kan sige noget om potensopløftning med brøker som eksponent, kan man bruge regel 3 i sætning 3.1, til at beregne f.eks. (8 1 3 ) 3. Det giver Men der gælder også, at 4 Derfor må (8 1 3 ) 3 = = 8 1 = 8. ( 3 8) 3 = = 3 8. Dette kan forklare, hvordan man skal fortolke situationen, hvis eksponenten er 1 2, 1 7 eller 1 73 ; men det siger intet om, hvad der sker, hvis eksponenten er en brøk, hvor tælleren ikke er 1. 4 Fordi roduddragning er det modsatte af potensopløftning. Her kan man i stedet se på følgende udregning = = (4 5 ) 1 7 = Hvis potensregnereglerne skal gælde for alle tal, har man derfor følgende definition. Definition 3.2 Der gælder følgende definitioner. 1) a 0 = 1 (hvis a 0). 2) a n = 1 a n (hvis a 0). 3) a p q = q a p. For de udvidede potenser gælder i øvrigt samme regneregler, som for de heltallige potenser, 5 så man har følgende sætning. Sætning 3.3 Der gælder følgende regneregler 5 Det var netop dette krav, der førte til definition ) a x a y = a x+y. 2) (a x ) y = a x y. 3) ax a y = ax y. 4) a x b x = (a b) x. 5) ax ( a ) x. b x = b Da roduddragning i virkeligheden er et specialtilfælde af potensopløftning, kan man også udlede følgende sætning. 6 6 De to regneregler følger af, at f.eks. Sætning 3.4 Hvis a > 0 og b > 0, gælder der 1) x a x b = x a b. 2) x a x b = x a b = = (5 2) 1 3 = = ( ) = =

24 24 3 Potenser og rødder I sætning 3.4 er der ingen regneregel for de to udtryk x a y a og x a y a. Det skyldes, at det i dette tilfælde altid er nemmest at omskrive til potensopløftning, før man reducerer. Hvis man vil, er det dog muligt at reducere de to udtryk og udlede en formel. Dette overlades som en øvelse til læseren.

25 4 Algebra Algebra er en samlet betegnelse for de regler, der gælder, når man regner med tal. I matematikken har man nogle gange brug for at regne med tal, hvis værdi man ikke kender. Sådanne tal kaldes»ubekendte«. I stedet for det ukendte tal skriver man et bogstav, f.eks. x, y, a eller A. 1 Hvis man har et regnestykke, hvori der indgår tal, man ikke kender, kan man af gode grunde ikke beregne et endeligt resultat. Men man kan nogle gange forsimple regnestykket, så man ikke skal regne nær så meget, når man endelig får det ukendte tals værdi at vide. 1 I matematikken skelner man mellem store og små bogstaver a og A er altså ikke det samme tal. Idet f.eks. ved man, at = 3 5, x + x + x = 3 x, uanset hvilken værdi, x har. Ud fra samme betragtning giver f.eks = 8 4, at x x x x = x 4. Så det, man anvender de algebraiske regler til, er at forsimple regneudtryk og formler, sådan at de bliver nemmere at arbejde med. De regneregler, man anvender, er som sagt de sædvanlige regneregler for, hvordan man regner med tal. Dette skyldes, at bogstaverne jo netop også er tal. Der er dog en enkelt lille detalje i notationen, som er vigtig at vide: I algebraiske udtryk er det normalt, at man ikke skriver gangetegn mellem størrelser, hvis man kan undlade dem og stadig forstå regnestykket. 2 Derfor er 4p = 4 p 3x y = 3 x y 5w 2 = 5 w 2 2y 3 z = 2 y 3 z 7ab 2 = 7 a b 2 2(x + y) = 2 (x + y) (5 x)(2 x) = (5 x) (2 x) 2 Når man regner med tal, er det nødvendigt at skrive gangetegnene, sådan at man kan skelne 73 fra 7 3. Dette er ikke nødvendigt med f.eks. 7x. 25

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner FUNKTIONER del Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner -klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse FUNKTIONSBEGREBET... 3 Funktioner beskrevet ved mængder...

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Matematik for C niveau

Matematik for C niveau Matematik for C niveau M. Schmidt 2012 1 Indholdsfortegnelse 1. Tal og bogstavregning... 5 De elementære regnings arter og deres rækkefølge... 5 Brøker... 9 Regning med bogstavudtryk... 12 Talsystemet...

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling Om brugen af matematiske tegn og objekter i en god matematisk fremstilling af Petur Birgir Petersen Et særpræg ved matematik som videnskab er den udstrakte brug af symboler. Det er vigtigt at symbolerne

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Matematik for hf C-niveau

Matematik for hf C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for hf C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for hf C-niveau

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen.

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke addition bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke - decimaltal bunker osv. Det kan desuden vise decimaler og dermed give eleven visuel støtte

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

brikkerne til regning & matematik funktioner preben bernitt

brikkerne til regning & matematik funktioner preben bernitt brikkerne til regning & matematik funktioner 2+ preben bernitt brikkerne til regning & matematik funktioner 2+ beta udgave som E-bog ISBN: 978-87-92488-32-9 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring

Hovedemne 1: Talsystemet og at gange Læringsmål Nedbrudte læringsmål Forslag til tegn på læring Hovedemne 1: Talsystemet og at gange kan anvende flercifrede naturlige tal til at beskrive antal og rækkefølge udvikle metoder til multiplikation og division med naturlige tal udføre beregninger med de

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

Lineære funktioner. Erik Vestergaard

Lineære funktioner. Erik Vestergaard Lineære funktioner Erik Vestergaard Erik Vestergaard www.matematikfsik.dk Erik Vestergaard www.matematikfsik.dk Lineære funktioner En vigtig tpe funktioner at studere er de såkaldte lineære funktioner.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 stx MAT A1 stx 005-007 Jens Carstensen, Jesper Frandsen, Jens Studsgaard og Systime A/S Kopiering fra denne bog må kun finde sted i overensstemmelse

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

T ALKUNNEN. Tilnærmede tal og computertal

T ALKUNNEN. Tilnærmede tal og computertal T ALKUNNEN 6 Allan C Allan C.. Malmberg Tilnærmede tal og computertal INFA Matematik - 2000 1 INFA - IT i skolens matematik Projektledelse: Allan C. Malmberg Inge B. Larsen INFA-Klubben: Leif Glud Holm

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

Det vigtigste ved læring af subtraktion er, at eleverne

Det vigtigste ved læring af subtraktion er, at eleverne Introduktion Subtraktion er sammen med multiplikation de to sværeste regningsarter. Begge er begrebsmæssigt sværere end addition og division og begge er beregningsmæssigt sværere end addition. Subtraktion

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Matematik. Læseplan og formål:

Matematik. Læseplan og formål: Matematik Læseplan og formål: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

VisiRegn: En e-bro mellem regning og algebra

VisiRegn: En e-bro mellem regning og algebra Artikel i Matematik nr. 2 marts 2001 VisiRegn: En e-bro mellem regning og algebra Inge B. Larsen Siden midten af 80 erne har vi i INFA-projektet arbejdet med at udvikle regne(arks)programmer til skolens

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere