Oprids over grundforløbet i matematik

Størrelse: px
Starte visningen fra side:

Download "Oprids over grundforløbet i matematik"

Transkript

1 Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere de vigtigste regneregler (i bokse) med et par tilhørende eksempler og der er også nogle få øvelser undervejs, som man gerne skulle kunne lave og af. Øvelse er generelt af en mere udfordrende karakter. Desuden vil der være nogle huskeregler, der kan være nyttige samt lidt info om sprogbrug, disse er inkluderet i bokse. Yderligere er der inkluderet nogle bonusinformationer og bonusøvelser af mere teoretisk karakter. Disse kan eventuelt springes over. Inddelingen er som følger, og der vil være et par sider om hvert emne: Regnearternes hierarki Variable og sammenhænge Brøker Potenser Rødder Parenteser og kvadratsætningerne Ligninger Facitliste

2 Regnearternes hierarki Før man kan gøre noget som helst med matematik, må man have styr på hvilken rækkefølge ting skal ske i. De ting man har at gøre med er først og fremmest de fire hovedregnearter, og. Deres indbyrdes rækkefølge er: Regningsarternes hierarki: 1) Man skal først regne parenteser 2) Så skal man gange og dividere 3) Til sidst skal man lægge sammen og trække fra Man kan tænke på det som at regningsarterne kæmper om at blive regnet ud først. Den regneart der står øverst på listen vinder. En gange-binding mellem to tal er stærkere end en plus-binding, så i udtrykket ses i første omgang som en sammenhørende klump, fordi gange binder dem stærkt sammen. Eksempler: =11 (Her vinder gange over plus, så man skal først gange ). Til dette skal man lægge 3, dvs. ( ) (Her overruler parentesen de andre regler og bestemmer at man først skal lægge sammen. Dernæst ganger man) ( ( ) ) ( ( ) ) ( ) (ved flere parenteser, starter man med den inderste og arbejder sig ud af) Øvelser 1: Udregn/reducer følgende udtryk ( ) ( ) ( ( ( ( ( ))))) 1

3 Sprogbrug: 1) Ting der lægges sammen eller trækkes fra hinanden kaldes led og resultatet kaldes deres sum eller differens. I udtrykket er der tre led, nemlig, og 2) Ting der ganges sammen kaldes faktorer, og resultatet kaldes deres produkt. I udtrykket ( ) er der to faktorer, nemlig og ( ). 2

4 Variable og sammenhænge En stor forskel fra matematik i folkeskolen er at vi nu begynder at regne på bogstaver, eller såkaldte variable. Det er okay ikke at kende den konkrete talværdi, man kan bruge de samme regneregler som ovenfor alligevel. Huskeregler: 1) Når der ikke står noget imellem to ting, så er der et usynligt gangetegn 2) Når der ikke står noget foran én ting, er der et usynligt plus I udtrykket er positiv, dvs. har et plus på. 3) Man må ikke lægge tal med er på sammen med tal uden er I udtrykket må man gerne lægge og sammen til og man må gerne lægge og sammen til, men man kan ikke trække fra i udregningen og regne ud hvad det bliver. Eksempler: ( ) d) ( ) Øvelser 2: Reducer følgende udtryk ( ) ( ) ( ) ( ) 3

5 Det virker måske mere besværligt at regne med bogstaver, men der er en styrke i at gøre det, for en variabel kan bruges til at symbolisere en egenskab ved problemet, og mellem to variable kan der være en sammenhæng. Man kan behandle problemet på en generel facon. Sprogbrug: 1) Når der er en sammenhæng mellem to variable og så værdien af afhænger af hvad værdien af er, siges at være den afhængige variabel og den uafhængige variabel. Hvis én liter mælk koster 4 kr, så koster liter mælk og prisen er den afhængige variabel mens, der er antal liter, er den uafhængige variabel. 2) Når der er en helt bestemt sammenhæng mellem og, nemlig en der har formen siges og at være proportionale med proportionalitetsfaktor Når er og proportionale. Bemærk at det er en speciel form for lineær sammenhæng, der altid går igennem punktet ( ) (der ofte kaldes origo) Øvelse 3: Mona skal måle længden af lærerværelset på hendes skole. Hun har dog intet målebånd, men kan huske at hun i idræt har fået målt hendes skridtlængde til 0,65 meter. Opstil en lineær sammenhæng imellem længden af lærerværelset i skridt og længden af lærerværelset i meter. Udregn længden af lærerværelset når Mona måtte tage 25 skridt i sin opmåling. Mona har fået at vide, at lærerværelset er 15 meter bredt. Hvor mange skridt skal hun forvente at tage hvis hun vil måle bredden. 4

6 Brøker Det er ikke nok at regne med hele tal. Vi udvider vores talsystem til også at omfatte decimaltal (de reelle tal) og hierarkiet mellem regningsarterne gælder stadig. Ikke alle decimaltal kan skrives som brøker (de irrationale tal), men nogle kan (de rationale tal) og for disse er der nogle særlige regneregler. Man siger at det over brøkstregen er tælleren og det under brøkstregen er nævneren. De vigtigste brøkregneregler: 1) Når brøker gange, skal man gange tæller med tæller og nævner med nævner: 2) Hvis man dividerer to brøker, ganger man med den omvendte (hvor man bytter om på tæller og nævner): 3) Når man lægger brøker sammen, skal man sikre sig at de er af samme type, f.eks. fjerdedele. Man sætter på fælles brøkstreg ved at finde fællesnævneren Øvelse 4: Reducer følgende brøker. Husk at forkorte hvor det er muligt. (husk at regningsarternes hierarki også gælder for brøker) 5

7 Brøker handler om at dele ting. Tænk f.eks. på en gruppe børn, der deler en pose slik. Man har følgende egenskaber ved brøker: Egenskaber ved brøker: 1) Jo flere man er om at dele, jo mindre får man, så jo større nævner, jo mindre er brøken Fordi er mindre end 16, er større end. Man skriver 2) Når man deler med sig selv, altså med én, så får man det hele, 3) Når man er lige så mange til at dele som der er ting, får man én hver. Dvs. hvis der står samme tal foroven (i tælleren) og forneden (i nævneren) er brøken én, dvs. de går ud med hinanden. Sprogbrug: 1) Det der står øverst på brøkstregen hedder tælleren (eller dividenden) 2) Det der står under brøkstregen hedder nævneren (eller divisoren) 3) Man siger at man dividerer tælleren med nævneren. I brøken siger man at man dividerer med 6

8 Potenser Når man ganger et tal med sig selv flere gange, får man en potens af tallet Eksempel ( ) Dette kan også skrives som Sprogbrug: 1) Ganger man eksempelvis tallet 3 med sig selv 4 gange, siger man at man opløfter tre i fjerde, og skriver Her kaldes 3 for roden og 4 for eksponenten. 2) Det har et særligt navn at opløfte i anden. Det kaldes nemlig at kvadrere. Man kan slå potenser med samme rod sammen ved at bruge følgende regneregler. De vigtigste regneregler for potenser: 1) At gange potenser svarer til at lægge eksponenterne sammen (skriv først og gang det på, der er nu syv to-taller der skal ganges sammen i alt. Tæl selv efter.) 2) At dividere potenser svarer til at trække eksponenterne fra hinanden. Bonusøvelse: Prøv at skrive et bevis ned for punkt 2) når. (Hint: man kan søge inspiration i bogen s. 35) 7

9 Som man kan se, har man også brug for at opløfte i negative tal. Hovedreglen er at minus i eksponenten svarer til en brøkstreg. Man har følgende to vedtagelser Det udvidede potensbegreb 1) At opløfte i et negativt tal svarer til at dividere 2) Alle tal der opløftes i nulte giver én. Bonus info: Disse vedtagelser hænger nøje sammen med at de tidligere nævnte regneregler skal passe. Eksempelvis giver at nødvendigvis må være én, mens sådan nødvendigvis må være. Man kan kombinere regnereglerne og bruge dem på variable også Eksempel: (bemærk at man først udregner tælleren og først til sidst regner nævneren med) (bemærk at dette er samme regnestykke som i punkt blot med 2 udskiftet med ) Øvelse 5: Reducer følgende udtryk Huskeregel: Når der ikke står nogen eksponent på et tal, svarer det til at tallet er opløftet i første, f.eks. er. 8

10 Rødder Rødder er på sin vis det modsatte af potenser: 1. Ved potenser spørger man: Hvad bliver to ganget med sig selv fem gange, dvs. hvad er? 2. Ved rødder er det omvendt: Hvilket tal ganget med sig selv fem gange giver 32?, dvs. hvad er Fordi er. Man må bruge at man kan udregne potenser til at udregne rødder. Dette kan godt indebære at prøve sig lidt frem, hvilket demonstreres i følgende eksempel: Eksempel fordi For at komme frem til svaret, kan vi starte med at teste om og får. Vi skal bruge et større tal da. Vi prøver med og regner, der er alt for stort. Vi kan nu udregne at som ovenfor og se at vi får sådan at er løsningen. fordi Øvelse 6: Udregn følgende rødder Udregn og. Er der en sammenhæng mellem de to resultater? Regneregler for rødder: 1) Når to rødder ganges sammen, kan man vente med at tage roden til sidst Bemærk at reglen også kan læses fra højre mod venstre. Prøv at starte på højre side af lighedstegnet og gå baglæns. 2) Når man dividerer to rødder, kan man vente med at tage roden til sidst Igen kan man bruge reglen fra højre mod venstre i stedet 9

11 Huskeregel: 1) At tage en rod af et tal, svarer til at opløfte tallet i en tilsvarende brøk, hvor tallet på roden skal under brøkstregen i eksponenten i potensen, f.eks. er 2) Også når man har en potens under brøken kan man omskrive til en brøk. Nu skal eksponenten i potensen under brøken stå ovenpå brøkstregen. Eksempelvis er 3) Dette har som konsekvens at, f.eks. 4) Og at ( ) (Bemærk, at. At tage den numeriske værdi af, det svarer til at man smider minusset væk. Hvis der ikke er noget minus at smide væk, får man blot tallet selv, så ) Bonusøvelse: Den generelle regel i punkt 1) lyder. Desuden har vi potensregnereglen ( ). Benyt dette til at vise at, der er regneregel for rødder 1) i en mere generel form. Eksempel: negativ) (da vi ikke ved om er positiv eller Øvelse 7: Reducer følgende udtryk Sprogbrug: 1) Tager man den fjerde rod af 64, skriver man og tallet 4 kaldes rodeksponenten mens tallet 64 tallet kaldes radikanden. 2) Man har et specielt ord for den anden rod. Denne kaldes kvadratroden og skrives ofte blot som 3) Man har også et særligt navn til den tredje rod. Denne hedder kubikroden. 10

12 Parenteser og kvadratsætningerne Parenteser bruges til at angive en rækkefølge der er anderledes end den som man ellers ville få ved at bruge hierarkiet mellem regnearterne. Eksempel Udtrykkene ( ) og har helt forskellige betydning. Det første udtryk udregnes til ( ) og det andet udtryk udregnes til Der er følgende tre huskeregler om at hæve parenteser. Hvilken en man bruger afgøres af hvad der står foran, og eventuelt bagved, parentesen Huskeregel: 1) En plus parentes har ingen betydning ( ) 2) En minus parentes hæves ved at skifte fortegn ( ) 3) Hvis der er ganget et tal på parentesen (enten foran eller bagved), skal man gange ind ( ) ( ) Eksempel: ( ) ( ) ( ) ( ) ( ) ( ) Øvelse 8: Reducer følgende udtryk ved først at hæve parenteserne ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 11

13 Når man ganger ind i parentes, er det vigtigt at huske at det ude foran skal ganges på hvert led indeni. Man kan også gange to parenteser (eller flere) Huskeregel: 1) Når man ganger to parenteser med hinanden, skal alle led ganges med alle led ( ) ( ) (det kan udvides til parenteser med flere led i også. Metoden er den samme) 2) Man kan tjekke at man får det rigtige antal led ud; - Er der to led i hver parentes, skal der være fire led når de er ganget sammen (se ovenfor). - Er der to led i den ene og tre led i den anden skal der være seks led. - Er der tre led i dem begge skal der være ni led - Generelt er det Denne metode kan man faktisk bruge til at bevise kvadratsætningerne Regneregler: 1) Kvadratsætning 1 med plus: ( ) 2) Kvadratsætning 1 med minus: ( ) 3) Kvadratsægning 2 med kombination af minus og plus: ( ) ( ) Bonusinfo: Eksempelvis er ( ) ( ) ( ), hvilket giver et hurtigt bevis for den første kvadratsætning. Bonusøvelse: Prøv en tilsvarende udregning for de to andre kvadratsætninger. Øvelse 9: Reducer følgende udtryk ( ) ( ) ( ) ( ) (( ) ( ) ( )) 12

14 Ligninger Ligninger er en slags matematisk vægtskål, hvor to udtryk skal være i balance; dvs. de skal være lige store. Man kan kende en ligning på, at den har et lighedstegn. Når man regner på udtryk, sætter man typisk højre udtryk er lige store. mellem mellemregningerne, der udtrykker at venstre og Når man regner på ligninger bruger man i stedet mellem udregningerne. Dette udtrykker at man kan komme fra den venstre ligning til den højre (og også den anden vej). Sprogbrug: 1) Hvis to ligninger er adskilt af et siges de at være ækvivalente. 2) Tegnet kaldes en biimplikation. Der gælder følgende hovedprincipper om regning med ligninger Huskeregel: 1) Man må gøre alt, bare man gør det på begge sider af lighedstegnet Man kan lægge samme tal til på begge sider uden at ændre ligningens udsagn. Undtagelsen er, at man ikke må gange eller dividere med nul. 2) For at løse en ligning, dvs. isolere en variabel i ligningen, skal man bruge den modsatte regneoperation Hvis vi ønsker at isolere i ligningen vil vi starte med at flytte operation. Derfor trækkes over på den anden side ved at bruge den modsatte fra på begge sider Vores ligning er nu For at flytte totallet foran, må vi bruge den modsatte operation, så vi dividerer med to. Vi ender ud med Og dette er løsningen til vores ligning. 13

15 Øvelse 10: Løs følgende ligninger Grafisk, er ligningens løsning -koordinat til skæringspunktet mellem grafen for højre og venstre side Eksempel: Løs følgende ligninger grafisk Her er -koordinaten til skæringspunktet og dette er løsningen til ligningen. Her er der to skæringspunkter og dermed to løsninger til ligningen, nemlig og. Dette er et eksempel på en andengradsligning. 14

16 Facitliste Øvelse 1: 14 Øvelse 2: Øvelse 3: meter Cirka skridt. Øvelse 4: Øvelse 5: Øvelse 6: Øvelse 7: Øvelse 8: Øvelse 9: Øvelse 10: 15

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Sammensætning af regnearterne

Sammensætning af regnearterne Sammensætning af regnearterne Plus, minus, gange og division... 19 Negative tal... 0 Parenteser og brøkstreger... Potenser og rødder... 4 Sammensætning af regnearterne Side 18 Plus, minus, gange og division

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

4. Elementær brøkregning - En introduktion med opgaver (og facitliste) - En brøk er to tal (eller bogstavudtryk), som adskilles af en brøkstreg.

4. Elementær brøkregning - En introduktion med opgaver (og facitliste) - En brøk er to tal (eller bogstavudtryk), som adskilles af en brøkstreg. . Hvad er brøker?. Elementær brøkregning - En introduktion med opgaver (og facitlist - En brøk er to tal (eller bogstavudtryk), som adskilles af en brøkstreg. Tallet øverst i brøken kaldes tælleren. Tallet

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

Simple udtryk og ligninger

Simple udtryk og ligninger Simple udtryk og ligninger 009 Karsten Juul Til eleven Brug blyant og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt at slå op i under dit videre arbejde med

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel Grundlæggende matematiske begreber del Algebraiske udtryk Ligninger Løsning af ligninger med én variabel x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse ALGEBRAISKE UDTRYK... 3 Regnearternes

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

Sammensætning af regnearterne

Sammensætning af regnearterne Sammensætning af regnearterne Plus og minus... Gange og division... Plus, minus, gange og division... Negative tal...7 Parenteser...9 Brøkstreger...1 Tekst og regnestykker hvad passer sammen?... Potenser...

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

i tredje brøkstreg efter lukket tiendedele primtal time

i tredje brøkstreg efter lukket tiendedele primtal time ægte 1 i tredje 3 i anden rumfang år 12 måle kalender lagt sammen resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn efter bagved foran placering kvart fjerdedel lagkage rationale

Læs mere

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point:

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point: Matematik / Basal Matematik Navn: Klasse: Matematik Opgave Kompendium Basal Matematik Følgende gennemgås De regnearter Afrunding af tal Større & mindre end Enheds omregning Regne hierarki Brøkregning Potenser

Læs mere

Omskrivningsgymnastik

Omskrivningsgymnastik Omskrivningsgymnastik Frank Villa 29. december 2013 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Symbolsprog og Variabelsammenhænge

Symbolsprog og Variabelsammenhænge Indledning til Symbolsprog og Variabelsammenhænge for Gymnasiet og Hf 1000 kr 500 0 0 5 10 15 timer 2005 Karsten Juul Brugsanvisning Du skal se i de fuldt optrukne rammer for at finde: Regler for løsning

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

BEVISER TIL KAPITEL 3

BEVISER TIL KAPITEL 3 BEVISER TIL KAPITEL 3 Alle beviserne i dette afsnit bruger følgende algoritme fra side 88 i bogen. Algoritme: Fremgangsmåde til udledning af forskellige regneregler for differentiation af forskellige funktionstyper

Læs mere

Matematik. på Åbent VUC. Trin 1 Eksempler

Matematik. på Åbent VUC. Trin 1 Eksempler Matematik på Åbent VUC Trin Indledning til kursisterne Indledning til kursisterne Dette undervisningsmateriale består af i alt 0 moduler med opgaver. I hvert modul er der en bestemt type opgaver. Der er

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

Omskrivningsgymnastik

Omskrivningsgymnastik Omskrivningsgymnastik Frank Villa 16. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Brøker og forholdstal

Brøker og forholdstal Brøker og forholdstal Hvad er brøker - nogle eksempler... 6 Forlænge og forkorte... Udtage brøkdele... Uægte brøker og blandede tal... Brøker og decimaltal... 0 Regning med brøker - plus og minus... Regning

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

Grundlæggende færdigheder

Grundlæggende færdigheder Regnetest A: Grundlæggende færdigheder Træn og Test Niveau: 7. klasse Uden brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 9. klasse handler om de reelle tal. Første halvdel af kapitlet har karakter af at være opsamlende i forhold til, hvad eleverne har arbejdet med på tidligere

Læs mere

Lektion 3 Sammensætning af regnearterne

Lektion 3 Sammensætning af regnearterne Lektion Sammensætning af regnearterne Indholdsfortegnelse Indholdsfortegnelse... Plus og minus... Gange og division... Plus, minus, gange og division... Negative tal... Parenteser... Brøkstreger... Tekst

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Matematik. på Åbent VUC. Trin 2 Eksempler

Matematik. på Åbent VUC. Trin 2 Eksempler Matematik på Åbent VUC Trin Indledning til kursister på Trin II Indledning til kursister på Trin II Dette undervisningsmateriale består af 10 moduler med opgaver beregnet til brug på Trin I og 7 moduler

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Oversigt over undervisningen i matematik 1m 07/08

Oversigt over undervisningen i matematik 1m 07/08 Oversigt over undervisningen i matematik 1m 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

Ligningsløsning som det at løse gåder

Ligningsløsning som det at løse gåder Ligningsløsning som det at løse gåder Nedenstående er et skærmklip fra en TI-Nspirefil. Vi ser at tre kræmmerhuse og fem bolsjer balancerer med to kræmmerhuse og 10 bolsjer. Spørgsmålet er hvor mange bolsjer,

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 14. oktober 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3 1.2

Læs mere

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder 3 Algebra Faglige mål Kapitlet Algebra tager udgangspunkt i følgende faglige mål: Variable og brøker: kende enkle algebraiske udtryk med brøker og kunne behandle disse ved at finde fællesnævner. Den distributive

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

potenstal og rodtal F+E+D brikkerne til regning & matematik preben bernitt

potenstal og rodtal F+E+D brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F ISBN: 978-87-92488-06-0 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk

Læs mere

brikkerne til regning & matematik formler og ligninger F+E+D preben bernitt

brikkerne til regning & matematik formler og ligninger F+E+D preben bernitt brikkerne til regning & matematik formler og ligninger F+E+D preben bernitt brikkerne til regning & matematik formler og ligninger, F+E+D ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Matematik. på AVU. Eksempler til niveau G, F, E og D. Niels Jørgen Andreasen

Matematik. på AVU. Eksempler til niveau G, F, E og D. Niels Jørgen Andreasen Matematik på AVU Eksempler til niveau G, F, E og D Niels Jørgen Andreasen Om brug af denne eksempelsamling Matematik-niveauerne på Almen Voksenuddannelse hedder nu Basis, G og FED. Indtil sommeren 009

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Matematik. på AVU. Eksempler til niveau G. Niels Jørgen Andreasen

Matematik. på AVU. Eksempler til niveau G. Niels Jørgen Andreasen Matematik på AVU Eksempler til niveau G Niels Jørgen Andreasen Om brug af denne eksempelsamling Matematik-niveauerne på Almen Voksenuddannelse hedder nu Basis, G og FED. Indtil sommeren 009 hed niveauerne

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Diskriminantformlen. Frank Nasser. 11. juli 2011

Diskriminantformlen. Frank Nasser. 11. juli 2011 Diskriminantformlen Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt

brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F+E+D preben bernitt brikkerne til regning & matematik potenstal og rodtal F ISBN: 978-87-92488-06-0 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

Differentiation i praksis

Differentiation i praksis Differentiation i praksis Frank Villa 7. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

Matematik Grundforløbet

Matematik Grundforløbet Matematik Grundforløbet Mike Auerbach (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 2. udgave, 2015 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Tal og Regneoperationer

Tal og Regneoperationer Tal og Regneoperationer Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Bogstavregning. Kvadratsætninger: Når man snakker om hvad kvadratsætninger er der snakke om tre forskellige slags kvadratsætninger

Bogstavregning. Kvadratsætninger: Når man snakker om hvad kvadratsætninger er der snakke om tre forskellige slags kvadratsætninger Bogstavregng Regng med parteser: Man skal her tænke tilbage til hvad man lærte på matematik C omkrg gange d i parteser. At man tager tallet der stå udfor partes og ganger med hvert led de i partes sådan

Læs mere

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik potenstal og rodtal trin 2 preben bernitt brikkerne til regning & matematik potenstal og rodtal, trin 2 ISBN: 978-87-92488-06-0 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

formler og ligninger basis brikkerne til regning & matematik preben bernitt

formler og ligninger basis brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger basis preben bernitt brikkerne til regning & matematik formler og ligninger, basis ISBN: 978-87-92488-07-7 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også?

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Et tal som både består af et helt tal og en brøk, for eksempel. Hvad hedder det? Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Hvad kalder man tallet over brøkstregen

Læs mere

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45 Bogstavregning Formler... 6 Reduktion... 7 Ligninger... 8 Bogstavregning Side I bogstavregning skal du kunne regne med bogstaver og skifte bogstaver ud med tal. Formler En formel er en slags regne-opskrift,

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod Navn: Klasse: Matematik Opgave Kompendium Potens & Kvadratrod Opgaver: Ekstra: Point: http://madsmatik.dk/ d.0-0-01 1/1 Potenser: Du har måske set udtrykket før eller måske 10 1. Begge to er det vi kalder

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Matematik på VUC Modul 2 Opgaver

Matematik på VUC Modul 2 Opgaver Matematik på VUC Modul Opgaver Talgymnastik Plus og minus... Gange og division... Plus, minus, gange og division... Regning med negative tal... Parenteser...7 Brøkstreger...9 Tekst og regnestykker - hvad

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

GrundlÄggende. Bogstavregning. for stx og hf Karsten Juul

GrundlÄggende. Bogstavregning. for stx og hf Karsten Juul GrundlÄggende Bogstavregning for st og hf 01 Karsten Juul 1. LigevÄgt bevares når vi träkker fra begge sider... 1. LigevÄgt bevares IKKE når vi träkker fra venstre side... 1. LigevÄgt bevares når vi dividerer

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Umulige figurer Periode Mål Eleverne skal: At opdage muligheden for og blive fascineret af gengivelse af det umulige. At få øvelse

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

matematik grundbog Demo trin 2 preben bernitt

matematik grundbog Demo trin 2 preben bernitt matematik grundbog trin preben bernitt matematik grundbog -udgave 00 by bernitt-matematik.dk Kopiering og udskrift af denne bog er kun tilladt efter aftale med bernitt-matematik.dk Læs nærmere om dette

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 25. februar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Matematik for C niveau

Matematik for C niveau Matematik for C niveau M. Schmidt 2012 1 Indholdsfortegnelse 1. Tal og bogstavregning... 5 De elementære regnings arter og deres rækkefølge... 5 Brøker... 9 Regning med bogstavudtryk... 12 Talsystemet...

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 23. februar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Algebra

Tip til 1. runde af Georg Mohr-Konkurrencen Algebra Tip til. runde af - Algebra, Kirsten Rosenkilde. Tip til. runde af Algebra Her præsenteres idéer til hvordan man løser algebraopgaver. Det er ikke en særlig teoretisk indføring, men der er i stedet fokus

Læs mere

Brug af Word til matematik

Brug af Word til matematik Flex på KVUC, matematik C Brug af Word til matematik Word er et af de gængse tekstbehandlingssystemer der slipper bedst fra det at skrive matematiske formler. Selvfølgelig findes der andre systemer der

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Lektion 1 Grundliggende regning

Lektion 1 Grundliggende regning Lektion 1 Grundliggende regning Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division - brug af regnemaskine... Talsystemets opbygning - afrunding af tal... Store tal og negative tal...

Læs mere

brikkerne til regning & matematik formler og ligninger basis+g preben bernitt

brikkerne til regning & matematik formler og ligninger basis+g preben bernitt brikkerne til regning & matematik formler og ligninger basis+g preben bernitt brikkerne til regning & matematik formler og ligninger G ISBN: 978-87-92488-07-7 10. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

M A T E M A T I K G R U N D F O R L Ø B E T

M A T E M A T I K G R U N D F O R L Ø B E T M A T E M A T I K G R U N D F O R L Ø B E T M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 3. udgave, 2016 Disse noter er skrevet til matematikundervisning

Læs mere

brøker trin 1 brikkerne til regning & matematik preben bernitt

brøker trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik brøker trin 1 preben bernitt brikkerne til regning & matematik brøker, trin 1 ISBN: 978-87-92488-04-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er kun

Læs mere