qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

Størrelse: px
Starte visningen fra side:

Download "qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå"

Transkript

1 qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd Henrik S. Hansen, Sct. Knus Gymnasium fghjklæøzxcvbnmqwertyuiopåasdfghj Noterne et supplement til Vejen til matematik B. Enkelte steder vil sætninger mm. fra AB1 bogen blive inddraget, men dette vil blive angivet med henvisning direkte til AB1 bogen. klæøzxcvbnmqwertyuiopåasdfghjklæ Udgave.1 øzxcvbnmqwertyuiopåasdfghjklæøzx cvbnmqwertyuiopåasdfghjklæøzxcvb nmqwertyuiopåasdfghjklæøzxcvbnm qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå asdfghjklæøzxcvbnmqwertyuiopåasd fghjklæøzxcvbnmqwertyuiopåasdfghj klæøzxcvbnmrtyuiopasdfghjklæøzxcv

2 Indhold Polynomier... 1 Den rette linje (førstegradspolynomium)... 1 Sætning: En linjes ligning ud fra et punkt og hældning Skæring mellem linjer... Ligningssystemer... 4 Substitutionsmetoden... 4 Lige store koefficienters metode... 4 Parabel (Andengradspolynomier)... 6 Sætning: Løsning af andengradsligning Toppunkt i parablen... 9 Sætning: Toppunkt for et andengradspolynomium... 9 Sætning: Symmetri omkring toppunktet... 9 Sætning: Opløsning i faktorer Nulreglen Regel: Nulreglen Polynomier af højere grad Sætning: Antal rødder i et n te gradspolynomie Polynomiers division... 1

3 Polynomier Et polynomium er en funktion, hvis forskrift følger en bestemt "opskrift". I forskriften indgår en række parametre (tal som er "faste" eller konstante for det pågældende polynomium), som éntydigt beskriver polynomiet. Forskriften for et polynomium er en sum af såkaldte led, typisk sorteret efter faldende potens af x: ( ), og Som antydet består polynomiets forskrift af summen af n led, som alle består af et tal ganget med x opløftet til en heltallig potens bemærk at x 1 = x og x 0 = 1 medfører, at de to sidste led kan skrives lidt enklere end de øvrige i rækken. Tallene a n, a n 1, a n osv., til og med a 1 kaldes for koefficienter, mens a 0 omtales som konstantleddet. Så længe koefficienten til højestegrads-leddet (dvs. det led hvori x er opløftet til den højeste potens, i dette tilfælde a n ) er forskellig fra 0, kalder man polynomiet for et n'te-grads polynomium de andre koefficienter og konstantleddet kan være alle mulige reelle tal. Den rette linje (førstegradspolynomium) Definition Et førstegradspolynomium f er en funktion af formen ( ) (konstanter) og hvor. ( ). I noterne om sammenhænge kiggede vi på en ret linje punkter., hvor a og b c er koefficienter, som kunne bestemmes udfra to Sætning: En linjes ligning ud fra et punkt og hældning. En ret linje, der har hældningen a og går gennem et punkt ( ( )) har ligningen ( ) ( ) ( ) eller ( ) når punktet er ( ) Bevis: (video) Vi ved der gælder at ( ) ( ) når to punkter er kendt. Lad nu a være kendt og ( ( )) være et tilfældigt punkt på linjen ( ), og kald det ( ( )). Lad endvidere ( ( )) være det kendte punkt og kald det ( ( )) i stedet. Nu har vi ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Hermed bevist 1

4 Eksempelvis: En linje g går gennem punktet ( ) og har en hældning på 5. Bestem linjens ligning ( ) ( ) ( ) ( ) Lav øvelse 1.3 side 10, opgave 1 side 44, opgave side 44 og opgave 3 side 44 Skæring mellem linjer Placerer vi to rette linjer (som ikke er lodrette) i et almindeligt koordinatsystem, så vil de altid gøre én af følgende tre ting 1. Hvis hældningskoefficienterne er ens, men skæring med anden aksen forskellig, så er linjerne parallelle. (graf 1). Hvis hældningskoefficienterne er ens og skæring med anden aksen er ens, så er linjerne sammenfaldende (de er også parallelle). (graf ) 3. Hvis hældningskoefficienterne er forskellige, så er linjerne ikke parallelle, og der vil (uanset skæring med anden aksen) være et skæringspunkt mellem linjerne. (graf 3) y g(x)=cx+d f(x)=ax+b x y 10 f(x)=ax+b 8 6 g(x)=cx+d 4 x f(x)=ax+b y 10 g(x)=cx+d x Lav opgave 10 side 44 og opgave 9 side 44 Vi tager i det efterfølgende udgangspunkt i situation 3, altså at der er ét skæringspunkt. y f(x) For at bestemme skæringspunktet, så skal vi først have en forståelse for, at der i skæringspunktet gælder, at de to funktioner har samme værdi altså at ( ) ( ). Vi kan se på grafen til højre at der i skæringspunktet mellem de to linjer må gælde at funktionsværdierne er lige store. (video) x0 f(x0) = g(x0) x g(x)

5 I praksis kan vi gøre det på følgende måde 1. For at bestemme x-værdien til punktet løses ( ) ( ) Dette giver os nu vores første koordinat til punktet.. For at bestemme y-værdien til punktet indsættes den fundne første koordinat i en af de til forskrifter og resultatet af dette er vores anden koordinat. I Nspire kan det se således ud. Vi kan selvfølgelig også anskue det grafisk, og her benytte vores CAS-værktøj til at finde skæringspunktet direkte. (skæringspunktet kommer først efter vi har angivet nedre og øvre grænse for skæringspunktet, vi skal altså fortælle Nspire i hvilket interval at punktet er). Vi indtaster de to funktioner, og vælger at undersøge grafer. Så vælges skæringspunkt. Herefter skal vi angive den nedre og den øvre grænse for intervallet hvor i skæringspunktet er. Det er altid en god ide at benytte først den analytiske fremgangsmetode og derefter underbygge facit ved en grafisk fremstilling. Lav øvelse. side 13, opgave 5 side 44 og opgave 6 side 44 3

6 Ligningssystemer Det er forholdsvis nemt at håndtere skæringspunkter mellem to pæne lineære sammenhænge som i ovenstående, men hvad nu hvis den lineære sammenhæng ser således ud: Linjen n er givet Linjen m er givet ved Hvad er skæringen mellem disse linjer/ligninger? Hertil kan vi benytte to metoder til at løse sådanne ligningssystemer. Substitutionsmetoden Isolér den ene ubekendte i den ene ligning. Indsæt resultatet i den anden ligning. Herved har man en ligning med én ubekendt som derfor kan løses med sædvanlige metoder. Indsæt det fundne resultat i den første ligning og bestem den anden ubekendte. I vores eksempel kunne det se således ud: Linjen n er givet (1) Linjen m er givet ved () Nu fås anden koordinaten til punktet ved at indsætte () i (1): ( ) (3) Nu bestemmes første koordinaten til punktet ved at indsætte (3) i (): ( ) Samlet fås skæringen til (-3,-5) Lav øvelse.3 side 16, opgave 11 side 45 og opgave 14 side 45 Lige store koefficienters metode Forlæng den ene ligning (og evt. også den anden) med en passende faktor, så koefficienten til enten x eller y er ens i de to ligninger. Addér eller subtrahér herefter ligningerne. Herved har man en ligning med én ubekendt som derfor kan løses med sædvanlige metoder. Indsæt det fundne resultat i den første ligning og bestem den anden ubekendte. I vores eksempel kunne det se således ud: Linjen n er givet (1) Denne (1) folænges med -3: () Linjen m er givet ved (3) Denne (3) forlænges med : (4) 4

7 Nu trækkes (4) fra () Nu bestemmes hvilken x værdi der opfylder udtrykket Løsningen er Nu indsættes denne løsning i (1) eller (3) og derefter bestemmes y Dette giver ( ) Samlet fås skæringen til (-3,-5) Lav øvelse.4 side 17, opgave 1 side 45 og opgave 15 side 45 Som afrunding på ligningssystemer kan der nævnes, at der frit kan vælges om der benyttes substitution eller lige store koefficienter. I TI Nspire kan ligningssystemerne løses således ( { }) Vi kan også isolere y i begge ligninger og løse det grafisk som vist under skæringspunkter. Lav opgave 13 side 45 5

8 Parabel (Andengradspolynomier) Definition Et andengradspolynomium f er en funktion af formen ( ) koefficienter (konstanter) og hvor. ( )., hvor a, b og c er Grafen for et andengradspolynomium kaldes en parabel. Konstanten c angiver parablens skæring med y-aksen. Hvis vender grenene opad (glad) Hvis vender grenene nedad (sur) Jo større a bliver jo mere spids bliver grafen. Se side 18 i B1 bogen for eksempel. Bestem koefficienterne i opgave 17 side 45 og angiv om graferne vender opad eller nedad og hvor grafen skære andenaksen. I forbindelse med ligningsløsning kan det være praktisk at kende til løsning af andengradsligning. Generelt kan en andengradsligning skrives på formen hvor. Løsningerne til denne ligning er de eventuelle x- værdier, som indsat i andengradspolynomiet giver 0. Grafisk finder vi funktionens skæring med førsteaksen. f(x) g(x) h(x) y x Sætning: Løsning af andengradsligning. Løsning af andengradsligningen hvor. Diskriminanten udregnes Hvis Hvis Ingen løsning én løsning Hvis to løsninger 6

9 Bevis: (video) Her ganges 4a på fordi det er smart Her lægges til på begge sider ( ) Nu tager vi udgangspunkt i at. Da vi ikke kan tage kvadratroden af negative tal, når vi befinder os i de reelle tal, eller da der ikke findes noget reelt tal, som ganget med sig selv giver et negativt resultat, så er der ingen løsning. Nu tager vi udgangspunkt i Så har vi at: Nu tager vi udgangspunkt i Hermed bevist Disse løsninger kaldes også for rødder eller nulpunkter. Definition Ved en rod eller et nulpunkt for en funktion forstås en x-værdi for et skæringspunkt mellem grafen og x-aksen. 7

10 Eksempelvis: Løs Først bestemmes diskriminanten ( ) ( ) Der er altså to løsninger som er givet ved ( ) ( ) ( ) ( ) Løsningerne til ligningen er altså fundet til. Grafisk kan vi se løsningen til højre I Nspire kan det løses ved kommandoen ( ) Grafisk kan vi gøre det ved at undersøge grafen for nulpunkter og angive nedre og øvre grænse for hvert punkt. Lav i AB1: øvelse 10.1 side 45, opgave 9 side 59 og opgave 30 side 60 8

11 Toppunkt i parablen Grafen for et andengradspolynomium kaldes for en parabel, og har den klassiske facon som tidligere vist. Der er intet hårdt knæk på kurven. Definition: Lad f være et andengradspolynomium. Punktet ( ) kaldes parablens toppunkt. Andenkoordinaten k er bestemt ved, at ( ) kun har én løsning (se graf). Denne løsning kaldes h, og er førstekoordinat til y f(x) = x^-4x x y = -4-4 (h,k) = (,4) -6-8 Sætning: Toppunkt for et andengradspolynomium Toppunktet for et andengradspolynomium ( ), hvor. hvor Bevis: (video) ( ) er polynomiets diskriminant Lad os først opskrive toppunktets koordinat som ( ). Så vil der jf. definitionen gælde at ( ) Definitionen angiver, at der kun er en løsning, altså er Dermed får vi ( ) Nu har vi bevist andenkoordinaten til toppunktet er ( ) ( ) Da definitionen giver at der kun er én løsning, så må løsningen være jf. sætning ( ) ( ) Hermed bevist Når vi senere kender til differentialeregning, kan beviset gøres lettere /anderledes. Lav øvelse 3.8 side 4 og opgave 17 side 45 9

12 Sætning: Symmetri omkring toppunktet Grafen for andengradspolynomiet f er symmetrisk omkring den lodrette linje, hvor, dvs. den lodrette linie gennem toppunktet. Bevis: (video) Hvis sætningen passer, så må funktionsværdien til toppunktets førstekoordinat give den samme værdi. f(x) y Vi skal altså blot vise at ( ) ( ) (h,k) 4 ( ) ( ) ( ) ( ) t t h-t x = h h+t - x ( ) ( ) Hermed bevist Lav øvelse øvelse 3.8 side 4 og kontroller med 3 selvvalgte t værdier at sætningen er sand 9

13 Sætning: Opløsning i faktorer Et andengradspolynomie hvor og med rødderne kan omskrives således ( )( ) Hvis. Polynomiet siges at have en dobbeltrod. Bevis: (video) Vi antager at generelle løsning er. Vi ved da ifølge sætningen om løsning af en andengradsligning har, at den. Dette giver os to rødder. Vi skal så blot vise at ( )( ) ( )( ) ( ) ( ) ( ) ( ( ) ( ) ) ( ( ) ) ( ( ) ( ) ) ( ( ) ) ( ) Hermed bevist Lav opgave 9 side 46, opgave 8 side 46, opgave 6 side 46 og opgave 7 side 46 Nulreglen I kobling til ovenstående, så vil en andengradsligning kunne omskrives til formen ( )( ) hvor rødderne er indsat i de to faktorer. Hvis den ene faktor giver nul, så vil andengradspolynomiet give nul (det samme som at sige at andengradspolynomiet har en rod/rødder ). Mere generelt gælder der at Regel: Nulreglen Et produkt er nul, hvis og kun hvis en af faktorerne er nul. Dette er i god tråd med den måde hvorpå et andengradspolynomium kan omskrives iforhold til sine nulpunkter. Her vil der gælde at ( )( ) når rødderne indsættes enkeltvis. Lav øvelse 3. side 31, opgave 33 side 47 og opgave 34 side 47 10

14 Polynomier af højere grad Sætning: Antal rødder i et n te gradspolynomie Et polynomium af n te grad, har maksimum n reelle antal rødder. Et polynomium af ulige n te grad har minimum én rod. Bevis Beviset springes over her, men anskueliggøres ved nedenstående graf. På grafen gælder der at: f(x) er et førstegradspolynomium g(x) er et andengradspolynomium h(x) er et tredjegradspolynomium i(x) er et fjerdegradspolynomium Det ses at polynomier af lige grad har de deres yderste grene pegende samme vej (op eller ned) Det ses også at polynomier af ulige grad har deres yderste grene pegende hver sin vej (en op og en ned) g(x) f(x) y -10 i(x) h(x) x Et lommebevis kunne være: Vi lader et polynomium p(x) have graden n. Hvis p(x) samtidig har f.eks. n+1 rødder, vil det kunne skrives som et produkt af n+1 parenteser af formen (x - r). Hvis parenteserne derefter ganges ud, vil det nødvendigvis give et led indeholdende en faktor x n+1, som ville gøre p(x) til et (n+1) tegradspolynomium - dette er ikke muligt, da vi allerede har defineret p(x) som værende et n tegradspolynomium. q.e.d. 11

15 Polynomiers division Hvis et polynomium opløses i faktorer kan dette være en metode til at bestemme eventuelle rødder i polynomiet. Det kan gøres i TII, men også manuelt. Ved har vi løsningsformler, men ved begynder det at knibe. (video) Der gælder, at såfremt et tal a er rod i polynomiet kan dette opløses i faktorer, hvor ( ) vil være en af faktorerne jf. sætningen om løsning af en andengradsligning. I praksis starter man med at gætte en rod. Øvrige faktorer kan bestemmes ved polynomiers division, som følgende eksempel viser: Givet følgende 3.gradspolynomium: f(x) x 3 4x 10x 1 Ved indsættelse af x = 1 fås f(1) = 0, altså er 1 rod i polynomiet. (Vi har gættet en rod) For at opløse f(x) i faktorer foretages følgende division: ( x x x x x x 10 x 1 ) 10 x x 1x 1 1 x 1 : ( x 1) x x 1 Lidt forklaring: Vi starter med at spørge os selv, hvad skal x (fra x-1) ganges med for at få. Dette er her. Dette skrives i resultatet. Nu ganges divisoren med det fundne Dette giver. Nu trækkes ens potenser fra hinanden. Så startes der forfra. 0 Denne division giver 0 til rest så divisionen er gået op, så heraf fås: f(x) x 3 4x 10x 1 (x 1)(x x 1) Ligningen f(x) = 0 løses da ved anvendelse af nulreglen: x 1 0 eller x x 1 0 x 1 eller x eller x 3. Polynomiet f(x) har altså rødderne 1, og 3, og kan skrives som ( ) ( )( )( ), her er er sætning 3.15 også inddraget. Giver divisionen en rest, så vil være det sidste led i resultatet. x 7x Eks. vil f ( x) x. Prøv at eftervise det. x 6 x 6 1

16 Lav opgave 35 uden brug af TII. 13

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Polynomier et introforløb til TII

Polynomier et introforløb til TII Polynomier et introforløb til TII Formål At introducere polynomier af grad 0, 1, 2 samt højere, herunder grafer og rødder At behandle andengradspolynomiet og dets graf, parablen, med fokus på bl.a. toppunkt,

Læs mere

Tilsvarende har vbi i kapitel 3 set, at grafen for tredjegradspolynomiet

Tilsvarende har vbi i kapitel 3 set, at grafen for tredjegradspolynomiet Projekt 3 Fjerdegradspolynomiets symmetri Indledning: Symmetri for polynomier I kapitel har vi set at grafen for et andengradspolynomiet altid er symmetrisk omkring den lodrette akse x a p x a x x c ()

Læs mere

Projekt 3.1 Fjerdegradspolynomiets symmetri

Projekt 3.1 Fjerdegradspolynomiets symmetri Projekt 3.1 Fjerdegradspolynomiets symmetri I kapitel 3 har vi set at grafen for et andengradspolynomiet p x a x x c () altid er symmetrisk omkring den lodrette akse x. a Tilsvarende er grafen for tredjegradspolynomiet

Læs mere

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

gudmandsen.net 1 Parablen C-niveau y = ax 2 bx c eksempelvis: y = 2x 2 2x 4

gudmandsen.net 1 Parablen C-niveau y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere

Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. IX Funktioner Side 1

Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. IX Funktioner Side 1 Side 1 Funktion Opgaverne med svar starter på side 2, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står fra side 3 med et s foran nummeret. 1001 Figuren viser grafen

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Andengradspolynomier

Andengradspolynomier Andengradspolynomier Teori og opgaver (hf tilvalg) Forskydning af grafer...... 2 Andengradspolynomiets graf (parablen)..... 5 Andengradsligninger. 10 Andengradsuligheder 13 Nyttige formler, beviser og

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Træningsopgaver 1 Indhold Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Ligninger Opgave L0) Opgave L1) Opgave L2) a) 2x 5 5x 7 b) 3x 7 3x 11 c) 3 (2x 3) 2( x 1) d) En funktion

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj, 2015 Institution VID Gymnasier, Handelsgymnasium Rønde Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Oversigt over undervisningen i matematik 2y 07/08

Oversigt over undervisningen i matematik 2y 07/08 Oversigt over undervisningen i matematik 2y 07/08 side Der undervises efter: AB Nielsen & Fogh: Vejen til Matematik AB ( Forlaget HAX) B2 Nielsen & Fogh: Vejen til Matematik B2 ( Forlaget HAX) EKS Knud

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion 1 Indledning Dette afsnit omhandler første delprøve, den uden hjælpemidler. Dette afsnit bygger på vejledningen til lærerplanen og lærerplanen for matematik b-niveau, samt eksamensopgaverne fra 2014-2012,

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitutionernes fest 53 Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitution en masse Vi vil i denne artikel vise, hvorledes man kan løse den generelle tredjegradsligning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Løsninger til eksamensopgaver på B-niveau 2014

Løsninger til eksamensopgaver på B-niveau 2014 Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

Matema10k. Matematik for hhx C-niveau. af Rasmus Axelsen

Matema10k. Matematik for hhx C-niveau. af Rasmus Axelsen Matema10k Matema10k Matematik for hhx C-niveau af Rasmus Axelsen Matema10k. Matematik for hhx C-niveau 1. udgave, 1. oplag, 2013 Forfatteren og Bogforlaget Frydenlund ISBN 978-87-7118-253-8 Redaktion:

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB GUX Matematik B-Niveau Fredag den 29. maj 2015 Kl. 9.00-13.00 Prøveform b GUX151 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Jeg foretager her en kort indføring af polynomier over såvel de reelle som

Jeg foretager her en kort indføring af polynomier over såvel de reelle som Polynomier, rødder og division Sebastian Ørsted 20. november 2016 Jeg foretager her en kort indføring af polynomier over såvel de reelle som de komplekse tal, hvor fokus er på at opbygge værktøjer til

Læs mere

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5 Lineære funktioner Indhold Definition:... Hældningskoefficient... 3 Begndelsesværdi... 3 Formler... 4 Om E-opgaver a... 5 Definition: En lineær funktion er en funktion, hvor grafen er lineær. Dvs. grafen

Læs mere

Mundtlige spørgsmål til 2v + 2b. mat B, sommer Nakskov Gymnasium & Hf.

Mundtlige spørgsmål til 2v + 2b. mat B, sommer Nakskov Gymnasium & Hf. Mundtlige spørgsmål til 2v + 2b. mat B, sommer 2010. Nakskov Gymnasium & Hf. Eksaminator: Ulla Juul Franck Der er 20 spørgsmål i alt, og bilag til spørgsmål 14 og 15. 1. Andengradspolynomier og parabler.

Læs mere

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul Kort om Anengraspolynomier 11 (1) Karsten Juul Dette häfte ineholer pensum i anengraspolynomier for gymnasiet og hf Inhol 1. Definition Anengraspolynomium... 1. Eksempel Hvilke tal er a, b og c lig?...

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

MATEMATIK A-NIVEAU. Terminsprøve 2010. Kl. 09.00 14.00. STX0310-MAA-net

MATEMATIK A-NIVEAU. Terminsprøve 2010. Kl. 09.00 14.00. STX0310-MAA-net NETADGANGSFORSØGET STUDENTEREKSAMEN I MATEMATIK TERMINSPRØVE MAJ 2007 2010 MATEMATIK A-NIVEAU Terminsprøve 2010 Kl. 09.00 14.00 STX0310-MAA-net Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010 Institution Handelsskolen Sjælland Syd, Campus Vordingborg Uddannelse Fag og niveau Lærer(e)

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Grafregnerkravet på hf matematik tilvalg

Grafregnerkravet på hf matematik tilvalg Grafregnerkravet på hf matematik tilvalg Dette dokument er en sammenskrivning af uddrag af følgende skrifter: Undervisningsvejledning nr. 21 for matematik i HF (september 1995); findes på adressen: http://us.uvm.dk/gymnasie/almen/vejledninger/undervishf/hfvej21.htm;

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau HHX Matematik C Lærer(e) LSP ( Liselotte Strange-Pedersen

Læs mere

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54 Slide 1/54 Indhold 1 2 3 4 5 Slide 2/54 Indhold 1 2 3 4 5 Slide 3/54 1) Hvad er et aksiom? Slide 4/54 1) Hvad er et aksiom? 2) Hvorfor har vi brug for aksiomer? The Monty Hall Problem Slide 4/54 1) Hvad

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C PEJE (Pernille

Læs mere

2. Funktioner af to variable

2. Funktioner af to variable . Funktioner af to variable Opgave 1 Grafisk udformning af de to funktioner,, Opgave f (, y) = z = 5 y N(0) = z = 0 0 = 5 y + y = 5 C = ( ; y) = (0;0) r = 5 Dette medfører som vist en cirkel, med centrum

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik C Kenneth Berg k710hhxa1 Oversigt over gennemførte undervisningsforløb

Læs mere

Når eleverne skal opdage betydningen af koefficienterne i udtrykket:

Når eleverne skal opdage betydningen af koefficienterne i udtrykket: Den rette linje og parablen GeoGebra er tænkt som et dynamisk geometriprogram, som både kan anvendes til euklidisk og analytisk geometri Eksempel Tegn linjen med ligningen: Indtast ligningen i Input-feltet.

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014 Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx141-MATn/A-22052014 Torsdag den 22. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden Brug af TI-83 Løsning af andengradsligninger med TI-83 Indtast formlerne for d, og rødderne og gem dem i formellagrene u,v eller w. Gem værdierne for a, b og c i lagrene A, B og C Nedenstående display

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

Opgaver med hjælp Funktioner 2 - med Geogebra

Opgaver med hjælp Funktioner 2 - med Geogebra Opgaver med hjælp Funktioner 2 - med Geogebra Nulpunkter, monotoniforhold og ekstrema Formålet med denne note er at tegne os frem til nulpunkter, monotoniforhold og ekstrema for en funktion ved hjælp af

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Læringsmål på 3 niveauer: Eleverne arbejder med at opstille og løse 2.gradsligninger (ax 2 +bx+c=0).

Læringsmål på 3 niveauer: Eleverne arbejder med at opstille og løse 2.gradsligninger (ax 2 +bx+c=0). Planlægningsmodel UVD Forløb med løsning af en 2. gradsligning 9 klasse i 5-6 lektioner Fælles mål /kompetencemål: Tal og algebra Eleverne kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser

Læs mere

Matematik på 9. og 10. klassetrin

Matematik på 9. og 10. klassetrin Matematik på 9. og 10. klassetrin Hayati Balo, AAMS, Forår 2013 Baseret på 9. klasse og 10. klasse udvidet kursus (Sigma), 1. udg. 8. oplæg 1986 og 1. udg. 6. oplæg 1986, af Henry Schultz, Johan Jacobsen,

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2011 HTX

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Ann Risvang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 08/09 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Sanne Schyum

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3 eks. Intro til differentialregning side 1 Opvarmningsopgaver 10. november 2012 12:58 Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3 Gang parentesen ud: Forkort brøken (x

Læs mere