Lektion 7 Eksponentialfunktioner

Størrelse: px
Starte visningen fra side:

Download "Lektion 7 Eksponentialfunktioner"

Transkript

1 Lektion 7 Eksponentialfunktioner Den naturlige eksponentialfunktion ep) = e Andre eksponentialfunktioner a Regneregler ep0) =, ep + y) = ep) epy) Potensfunktioner r En berømt grænseværdi Uegentlige integraler

2 Den naturlige eksponentialfunktion Tallet e m n = n e m er det tal hvis ln-værdi er m n. Vi vedtager nu feks at e er det tal hvis ln-værdi er. Helt generelt vedtager vi at e er det tal hvis ln-værdi er. Dvs at lne ) = = e ln Graf for ln) og ep) så e og ln er hinandens inverse funktioner. De to grafer er spejlbilleder over vinkelhalveringslinjen y =. De vigtigste egenskaber ved e er e 0 =, e = e e +y = e e y, e y = e e y e ) y = e y lim e = lim e = som vi ser af at de to tal på hver side af lighedstegnet har samme ln-værdi. Desuden er d d e = e og e = e + C som vi ser af formlen for differentiation af invers funktion. Man skriver også ep) for e.

3 Eksempel Beregning af e ) Du kan finde en tilnærmelse til e ved at bruge Udregningen ln lim n lim + ) n = e n n + n) n = lim ln n ) = lim n ln n + n = ln ) = = + ) n n ln + n) ln) = lim n n viser nemlig at grænseværdien er det tal hvis ln-værdi er. Det tal har vi kaldt e. Med n = 0000 og = er ) = 4, mens den sande værdi er e = 4,

4 Eksponentialfunktioner med andre grundtal Lad a være et positivt tal, feks a =. Tallet a m n = n a m er det tal hvis log a -værdi er m n. Vi vedtager nu feks at a er det tal hvis log a -værdi er. Helt generelt vedtager vi at a er det tal hvis log a -værdi er. Dvs at log a a ) = = a log a så a og log a er hinandens inverse funktioner. De to grafer er spejlbilleder over vinkelhalveringslinjen y =. Da a = e ln a) = e ln a) er der ikke den store forskel på de forskellige eksponentialfunktioner. De vigtigste egenskaber ved funktionen a er a 0 =, a = a ^ og /)^ a +y = a a y, a y = a a y, a ) y = a y a ln b = b ln a, e = a d d a = lna) a, ln a a d = a ln a + C 4

5 Eksempel Eksponentiel vækst) Størrelsen P t) af en bakteriepopulation undre optimale betingelser vokser efter formlen P t) = P 0 e λt = P 0 e λ ) t, λ > 0, hvor P 0 er antallet af bakterier til tiden t = 0 og λ er en positiv konstant. Fordoblingstiden er T = ln λ og vi kunne også skrive P t) = P 0 t/t Eksponentiel v kst Eksempel 3 Eksponentiel hendøen) Antallet P t) af atomer af en bestemt radioaktiv isotop aftager efter formlen Eksponentiel hendłen P t) = P 0 e λt = P 0 e λ ) t = P 0 e λ ) t, λ > 0, Halveringstiden er T / = ln λ og vi kunne også skrive P t) = P 0 ) t/t/

6 Eksempel 4 Låner du K 0 kroner til en rente på r procent pr år, er gælden vokset til Kn) = K 0 + r ) n 00 efter n år. Gældens fordoblingstid er T = ln ln + r/00) år Med r = 0 er T = ln = 7, 3 år og ln,) med r = DKs BNP?) er T = ln ln,0) = 35 år. Eksempel 5 Kulstof datering) Carbon 4 isotopen har en halveringstid på T / = 5730 år. Alderen t af en prøve af organisk materiale som indeholder /0 af den mængde carbon 4 man finder i levende materiale er bestemt ved ) t/5730 = hvilket giver t = ln 0 ln år = 9035 år. 6

7 Potensfunktioner med positiv eksponent 4 Potensfunktioner med negativ eksponent Potensfunktionen f) = r Lad r være et vilkårligt reelt tal. Funktionen f) = r er defineret for alle positive tal og den kaldes potensfunktionen med eksponent r. Hvis r er et helt tal er funktionen også defineret for negative.) Graferne for nogle potensfunktioner med positiv eksponent til venstre) og negative eksponent til højre) kan ses øverst på siden. De vigtigste egenskaber: y) r = r y r, /y) r = r /y r, r = / r d d r = r r, r = r+ r ) r + r voksende hvis r > 0 og lim r = Eksempel 6 Allometrisk vækst) Sammenhængen mellem størrelsen y af et bestemt organ og størrelsen af hele organismen er for mange levende væsener givet ved en potensfunktion y = c r hvor tallet r kaldes allometrikonstanten. 7

8 Karakteristisk egenskaber Logaritmefunktioner L) = C + log a ) > 0) opfylder LA) = B + L), B = log a ) Potensfunktioner P ) = C r > 0) opfylder P A) = BP ), B = A r Eksponentialfunktioner E) = Ca opfylder EA + ) = BE), B = a A Specielt gælder ET + ) = E) når T = ln ln a hvis a > så E er voksende og ET / + ) = E) når T / = ln/) ln a hvis a < så E er aftagende. 8

9 En berømt grænseværdi Lad r > 0 være et positivt tal. Både potensfunktion r og eksponentialfunktionen e går mod for. Hvem vinder? Det gør eksponentialfunktionen: lim r e = 0 Hvorfor? Indsætter vi = ln t bliver r ) ln t)r ln t r = = e t t /r Da går mod når t går mod bliver r ) ln t r lim e = t lim t /r Men vi så i Lektion 6 at enhver potensfunktion vinder over den naturlige logartimefunktion, så grænseværdien til højre er 0. Denne grænseværdi ledte Thomas Malthus ) til en dommedagsteori. 9

10 Uegentlige integraler Vi definerer f) d = a N lim N a f) d hvis ellers grænseværdien eksisterer. Du kan ogås møde uegentlige integraler af formen b f) d og endda f) d. Hvis f) er en positiv funktion kan integralerne ses som arealer af ubegrænsede områder. =y^ ) Eksempel 7 For alle r > 0 er [ r d = lim r r ] N = lim r N r + r ) = r N Feks er d = og 3 d = Eksempel 8 Det uegentlige integral e t / dt = π kender I fra sandsynlighedsregningnens normalfordeling. 0 Normalfordelingen t

11 Opgave: Find 0 r e d for r =,, 3,... Løsning: Partiel integration giver r e d = r e + r r e d og derfor er 0 r e d = r 0 r e d, r, så vi kan altså finde værdierne induktivt. Vi starter med r = hvor 0 0 e [ d = 0 e d = lim e ] N N 0 ) = lim e n + = N og altså er 0 r e d = r r ) for alle naturlige tal r. 6 gammar+) r

12 Opgaver til Lektion 7. Skriv på formen e λ for en konstant λ.. Skriv e, på formen a for en konstant a. 3. Hvad er halveringstiden for E) = 3? 4. Eksamen Januar 00, Opgave 3) Der er nu en bestand af 50 Traner Grus grus) i Jylland. Det antages, at bestanden vokser eksponentielt med 0% om året. Hvornår vil der være 00 fugle? 5. Et radioaktivt stof har en halveringstid på, 3 millioner år. Hvor lang tid tager det for aktiviteten at aftage til 0% af den nuværende? 6. Find maksimumsværdien for funktionen f) = e. 7. Når billetprisen øges med 0% falder passagerantallet med 3%. Hvilken funktion taler vi om her? Hvor meget skal billetprisen øges for at passagerantallet falder med 5%? 8. En tommelfingerregel siger at fordoblingstiden for en formue, der forrrentes med p% p.a, er 70 p år. Hvordan kom jeg frem til det? Vink: ln)) 9. Den. januar 000 lægger du en 0 krone på et bord. Samtidig tænder en lommelygte og lader lysstrålen fare ud i verdensrummet. Banken giver dig 0% i rente som du modtager i 0 krone mønter og stabler ovenpå den første mønt. Hvornår bliver lysstrålen overhalet af stablen af mønter? 0. Biologer tæller antallet af fuglearter S på en række øer med areal A. Det viser sig at logaritmen til artsantallet vokser lineært lns) = 4, 5 + 0, 5 lna) som en funktion af logaritmen til arealet. Gør rede for at det betyder at artsantallet vokser som en potensfunktion af arealet. Se I. Hanski, M. Gyllenberg, Science ), ) 4. Find på en opgave hvor svaret er π 0 d. Du skal bruge ordene parabel og vinglas.

Lektion 6 Logaritmefunktioner

Lektion 6 Logaritmefunktioner Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Lektion 9 Vækstmodeller

Lektion 9 Vækstmodeller Lektion 9 Vækstmodeller Eksponentiel vækst 1. Eksponentielt voksende funktioner 2. Eksponentielt aftagende funktioner 3. Halverings- og fordoblingstider Vækst mod asymptotisk grænse Logistisk vækst 1.

Læs mere

Hvad er en funktion? Funktioner og graftegning. Funktioners egenskaber. Funktioners egenskaber. f(b) y = f(x) f(a) f(a)

Hvad er en funktion? Funktioner og graftegning. Funktioners egenskaber. Funktioners egenskaber. f(b) y = f(x) f(a) f(a) Funktioner og graftegning Jeppe Revall Frisvad September 29 Hvad er en funktion? En funktion f er en regel som til hvert element i en mængde A ( A) knytter præcis ét element y i en mængde B Udtrykket f

Læs mere

Lektion 8 Differentialligninger

Lektion 8 Differentialligninger Lektion 8 Differentialligninger Implicit differentiation Differentialligninger Separable differentialligninger 0.5 Implicit differentiation 0.4 0.2 0.2 0.4 0.6 0.8 0 0.5 y Vi kan finde måske løse ligningen.5

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Eksamensspørgsmål net B, vinter 2012-sommer Spørgsmål 1: Lineære funktioner

Eksamensspørgsmål net B, vinter 2012-sommer Spørgsmål 1: Lineære funktioner Eksamensspørgsmål net B, vinter 0-sommer 03 Spørgsmål : Lineære funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne

Læs mere

9 Eksponential- og logaritmefunktioner

9 Eksponential- og logaritmefunktioner 9 Eksponential- og logaritmefunktioner Hayati Balo, AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2 2. Crone og Rosenquist, Matematiske elementer

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2014/15, eksamen maj-juni 2015 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Funktioner

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Funktioner Eksamensspørgsmål mabe, sommer 014 Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne a ud fra to

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Funktionsfamilier. Frank Villa. 19. august 2012

Funktionsfamilier. Frank Villa. 19. august 2012 Funktionsfamilier Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere

Læs mere

Fjern/Flex 8maB114 14-15 Matematik C->B, HFE

Fjern/Flex 8maB114 14-15 Matematik C->B, HFE Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Termin hvori undervisningen afsluttes: maj-juni 2014/15 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne for en

Læs mere

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Lineære funktioner

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Lineære funktioner Eksamensspørgsmål mabe, sommer 03 Spørgsmål : Lineære funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne a ud fra

Læs mere

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier.

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier. Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister 1. Polynomier. Redegør for andengradspolynomiets graf og udled en formel for koordinatsættet til parablens toppunkt. 2.

Læs mere

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG INDHOLDSFORTEGNELSE Formelsamling... side Grundlæggende færdigheder... side 4 a Finde konstanterne a og b i en regneforskrift (og p eller r)... side 4 b

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for udvalgte sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne

Læs mere

Lektion ordens lineære differentialligninger

Lektion ordens lineære differentialligninger Lektion 11 1. ordens lineære differentialligninger Lineære differentialligninger Lineære differentialligninger af 1. orden 1. homogene 2. inhomogene Lineære differentialligninger af 1. orden med konstante

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

Logaritmiske Transformationer

Logaritmiske Transformationer Logaritmiske Transformationer Frank Nasser 23. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Matematisk Formelsamling

Matematisk Formelsamling Duborg-Skolen Duborg-Skolen Duborg-Skolen Duborg-Skolen Matematisk Formelsamling Indholdsfortegnelse Emne side Vektorer i planen... 1 og 2 Linje... 3 Cirkel, ellipse, hyperbel og parabel... 4 Trekant...

Læs mere

Indhold. Forord. Det græske alfabet. 1. Kontinuitet og grænseværdi Indledning Kontinuitet Opgaver til 1.2

Indhold. Forord. Det græske alfabet. 1. Kontinuitet og grænseværdi Indledning Kontinuitet Opgaver til 1.2 Indhold Forord Det græske alfabet 1. Kontinuitet og grænseværdi 1.1. Indledning 1.2. Kontinuitet Opgaver til 1.2 1.3. Regning med kontinuerte funktioner Opgaver til 1.3 1.4. Kontinuerte funktioners egenskaber

Læs mere

Eksamensspørgsmål: Eksponentiel vækst

Eksamensspørgsmål: Eksponentiel vækst Eksamensspørgsmål: Eksponentiel vækst Indhold Definition:... Eksempel :... Begndelsesværdien b... Fremskrivningsfaktoren a... Eksempel :... Formlerne for a og b... 3 Eksempel 3:... 3 Bevis for formlen

Læs mere

Matematik B. Anders Jørgensen

Matematik B. Anders Jørgensen Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2016 VUCHA Hfe Matematik-B Monikka Bergstrøm (mbe)

Læs mere

Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald

Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald Der findes mange situationer, hvor en bestemt størrelse ændres som følge af vekselvirkninger med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Vestegnen HF & Vuc Uddannelse Fag og niveau Lærer Hf-enkeltfag Matematik B Gert

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Mette

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 15/16 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Mette

Læs mere

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54 Slide 1/54 Indhold 1 2 3 4 5 Slide 2/54 Indhold 1 2 3 4 5 Slide 3/54 1) Hvad er et aksiom? Slide 4/54 1) Hvad er et aksiom? 2) Hvorfor har vi brug for aksiomer? The Monty Hall Problem Slide 4/54 1) Hvad

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2015-2016 Institution Vestegnen HF & VUC Uddannelse Fag og niveau Lærer Hold HF: E-learning Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Edel-Elise

Læs mere

Ib Michelsen Vejledende løsning HF C 121 1. Et beløb forrentes i en bank med rentesatsen 3,5 % i 5 år og derefter er indeståendet kr. 59.384,32 kr.

Ib Michelsen Vejledende løsning HF C 121 1. Et beløb forrentes i en bank med rentesatsen 3,5 % i 5 år og derefter er indeståendet kr. 59.384,32 kr. Ib Michelsen Vejledende løsning HF C 121 1 Opgave 1 Et beløb forrentes i en bank med rentesatsen 3,5 % i 5 år og derefter er indeståendet kr. 59.384,32 kr. Beregning af startkapital Da der er tale om kapitalfremskrivning,

Læs mere

Kulstof-14 datering. Første del: Metoden. Isotoper af kulstof

Kulstof-14 datering. Første del: Metoden. Isotoper af kulstof Kulstof-14 datering Første del: Metoden I slutningen af 1940'erne finder et team på University of Chicago under ledelse af Willard Libby ud af, at man kan bruge det radioaktive stof kulstof 14 ( 14 C),

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 15/16 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Bodil

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Efterår 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Kamran

Læs mere

brikkerne til regning & matematik funktioner preben bernitt

brikkerne til regning & matematik funktioner preben bernitt brikkerne til regning & matematik funktioner 2+ preben bernitt brikkerne til regning & matematik funktioner 2+ beta udgave som E-bog ISBN: 978-87-92488-32-9 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

Du sætter 2300 kr ind på en konto med en rente på 3,5 % p.a. a. Hvor meget står der efter 3 år? b. 5 år? c. 10 år?

Du sætter 2300 kr ind på en konto med en rente på 3,5 % p.a. a. Hvor meget står der efter 3 år? b. 5 år? c. 10 år? 6. 6.1 Rentesregning Du sætter 2300 kr ind på en konto med en rente på 3,5 % p.a. a. Hvor meget står der efter 3 år? b. 5 år? c. 10 år? 6.2 Vækst i antal besøgende I 1999 var det årlige besøgstal i Grønkøbing

Læs mere

Undervisningsbeskrivelse & Oversigt over rapporter

Undervisningsbeskrivelse & Oversigt over rapporter Undervisningsbeskrivelse & Oversigt over rapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Louise Jakobsen,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 15/16, eksamen maj-juni 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår efterår 16, eksamen december 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2015, eksamen maj / juni 2015 Institution Kolding HF og VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 7Bma1S14

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 15/16, eksamen maj-juni 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold 2-årig

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 5 Funktioner og grafer, modellering af variabelsammenhænge 2016 MATEMATIK A-NIVEAU Vejledende eksempler

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Selvstuderende Lærer Maj-juni 2014 Skoleår 2013/2014

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb Studieplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 10-juni 11 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B2 Klavs Skjold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau HHX Matematik C Lærer(e) LSP ( Liselotte Strange-Pedersen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C MIHY (Michael

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2013 Institution

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2013 Institution Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2013 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Angela

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 08/09 Htx Sukkertoppen,

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2016 VUCHA Hf-e Matematik B Anders Thaysen (ART)

Læs mere

Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen.

Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen. 37-43. Side 1 af 8 Eksponentiel udvikling ( 37-43) Opgaverne med svar starter på side 4, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står fra side 7 med et s foran

Læs mere

Løsningsforslag MatB Juni 2012

Løsningsforslag MatB Juni 2012 Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion

Læs mere

Øvelse 3 a) x ,9 1,2 1,5 2 2,6 3,4 4,4 5,7 7,4 9,7 12,6

Øvelse 3 a) x ,9 1,2 1,5 2 2,6 3,4 4,4 5,7 7,4 9,7 12,6 1 af 15 Facitliste Udskriv siden Kapitel 6 ØVELSER Øvelse 1 Efter 1 år: kr. Efter 2 år: kr. Efter 5 år: kr. Øvelse 2 Efter 10 år: kr. Efter 15 år: kr. Øvelse 3 a) x -3-2 -1 0 1 2 3 4 5 6 7 0,9 1,2 1,5

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere

Øvelse 1 (mennesker) fælles

Øvelse 1 (mennesker) fælles Øvelse 1 (mennesker) fælles LAV INDDELING AF DISSE ORD Mænd Kvinder Gymnasieelever Teenagere Øvelse 2 (dyr) par LAV INDDELING AF DISSE ORD Hund Pattedyr Krybdyr Menneske Chow chow Kæledyr Øvelse 3 (funktioner)

Læs mere

Grænseværdier og Kontinuitet

Grænseværdier og Kontinuitet Grænseværdier og Kontinuitet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller 1 Ligninger a. Fortæl om algebraisk og grafisk løsning af ligninger ud fra ét eller flere eksempler. b. Gør rede for algebraisk løsning af andengradsligningen ax 2 + bx + c = 0. 2 Ligninger a. Fortæl om

Læs mere

matx.dk Mikroøkonomi

matx.dk Mikroøkonomi matx.dk Mikroøkonomi Dennis Pipenbring 31. august 2011 Indold 1 Udbuds- og efterspørgselskurver 3 1.1 Lineær.............................. 4 1.2 Eksponentiel........................... 5 1.3 Potens..............................

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2014-2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab2 Oversigt over gennemførte undervisningsforløb

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

Løsning MatB - januar 2013

Løsning MatB - januar 2013 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 23. februar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj Juni 2015 Roskilde

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C PEJE (Pernille

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug 2014 - jun 2015 Institution Vid Gymnasier Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Klavs

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Hold Sommer 2016 Thy-Mors HF & VUC Hfe Matematik, niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 13/14 Institution Grenaa HTX Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Bo Paivinen Ullersted

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2016/17 Institution Viden Djurs - VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold HTX Valghold Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / Juni 2016 Institution Den Jyske Håndværkerskole Uddannelse Fag og niveau Lærer Hold EUX - Tømre Matematik

Læs mere

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005)

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005) Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (005) Indholdsfortegnelse Indholdsfortegnelse... Stamfunktion og integralregning...3 Numerisk integration...3 Areal under

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016 Institution HF & VUC Nordsjælland Helsingør-afdelingen Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere