Oprids over grundforløbet i matematik

Størrelse: px
Starte visningen fra side:

Download "Oprids over grundforløbet i matematik"

Transkript

1 Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere de vigtigste regneregler (i bokse) med et par tilhørende eksempler og der er også nogle få øvelser undervejs, som man gerne skulle kunne lave og af. Øvelse er generelt af en mere udfordrende karakter. Desuden vil der være nogle huskeregler, der kan være nyttige samt lidt info om sprogbrug, disse er inkluderet i bokse. Yderligere er der inkluderet nogle bonusinformationer og bonusøvelser af mere teoretisk karakter. Disse kan eventuelt springes over. Inddelingen er som følger, og der vil være et par sider om hvert emne: Regnearternes hierarki Variable og sammenhænge Brøker Potenser Rødder Parenteser og kvadratsætningerne Ligninger Facitliste

2 Regnearternes hierarki Før man kan gøre noget som helst med matematik, må man have styr på hvilken rækkefølge ting skal ske i. De ting man har at gøre med er først og fremmest de fire hovedregnearter, og. Deres indbyrdes rækkefølge er: Regningsarternes hierarki: 1) Man skal først regne parenteser 2) Så skal man gange og dividere 3) Til sidst skal man lægge sammen og trække fra Man kan tænke på det som at regningsarterne kæmper om at blive regnet ud først. Den regneart der står øverst på listen vinder. En gange-binding mellem to tal er stærkere end en plus-binding, så i udtrykket ses i første omgang som en sammenhørende klump, fordi gange binder dem stærkt sammen. Eksempler: =11 (Her vinder gange over plus, så man skal først gange ). Til dette skal man lægge 3, dvs. ( ) (Her overruler parentesen de andre regler og bestemmer at man først skal lægge sammen. Dernæst ganger man) ( ( ) ) ( ( ) ) ( ) (ved flere parenteser, starter man med den inderste og arbejder sig ud af) Øvelser 1: Udregn/reducer følgende udtryk ( ) ( ) ( ( ( ( ( ))))) 1

3 Sprogbrug: 1) Ting der lægges sammen eller trækkes fra hinanden kaldes led og resultatet kaldes deres sum eller differens. I udtrykket er der tre led, nemlig, og 2) Ting der ganges sammen kaldes faktorer, og resultatet kaldes deres produkt. I udtrykket ( ) er der to faktorer, nemlig og ( ). 2

4 Variable og sammenhænge En stor forskel fra matematik i folkeskolen er at vi nu begynder at regne på bogstaver, eller såkaldte variable. Det er okay ikke at kende den konkrete talværdi, man kan bruge de samme regneregler som ovenfor alligevel. Huskeregler: 1) Når der ikke står noget imellem to ting, så er der et usynligt gangetegn 2) Når der ikke står noget foran én ting, er der et usynligt plus I udtrykket er positiv, dvs. har et plus på. 3) Man må ikke lægge tal med er på sammen med tal uden er I udtrykket må man gerne lægge og sammen til og man må gerne lægge og sammen til, men man kan ikke trække fra i udregningen og regne ud hvad det bliver. Eksempler: ( ) d) ( ) Øvelser 2: Reducer følgende udtryk ( ) ( ) ( ) ( ) 3

5 Det virker måske mere besværligt at regne med bogstaver, men der er en styrke i at gøre det, for en variabel kan bruges til at symbolisere en egenskab ved problemet, og mellem to variable kan der være en sammenhæng. Man kan behandle problemet på en generel facon. Sprogbrug: 1) Når der er en sammenhæng mellem to variable og så værdien af afhænger af hvad værdien af er, siges at være den afhængige variabel og den uafhængige variabel. Hvis én liter mælk koster 4 kr, så koster liter mælk og prisen er den afhængige variabel mens, der er antal liter, er den uafhængige variabel. 2) Når der er en helt bestemt sammenhæng mellem og, nemlig en der har formen siges og at være proportionale med proportionalitetsfaktor Når er og proportionale. Bemærk at det er en speciel form for lineær sammenhæng, der altid går igennem punktet ( ) (der ofte kaldes origo) Øvelse 3: Mona skal måle længden af lærerværelset på hendes skole. Hun har dog intet målebånd, men kan huske at hun i idræt har fået målt hendes skridtlængde til 0,65 meter. Opstil en lineær sammenhæng imellem længden af lærerværelset i skridt og længden af lærerværelset i meter. Udregn længden af lærerværelset når Mona måtte tage 25 skridt i sin opmåling. Mona har fået at vide, at lærerværelset er 15 meter bredt. Hvor mange skridt skal hun forvente at tage hvis hun vil måle bredden. 4

6 Brøker Det er ikke nok at regne med hele tal. Vi udvider vores talsystem til også at omfatte decimaltal (de reelle tal) og hierarkiet mellem regningsarterne gælder stadig. Ikke alle decimaltal kan skrives som brøker (de irrationale tal), men nogle kan (de rationale tal) og for disse er der nogle særlige regneregler. Man siger at det over brøkstregen er tælleren og det under brøkstregen er nævneren. De vigtigste brøkregneregler: 1) Når brøker gange, skal man gange tæller med tæller og nævner med nævner: 2) Hvis man dividerer to brøker, ganger man med den omvendte (hvor man bytter om på tæller og nævner): 3) Når man lægger brøker sammen, skal man sikre sig at de er af samme type, f.eks. fjerdedele. Man sætter på fælles brøkstreg ved at finde fællesnævneren Øvelse 4: Reducer følgende brøker. Husk at forkorte hvor det er muligt. (husk at regningsarternes hierarki også gælder for brøker) 5

7 Brøker handler om at dele ting. Tænk f.eks. på en gruppe børn, der deler en pose slik. Man har følgende egenskaber ved brøker: Egenskaber ved brøker: 1) Jo flere man er om at dele, jo mindre får man, så jo større nævner, jo mindre er brøken Fordi er mindre end 16, er større end. Man skriver 2) Når man deler med sig selv, altså med én, så får man det hele, 3) Når man er lige så mange til at dele som der er ting, får man én hver. Dvs. hvis der står samme tal foroven (i tælleren) og forneden (i nævneren) er brøken én, dvs. de går ud med hinanden. Sprogbrug: 1) Det der står øverst på brøkstregen hedder tælleren (eller dividenden) 2) Det der står under brøkstregen hedder nævneren (eller divisoren) 3) Man siger at man dividerer tælleren med nævneren. I brøken siger man at man dividerer med 6

8 Potenser Når man ganger et tal med sig selv flere gange, får man en potens af tallet Eksempel ( ) Dette kan også skrives som Sprogbrug: 1) Ganger man eksempelvis tallet 3 med sig selv 4 gange, siger man at man opløfter tre i fjerde, og skriver Her kaldes 3 for roden og 4 for eksponenten. 2) Det har et særligt navn at opløfte i anden. Det kaldes nemlig at kvadrere. Man kan slå potenser med samme rod sammen ved at bruge følgende regneregler. De vigtigste regneregler for potenser: 1) At gange potenser svarer til at lægge eksponenterne sammen (skriv først og gang det på, der er nu syv to-taller der skal ganges sammen i alt. Tæl selv efter.) 2) At dividere potenser svarer til at trække eksponenterne fra hinanden. Bonusøvelse: Prøv at skrive et bevis ned for punkt 2) når. (Hint: man kan søge inspiration i bogen s. 35) 7

9 Som man kan se, har man også brug for at opløfte i negative tal. Hovedreglen er at minus i eksponenten svarer til en brøkstreg. Man har følgende to vedtagelser Det udvidede potensbegreb 1) At opløfte i et negativt tal svarer til at dividere 2) Alle tal der opløftes i nulte giver én. Bonus info: Disse vedtagelser hænger nøje sammen med at de tidligere nævnte regneregler skal passe. Eksempelvis giver at nødvendigvis må være én, mens sådan nødvendigvis må være. Man kan kombinere regnereglerne og bruge dem på variable også Eksempel: (bemærk at man først udregner tælleren og først til sidst regner nævneren med) (bemærk at dette er samme regnestykke som i punkt blot med 2 udskiftet med ) Øvelse 5: Reducer følgende udtryk Huskeregel: Når der ikke står nogen eksponent på et tal, svarer det til at tallet er opløftet i første, f.eks. er. 8

10 Rødder Rødder er på sin vis det modsatte af potenser: 1. Ved potenser spørger man: Hvad bliver to ganget med sig selv fem gange, dvs. hvad er? 2. Ved rødder er det omvendt: Hvilket tal ganget med sig selv fem gange giver 32?, dvs. hvad er Fordi er. Man må bruge at man kan udregne potenser til at udregne rødder. Dette kan godt indebære at prøve sig lidt frem, hvilket demonstreres i følgende eksempel: Eksempel fordi For at komme frem til svaret, kan vi starte med at teste om og får. Vi skal bruge et større tal da. Vi prøver med og regner, der er alt for stort. Vi kan nu udregne at som ovenfor og se at vi får sådan at er løsningen. fordi Øvelse 6: Udregn følgende rødder Udregn og. Er der en sammenhæng mellem de to resultater? Regneregler for rødder: 1) Når to rødder ganges sammen, kan man vente med at tage roden til sidst Bemærk at reglen også kan læses fra højre mod venstre. Prøv at starte på højre side af lighedstegnet og gå baglæns. 2) Når man dividerer to rødder, kan man vente med at tage roden til sidst Igen kan man bruge reglen fra højre mod venstre i stedet 9

11 Huskeregel: 1) At tage en rod af et tal, svarer til at opløfte tallet i en tilsvarende brøk, hvor tallet på roden skal under brøkstregen i eksponenten i potensen, f.eks. er 2) Også når man har en potens under brøken kan man omskrive til en brøk. Nu skal eksponenten i potensen under brøken stå ovenpå brøkstregen. Eksempelvis er 3) Dette har som konsekvens at, f.eks. 4) Og at ( ) (Bemærk, at. At tage den numeriske værdi af, det svarer til at man smider minusset væk. Hvis der ikke er noget minus at smide væk, får man blot tallet selv, så ) Bonusøvelse: Den generelle regel i punkt 1) lyder. Desuden har vi potensregnereglen ( ). Benyt dette til at vise at, der er regneregel for rødder 1) i en mere generel form. Eksempel: negativ) (da vi ikke ved om er positiv eller Øvelse 7: Reducer følgende udtryk Sprogbrug: 1) Tager man den fjerde rod af 64, skriver man og tallet 4 kaldes rodeksponenten mens tallet 64 tallet kaldes radikanden. 2) Man har et specielt ord for den anden rod. Denne kaldes kvadratroden og skrives ofte blot som 3) Man har også et særligt navn til den tredje rod. Denne hedder kubikroden. 10

12 Parenteser og kvadratsætningerne Parenteser bruges til at angive en rækkefølge der er anderledes end den som man ellers ville få ved at bruge hierarkiet mellem regnearterne. Eksempel Udtrykkene ( ) og har helt forskellige betydning. Det første udtryk udregnes til ( ) og det andet udtryk udregnes til Der er følgende tre huskeregler om at hæve parenteser. Hvilken en man bruger afgøres af hvad der står foran, og eventuelt bagved, parentesen Huskeregel: 1) En plus parentes har ingen betydning ( ) 2) En minus parentes hæves ved at skifte fortegn ( ) 3) Hvis der er ganget et tal på parentesen (enten foran eller bagved), skal man gange ind ( ) ( ) Eksempel: ( ) ( ) ( ) ( ) ( ) ( ) Øvelse 8: Reducer følgende udtryk ved først at hæve parenteserne ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 11

13 Når man ganger ind i parentes, er det vigtigt at huske at det ude foran skal ganges på hvert led indeni. Man kan også gange to parenteser (eller flere) Huskeregel: 1) Når man ganger to parenteser med hinanden, skal alle led ganges med alle led ( ) ( ) (det kan udvides til parenteser med flere led i også. Metoden er den samme) 2) Man kan tjekke at man får det rigtige antal led ud; - Er der to led i hver parentes, skal der være fire led når de er ganget sammen (se ovenfor). - Er der to led i den ene og tre led i den anden skal der være seks led. - Er der tre led i dem begge skal der være ni led - Generelt er det Denne metode kan man faktisk bruge til at bevise kvadratsætningerne Regneregler: 1) Kvadratsætning 1 med plus: ( ) 2) Kvadratsætning 1 med minus: ( ) 3) Kvadratsægning 2 med kombination af minus og plus: ( ) ( ) Bonusinfo: Eksempelvis er ( ) ( ) ( ), hvilket giver et hurtigt bevis for den første kvadratsætning. Bonusøvelse: Prøv en tilsvarende udregning for de to andre kvadratsætninger. Øvelse 9: Reducer følgende udtryk ( ) ( ) ( ) ( ) (( ) ( ) ( )) 12

14 Ligninger Ligninger er en slags matematisk vægtskål, hvor to udtryk skal være i balance; dvs. de skal være lige store. Man kan kende en ligning på, at den har et lighedstegn. Når man regner på udtryk, sætter man typisk højre udtryk er lige store. mellem mellemregningerne, der udtrykker at venstre og Når man regner på ligninger bruger man i stedet mellem udregningerne. Dette udtrykker at man kan komme fra den venstre ligning til den højre (og også den anden vej). Sprogbrug: 1) Hvis to ligninger er adskilt af et siges de at være ækvivalente. 2) Tegnet kaldes en biimplikation. Der gælder følgende hovedprincipper om regning med ligninger Huskeregel: 1) Man må gøre alt, bare man gør det på begge sider af lighedstegnet Man kan lægge samme tal til på begge sider uden at ændre ligningens udsagn. Undtagelsen er, at man ikke må gange eller dividere med nul. 2) For at løse en ligning, dvs. isolere en variabel i ligningen, skal man bruge den modsatte regneoperation Hvis vi ønsker at isolere i ligningen vil vi starte med at flytte operation. Derfor trækkes over på den anden side ved at bruge den modsatte fra på begge sider Vores ligning er nu For at flytte totallet foran, må vi bruge den modsatte operation, så vi dividerer med to. Vi ender ud med Og dette er løsningen til vores ligning. 13

15 Øvelse 10: Løs følgende ligninger Grafisk, er ligningens løsning -koordinat til skæringspunktet mellem grafen for højre og venstre side Eksempel: Løs følgende ligninger grafisk Her er -koordinaten til skæringspunktet og dette er løsningen til ligningen. Her er der to skæringspunkter og dermed to løsninger til ligningen, nemlig og. Dette er et eksempel på en andengradsligning. 14

16 Facitliste Øvelse 1: 14 Øvelse 2: Øvelse 3: meter Cirka skridt. Øvelse 4: Øvelse 5: Øvelse 6: Øvelse 7: Øvelse 8: Øvelse 9: Øvelse 10: 15

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Matematik. på Åbent VUC. Trin 2 Eksempler

Matematik. på Åbent VUC. Trin 2 Eksempler Matematik på Åbent VUC Trin Indledning til kursister på Trin II Indledning til kursister på Trin II Dette undervisningsmateriale består af 10 moduler med opgaver beregnet til brug på Trin I og 7 moduler

Læs mere

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

Matematik. på AVU. Eksempler til niveau G, F, E og D. Niels Jørgen Andreasen

Matematik. på AVU. Eksempler til niveau G, F, E og D. Niels Jørgen Andreasen Matematik på AVU Eksempler til niveau G, F, E og D Niels Jørgen Andreasen Om brug af denne eksempelsamling Matematik-niveauerne på Almen Voksenuddannelse hedder nu Basis, G og FED. Indtil sommeren 009

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

Lektion 3 Sammensætning af regnearterne

Lektion 3 Sammensætning af regnearterne Lektion Sammensætning af regnearterne Indholdsfortegnelse Indholdsfortegnelse... Plus og minus... Gange og division... Plus, minus, gange og division... Negative tal... Parenteser... Brøkstreger... Tekst

Læs mere

Grundlæggende færdigheder

Grundlæggende færdigheder Regnetest A: Grundlæggende færdigheder Træn og Test Niveau: 7. klasse Uden brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

formler og ligninger basis brikkerne til regning & matematik preben bernitt

formler og ligninger basis brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger basis preben bernitt brikkerne til regning & matematik formler og ligninger, basis ISBN: 978-87-92488-07-7 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Matematik for C niveau

Matematik for C niveau Matematik for C niveau M. Schmidt 2012 1 Indholdsfortegnelse 1. Tal og bogstavregning... 5 De elementære regnings arter og deres rækkefølge... 5 Brøker... 9 Regning med bogstavudtryk... 12 Talsystemet...

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik potenstal og rodtal trin 2 preben bernitt brikkerne til regning & matematik potenstal og rodtal, trin 2 ISBN: 978-87-92488-06-0 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

brøker trin 1 brikkerne til regning & matematik preben bernitt

brøker trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik brøker trin 1 preben bernitt brikkerne til regning & matematik brøker, trin 1 ISBN: 978-87-92488-04-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er kun

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Lektion 1 Grundliggende regning

Lektion 1 Grundliggende regning Lektion 1 Grundliggende regning Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division - brug af regnemaskine... Talsystemets opbygning - afrunding af tal... Store tal og negative tal...

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

formler og ligninger trin 1 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 1 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 1 ISBN: 978-87-92488-08-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Lærervejledning Matematik 1-2-3 på Smartboard

Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning til Matematik 1-2-3 på Smartboard Materialet består af 33 færdige undervisningsforløb til brug i matematikundervisningen i overbygningen. Undervisningsforløbene

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Mondiso matematik for 1. til 3. klasse

Mondiso matematik for 1. til 3. klasse Mondiso matematik for 1. til 3. klasse Programmet henvender sig til elever i indskoling. Det kan også benyttes af børn på højere klassetrin, som har behov for at få genopfrisket det grundlæggende i matematikken.

Læs mere

T ALKUNNEN. Tilnærmede tal og computertal

T ALKUNNEN. Tilnærmede tal og computertal T ALKUNNEN 6 Allan C Allan C.. Malmberg Tilnærmede tal og computertal INFA Matematik - 2000 1 INFA - IT i skolens matematik Projektledelse: Allan C. Malmberg Inge B. Larsen INFA-Klubben: Leif Glud Holm

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Lektion 5 Procentregning

Lektion 5 Procentregning Lektion 5 Procentregning Indholdsfortegnelse Indholdsfortegnelse Find et antal procent af Procent, brøk og decimaltal Hvor mange procent udgør..? Find det hele Promille Moms Ændring i procent Forskel i

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Kom godt i gang. Sluttrin

Kom godt i gang. Sluttrin Kom godt i gang Sluttrin Kom godt i gang Sluttrin Forfatter Karsten Enggaard Redaktion Gert B. Nielsen, Lars Høj, Jørgen Uhl og Karsten Enggaard Fagredaktion Carl Anker Damsgaard, Finn Egede Rasmussen,

Læs mere

Procentregning. Procent Side 36

Procentregning. Procent Side 36 Procentregning Find et antal procent af.... 37 Procent, brøk og decimaltal... 38 Hvor mange procent udgør..?... 39 Find det hele..... 40 Promille... 40 Moms... 41 Forskel i procent... 42 Ændring i procent...

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner FUNKTIONER del Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner -klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse FUNKTIONSBEGREBET... 3 Funktioner beskrevet ved mængder...

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 ISBN: 978-87-92488-28-2 1. udgave som E-bog 2006 by bernitt-matematik.dk Kopiering af

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Computere er uvurderlige redskaber for personer der ønsker at arbejde med matematiske modeller

Læs mere

2 Brøker, decimaltal og procent

2 Brøker, decimaltal og procent 2 Brøker, decimaltal og procent Faglige mål Kapitlet Brøker, decimaltal og procent tager udgangspunkt i følgende faglige mål: Brøker: kunne opstille brøker efter størrelse samt finde det antal af en helhed,

Læs mere

Birgit Mortensen. Begynderkonference d. 26/2 2014. Sproglig bevidsthed i matematik - hvorfor og hvordan

Birgit Mortensen. Begynderkonference d. 26/2 2014. Sproglig bevidsthed i matematik - hvorfor og hvordan Birgit Mortensen. Begynderkonference d. 26/2 2014 Sproglig bevidsthed i matematik - hvorfor og hvordan Sproglig bevidsthed i matematik undervisningen Sum er noget bierne gør, når de flyver i haven Negativ

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen)

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Bog: Vi bruger grundbogssystemet Format, som er et fleksibelt matematiksystem, der tager udgangspunkt i læringsstile.

Læs mere

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik Matematik i Word En manual til elever og andet godtfolk. Indhold med hurtig-links Kom godt i gang med Word Matematik At regne i Word Matematik Kom godt i gang med WordMat Opsætning, redigering og kommunikationsværdi

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Forår 2015 414 Københavns VUC Hf Matematik C Pia Hald ph@kvuc.dk

Læs mere

Odense Tekniske Skole

Odense Tekniske Skole Odense Tekniske Skole Lokal undervisningsplan for matematik i grundforløbet Læringsaktiviteten matematik på grundforløbet på håndværk og teknik Niveauer: I matematik undervises på niveau F, men tilbydes

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

Matematik for hf C-niveau

Matematik for hf C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for hf C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for hf C-niveau

Læs mere

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 stx MAT A1 stx 005-007 Jens Carstensen, Jesper Frandsen, Jens Studsgaard og Systime A/S Kopiering fra denne bog må kun finde sted i overensstemmelse

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

VEUD ekstraopgave Opgave nr. 62-11

VEUD ekstraopgave Opgave nr. 62-11 Opgavens art: Opgaveformulering: Fagområde: Opgavens varighed: Teoretisk Gennemgang af lommeregner Sprøjtestøbning 4 lektioner Niveau, sammenlignet med uddannelsen: Henvisning til hjælpemidler: Grunduddannelse

Læs mere

Matematik og Fysik for Daves elever

Matematik og Fysik for Daves elever TEC FREDERIKSBERG www.studymentor.dk Matematik og Fysik for Daves elever MATEMATIK... 2 1. Simple isoleringer (+ og -)... 3 2. Simple isoleringer ( og )... 4 3. Isolering af ubekendt (alle former)... 6

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

VisiRegn: En e-bro mellem regning og algebra

VisiRegn: En e-bro mellem regning og algebra Artikel i Matematik nr. 2 marts 2001 VisiRegn: En e-bro mellem regning og algebra Inge B. Larsen Siden midten af 80 erne har vi i INFA-projektet arbejdet med at udvikle regne(arks)programmer til skolens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer Hold VUC Skive-Viborg Hfe Matematik C Claus Ryberg

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2009 Institution Silkeborg Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitutionernes fest 53 Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitution en masse Vi vil i denne artikel vise, hvorledes man kan løse den generelle tredjegradsligning

Læs mere

Affine - et krypteringssystem

Affine - et krypteringssystem Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere