Eksamentræning i mekanik, 10020/22/24, 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Eksamentræning i mekanik, 10020/22/24, 2011"

Transkript

1 Eamentræning i meani, 1//4, 11 Opgave 1 En lod ende af ted fra en pændt fjeder ørt urer loden lang et vandret underlag der er glat Ved B drejer underlaget opad, og på det rå tye er der frition Kloden, om an betragte om en partiel, har farten 15 m/ ved punt B, og der er ie noget energitab i forbindele med retningiftet i punt B ølgende data er givet: Mae af lod 5 g jederontant: 3 N/m Kineti fritionoefficient på det rå tye: 3 Vinlen på det rå tye: 4 a) Hvor meget er fjederen preet ammen inden den yder loden af ted? b) Hvor langt ommer loden op ad råplanet (punt C)? c) Hvad må der ræve af den tatie fritionoefficient på det rå tye for at loden ie rider ned af det rå tye igen Hvi dette rav ie an opfylde, hvor tor bliver accelerationen for loden, når den rider nedad igen?

2 Opgave En motor driver et vinghjul rundt om vit på tegningen nedenfor til ventre or at unne måle hvor hurtigt vinghjulet drejer rundt, er der ovenpå vinghjulet anbragt et måleapparat Tegningen herunder vier måleapparatet mere præcit Måleapparatet betår af en ugle, der an foryde lang en inne Kuglen holde fat af en fjeder, der i den anden ende idder fat på en tang, der er anbragt lige i omdrejningaen for vinghjulet Jo hurtigere hjulet drejer rundt, jo længere ud lynge uglen, og jo længere al fjederen træe for at holde raftbalance med uglen ølgende data er givet: Kuglen mae: 3 g jederen lappe længde: 1 m jederen tivhedontant: 144 N/m a) Hvad er fjederen forlængele, når vinghjulet vinelhatighed er 4 rad/? Af ierhedmæige årager ræve det, at motoren er i tand til at breme vinghjulet ned fra en vinelhatighed på 4 rad/ til rad/ i løbet af 5 eunder ølgende data er givet for vinghjulet: Svinghjulet mae: 1 g Svinghjulet radiu: 4 m b) Hvilet raftmoment al motoren unne levere for at opfylde ravet til at unne breme vinghjulet ned på den rævede tid?

3 Opgave 3 To identie ugler bevæger ig ned ad to identie råplaner, dog med den forel, at der på råplanet til ventre ie er nogen frition I råplanet til højre er der tiltræelig med frition til at uglen ruller Kuglerne anbringe i punt A, holde fat og lippe å a) Vi at når uglerne lodrette højde er formindet med H, er forholdet mellem v 5 dere lineære hatigheder v 7 1 Opgave 4 En ugle med mae m 7 g ligger i hvile på jorden En ugletøder amler uglen op og tøder den Kuglen lander i den vandrette aftand L m fra det punt hvor uglen lippe Puntet hvor uglen lippe ligger i højden h m over o jorden Når uglen lippe danner den hatighed en vinel på 43 med vandret a) Betem farten af uglen i det øjebli den lippe b) Hvor tort et arbejde har ugletøderen udført på uglen?

4 Opgave 5 Ved at ubbe med ontant raft til en hældende blyant, an man få blyanten til at accelerere retlinet lang bordet, uden at blyanten vælter Blyanten an opfatte om en tynd, homogen tang med maen M og længden L Der ubbe med en ontant, vandret raft nedert på blyanten Bordet an antage at være glat a) Tegn et raftdiagram for blyanten Betem normalraften på blyanten, accelerationen af blyanten amt blyanten vinel med vandret Opgave 6 Et hjul betår af to ringe med radierne r og R (de to ringe er fatgjort til hinanden med tynde metalrør, men da die ie har nogen betydning for inertimomentet eller maen af hjulet, er de ie vit i figuren) Hver ring har maen M Hjulet drive fremad ved at toppuntet af den indre ring påvire af en vandret raft, hvorefter hjulet ruller på jorden R r a) Tegn et raftdiagram for hjulet b) Betem hjulet vinelacceleration c) Hvad al der gælde om den tatie fritionoefficient for at den berevne bevægele er mulig?

5 Opgave 7 Et tranportbånd tranporterer aer med ontant fart v Efter et vandret tye ommer aerne ud på et halvcirelformet tye Den tatie fritionoefficient mellem aer og tranportbånd er Kaerne mae er m a) Tegn et raftdiagram (free-body diagram) for aen, når den befinder ig på cirelbuen og tadig bevæger ig med farten v Betem udtry for normalraften og fritionraften om funtion af vinlen (e figuren) og farten v, i den nævnte ituation b) Vi, at den vinel, ved hvilen aerne begynder at glide i forhold til 1 v tranportbåndet tilfredtiller ligningen co in, hvor R gr betegner radiu af halvcirlen og g tørrelen af tyngdeaccelerationen Opgave 8 Til afprøvning af emner følomhed overfor ammentød benytte optillingen iteret i figuren til højre Det emne, der al underøge bliver placeret på et bord (i figuren en ae med mae m ) Kaen udætte for et tød med en hammer (det grå objet i figuren) Hammeren betår af en lang, tynd tang med længde L og mae M, der er at ammen med et tyndt hammerhoved, der har bredde d og ligelede mae M Hammeren er ophængt i puntet O og an rotere fritionfrit omring en vandret ae, der er vinelret på papiret plan or at tete emnet hæve hammeren å den tynde tang ligger vandret, og den lippe herefter fra hvile m M O d L M a) Vi, at inertimomentet af hammeren med henyn til rotationaen er 4 1 I M L d 3 1 Inertimomentet af hammeren, I, an herefter antage at være en endt tørrele, der i det følgende al benytte ved angivele af var Hammeren lippe fra en ituation hvor tangen holde vandret, og rammer herefter aen i et elati tød b) Betem hammeren vinelhatighed, umiddelbart før den rammer aen c) Optil en eller flere ligninger, hvoraf hammeren vinelhatighed 3, umiddelbart efter den har ramt aen, an betemme, udtryt ved endte tørreler Der al ie udlede en formel for 3

6 Opgave 1 løning a) Der er ingen frition på det vandrette tye, å vi an benytte energibevarele Energibevarele: U A KA UB KB 1 1 m x mvb x vb 61 m b) Vi an benytte en energibetragtning på tyet fra B til C Lad l være træningen loden bevæger ig opad råplanet X-ae opad råplanet, y-ae vinelret herpå N1(y): n mg co Energibetragtning: y U K W U K B B frition C C 1 mvb nl mgl in 1 1 mvb vb mv B mg col mgl in l 131 m mg in co g in co n=m g co(θ) m g in(θ) n µ S m g co(θ) c) Et raftdiagram for ituationen er vit i figuren herover, den tatie frition er maimal N1(x): n mg in N1(y): n mg co x y mg co mg in tan 839 I raftdiagrammet ovenfor an ertatte med N(x): ma n mg in N1(y): n mg co x x y co in 46 m/ B a g hvi loden glider nedad igen

7 Opgave løning a) Radial ae med nulpunt i centrum for cirelbevægelen N(rad): ma x rad v Kinemati: arad R x x rugle R m x r ugle x m x x rugle x m m x rugle b) Kinemati: IMS(CM): x 55 m m m x rugle x 75 m m t 1 I MR 64 Nm med x 1 m med x 1 m t 8 rad/ Opgave 3 løning a) Da der un er onervative ræfter involveret benytter vi energibevarele Den potentielle energi ætte til nul i uglerne lutpoition Ren tranlation: Energibevarele: U1 K1 U K 1 mgh mv v gh Tranlation og rotation Energibevarele: U1 K1 U K 1 1 mgh mr mv Kinemati: v r orholdet mellem luthatighederne er: 1 v 7 gh v gh 5 mgh mv mv mv v gh

8 Opgave 4 løning a) or en ateparabel har vi for et råt at der tarter i origo, at g Kateparabel: y tan x x v co Vi indætter de endte værdier for nedlagpuntet, hvi oordinater er L, h g Kateparabel: h tan L L v co 1/ gl ind farten: v 133 m/ co tanlh b) Vi benytter arbejdætningen; un ugletøderen og tyngderaften udfører arbejde 1 Arbejdætn: K mv W W ugletøder tyngderaft 1 1 Wugletøder mv Wtyngderaft mv mgh 77 J Opgave 5 løning a) Kraftdiagrammet er vit her til højre Vi opriver N i vandret for blyanten, N lodret og impulmomentætningen mht maemidtpuntet n Kendte: m, L, Uendte: an,, N( ): ma N1( ): n mg L L IMS(CM): n co in n mg a m mg tan y mg

9 Opgave 6 løning a) Kraftdiagrammet er vit til højre b) Uendte: ax,, f, n Vi opriver N i vandret og lodret retning, impulmomentætningen mht maemidtpuntet amt den inematie ammenhæng mellem tranlation og rotation N( ): Max f N( ): Ma n Mg IMS(CM): Kinemati: y M r R r fr ax R r R M r 3R c) Vi må ræve at uligheden f f R r Mg n er opfyldt Vi betemmer de indgående tørreler n 3 MR( r R) r R rr R R r f Max MR M r 3R r 3R r 3R Det e, at fritionraften er poitiv, dv f peger i den tegnede retning N( ) giver n Mg Uligheden for tati frition er f n Indættele af udtryene for den tatie frition og normalraften giver: R r Mg r 3R

10 Opgave 7 løning a) Vi opriver N for radial og tangentiel bevægele, og huer at farten er ontant, hvorfor atan N(rad): v marad m mg co n R N(tan): matan mg in f v n mg co m R f mg in b) rition: f n Indæt udtryene for normalraften og fritionraft i uligheden for den tatie frition, og benyt lighedtegn for maimal frition: v N(rad): mg in mg co m R v 1 divider med m og omriv: co in gr f n mg Opgave 8 løning a) Inertimomentet beregne ved hjælp af parallelaeteoremet: I I I 1 ML 1 Md ML M 4 L 1 d tang hammerhoved 3 tang 1 hammerhoved 3 1 1: betegner ituationen hvor tangen holde vandret : betegner lige før ammentødet 3: betegner lige efter ammentødet b) 1 ytemet er hammer; vi benytter energibevarele; U på bordet U K U K 1 1 L 1 MgL Mg I 3 MgL / I c) 3 ytemet er hammer og ae; vi benytter energibevarele amt impulmomentbevarele U K U K I mv I L L3 I mv3l I3

Eksamentræning i mekanik, 10020/22/24, 2012

Eksamentræning i mekanik, 10020/22/24, 2012 Eamentræning i meani, 1//4, 1 Opgae 1 En lod ende af ted fra en pændt fjeder. Ført urer loden lang et andret underlag, der er glat. Ved B drejer underlaget opad, og på det rå tye fra B til C er der frition.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmars Tenise Universitet Sriftlig prøve, tirsdag den 15. december, 009, l. 9:00-13:00 Kursus navn: Fysi 1 Kursus nr. 100 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning": Besvarelsen bedømmes

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmark Teknike Univeritet Side 1 af 7 Skriftlig prøve, tordag den 6 maj, 1, kl 9:-1: Kuru navn: Fyik 1 Kuru nr 1 Tilladte hjælpemidler: Alle hjælpemidler er tilladt "Vægtning": Bevarelen bedømme om en

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 Skriftlig prøve, torsdag den 8 maj, 009, kl 9:00-13:00 Kursus navn: Fysik 1 Kursus nr 100 Tilladte hjælpemidler: Alle hjælpemidler er tilladt "Vægtning": Besvarelsen

Læs mere

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008

Faldmaskine. Esben Bork Hansen Amanda Larssen Martin Sven Qvistgaard Christensen. 23. november 2008 Faldmakine Eben Bork Hanen Amanda Laren Martin Sven Qvitgaard Chritenen 23. november 2008 Indhold Formål 3 2 Optilling 3 2. Materialer............................... 3 2.2 Optilling...............................

Læs mere

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast Det krå kat Data Forøg 1: = 38 V 0 = 4, 94 K vidde = 2, 058 H = 0, 406 t = 0, 53 Forøg 2 (60 ): = 60 V 0 = 4, 48 K vidde = 1, 724 H = 0, 788 t = 0, 77 Fyik del Udførel af forøg Kat på 38 : Forøgoptilling:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, torsdag den 24. maj, 2007, kl. 9:00-13:00 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning":

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side af 7 Skriftlig prøve, tirsdag den 6. december, 008, kl. 9:00-3:00 Kursus navn: ysik Kursus nr. 00 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning": Besvarelsen

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Jordskælvs svingninger i bygninger.

Jordskælvs svingninger i bygninger. Jordsælvssvingninger side 1 Institut for Matemati, DTU: Gymnasieopgave Jordsælvs svingninger i bygninger. Jordsælv. Figur 1. Forlaring på de tetonise bevægelser. Jordsælv udløses når de tetonise plader

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 26. juni 2009

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 26. juni 2009 KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fyik 4 (Elektromagnetime) 26. juni 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner. Der må bevare med

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 8 sider Skriftlig prøve, den 24. maj 2005 Kursus navn: Fysik 1 Kursus nr.: 10022 Tilladte hjælpemidler: Alle hjælpemidler tilladt. "Vægtning": Besvarelsen vægtes

Læs mere

Signalbehandling og matematik 2 (Tidsdiskrete signaler og systemer)

Signalbehandling og matematik 2 (Tidsdiskrete signaler og systemer) Signalbehandling og matemati Tiddirete ignaler og ytemer Seion 0. Deign of digital IIR filter Ved Samuel Schmidt chmidt@ht.aau.d htt://www.ht.aau.d/~chmidt/mat/ IIR og FIR filtre IIR FIR Sytemer med uendelige

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q1-1 To mekanikopgaver (10 points) Læs venligst den generelle vejledning i en anden konvolut inden du går i gang. Del A. Den skjulte metalskive (3.5 points) Vi betragter et sammensat legeme bestående af

Læs mere

Sammenhængen mellem strækning og tid Farten angiver den tilbagelagte strækning i et tidsrum. Farten kan bestemmes ved brug af formlen:

Sammenhængen mellem strækning og tid Farten angiver den tilbagelagte strækning i et tidsrum. Farten kan bestemmes ved brug af formlen: Oplag 8: FORMLHÅNDTRING Sammenhængen mellem trækning og tid Farten angiver den tilbagelagte trækning i et tidrum. Farten kan betemme ved brug af formlen: fart = trækning tid Anvender vi i tedet ymboler,

Læs mere

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006 Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Vejledende eksamensopgaver 16. januar 2008 Tilladte hjælpemidler: Medbragt litteratur, noter

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00 Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Mandag d. 11. juni 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Løsning, Beton opgave 5.1

Løsning, Beton opgave 5.1 Løning, Beton opgave 5. Dækelementerne er 0, m tykke og pænder over 5 m. Der anvende ølgende materialeparamee: Beton: 8, MPa α 8 rmering: 85 MPa. E d,5 0 5 MPa E k 0 5 MPa tanden ra armeringen tyngdepunkt

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 10 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 27. maj 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

a ortogonal med b <=> ( ) 4p q

a ortogonal med b <=> ( ) 4p q STX Mat A.maj 9 KP NB: i opg -5, som er uden hjælpemidler, benytter jeg her un Mathcad som srivemasine og bruger derfor onsevent det logise (fede) lighedstegn, da det ie har regnemæssige følger. Opg. a

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 8. august 2013 kl. 9 00 13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 13 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Løsning, Bygningskonstruktion og Arkitektur, opgave 7

Løsning, Bygningskonstruktion og Arkitektur, opgave 7 Løning, Bygningkonuktion og rkitektur, opgave 7 Dækelementerne er 0, m tykke og pænder over m. Der anvende ølgende regningmæige materialeparamee: Beton: 8, MPa α 8 rmering: 8 MPa. E d, 0 MPa E k 0 MPa

Læs mere

PIA JENSEN, 3.X MANDAG DEN 20. NOVEMBER 2006 ØVELSERNE ER UDFØRT MANDAG DEN 23. OKTOBER 2006 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST

PIA JENSEN, 3.X MANDAG DEN 20. NOVEMBER 2006 ØVELSERNE ER UDFØRT MANDAG DEN 23. OKTOBER 2006 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST PIA JENSEN, 3.X MANDAG DEN. NOVEMBER 6 ØVELSERNE ER UDFØRT MANDAG DEN 3. OKTOBER 6 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST Side 1 af FYSIKRAPPORT SKRÅT KAST FORORD OG INDHOLDSFORTEGNELSE

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 31. maj 2016 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 11. august 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 4 sider Skriftlig prøve, den 29. maj 2006 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle "Vægtning": Eksamenssættet vurderes samlet. Alle svar

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 23. januar 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi Fag: Termodynamik - Statitik fyik - Termodynamike relationer - Fri energi - Entropi 1 Indholdfortegnele... 2 Forord... 3 Formelle definitioner... 3 Et ytem... 3 Et lukket ytem... 3 Et ioleret ytem... 3

Læs mere

En varmluftsballon. s Kurvelængden fra ballonens toppunkt til punktet P. til symmetriaksen.

En varmluftsballon. s Kurvelængden fra ballonens toppunkt til punktet P. til symmetriaksen. P og En varmluftballon Denne artikel er en lettere revideret udgave af en artikel, om Dan Frederiken og Erik Vetergaard fra Haderlev Katedralkole havde i LMFK-bladet nr. 2, februar 1997. Enhver, om er

Læs mere

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse Hjemmeopgave Makroøkonomi,. årprøve, foråret 2005 Vejledende bevarele Opgave. Korrekt. Arbejdtyrken er en beholdning- (tock) variabel, idet man på et givet tidpunkt (fx. jan) kan tælle, hvor mange der

Læs mere

1. Lineær kinematik. 1.1 Kinematiske størrelser

1. Lineær kinematik. 1.1 Kinematiske størrelser . Lineær kinematik Kinematik anaye og dermed kinematik udgør en tor og vigtig de af biomekanikken. I en tørre biomekanik anaye vi kinematikken normat være det ted man tarter, da begrebet omhander ammenhængen

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau 2014. 23. maj 2014

Løsninger til eksamensopgaver på fysik A-niveau 2014. 23. maj 2014 Løningerne er hentet på www.zyankipil.dk Løninger til ekaenopgaver på fyik A-niveau 014. aj 014 Opgave 1: Poelukker a) Den oatte effekt i en leder er givet ved P U I, og Oh 1. lov giver aenhængen elle

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 16. april 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere

Afleveringsopgaver i fysik i 08-y2 til

Afleveringsopgaver i fysik i 08-y2 til Page 1 of 6 Afleveringopgaver i fyik i 08-y2 til 04.01.11 Fra hæftet: pgaver i fyik A-Niveau pgave A11 ide 33 A11a I kernekortet e det, at Si-31 er beta-radioaktiv. Da ladningtal og aetal kal være bevaret,

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Skriftlig eksamen 25. januar 2008 Tillae hjælpemidler: Medbragt litteratur, noter og lommeregner

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 7. august 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Numerisk løsning af differentialligninger

Numerisk løsning af differentialligninger KU-LIFE; Matemati og modeller 009 Numeris løsning af differentialligninger Thomas Vils Pedersen 1 Numerise metoder Ved numeris analyse forstås tilnærmet, talmæssig løsning af problemer, som ie, eller un

Læs mere

UGESEDDEL 7 LØSNINGER. ) og ɛ > 0 N N : (1 + konvergerer ikke, thi følgen x 1 + = ( 1)k

UGESEDDEL 7 LØSNINGER. ) og ɛ > 0 N N : (1 + konvergerer ikke, thi følgen x 1 + = ( 1)k UGESEDDEL 7 LØSNINGER Opgave 7.2. Definition. En følge {x } in R n onvergerer mod puntet x, dersom der, for ethvert ɛ > 0, findes et N N sådan at x x < ɛ for alle N. Her definerer vi ) x x 2 = x ) x )

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

Newtons love - bevægelsesligninger - øvelser. John V Petersen

Newtons love - bevægelsesligninger - øvelser. John V Petersen Newtons love - bevægelsesligninger - øvelser John V Petersen Newtons love 2016 John V Petersen art-science-soul Indhold 1. Indledning og Newtons love... 4 2. Integration af Newtons 2. lov og bevægelsesligningerne...

Læs mere

Semesterprojekt 2007 - Svingningssystemer mekanisk/elektrisk analogi

Semesterprojekt 2007 - Svingningssystemer mekanisk/elektrisk analogi Semeterprojekt SDU - Det Teknik Fakultet Gruppe 6 DDF1 Vejleder: Henning Bremøe Hanen Projektperiode: 10. eptember 007-14. december 007 Semeterprojekt 007 - Svingningytemer mekanik/elektrik analogi Udarbejdet

Læs mere

Tryk. Tryk i væsker. Arkimedes lov

Tryk. Tryk i væsker. Arkimedes lov Tryk. Tryk i væsker. rkimedes lov 1/6 Tryk. Tryk i væsker. rkimedes lov Indhold 1. Definition af tryk...2 2. Tryk i væsker...3 3. Enheder for tryk...4 4. rkimedes lov...5 Ole Witt-Hansen 1975 (2015) Tryk.

Læs mere

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10 Bernoullis differentialligning v/ Bjørn Grøn Side af 0 Bernoullis differentialligning Den logistise differentialligning er et esempel på en ie-lineær differentialligning Den logistise differentialligning

Læs mere

Afdækning af nyankomne elevers sprog og erfaringer

Afdækning af nyankomne elevers sprog og erfaringer Hele vejen rundt om eleven prog og reourcer afdækning af nyankomne og øvrige toprogede elever kompetencer til brug i underviningen Afdækning af prog og erfaringer TRIN Afdækning af nyankomne elever prog

Læs mere

Nogle opgaver om fart og kraft

Nogle opgaver om fart og kraft &HQWHUIRU1DWXUIDJHQHV'LGDNWLN 'HWQDWXUYLGHQVNDEHOLJH)DNXOWHW $DUKXV8QLYHUVLWHW &HQWUHIRU6WXGLHVLQ6FLHQFH(GXFDWLRQ)DFXOW\RI6FLHQFH8QLYHUVLW\RI$DUKXV Nogle opgaver om fart og kraft Opgavesættet er oversat

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 9. juni 2011 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 9. juni 2011 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 9. juni 2011 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Opgave 1 (40%) Vi har et antal ngler, om vi vil have anbragt i et getr. Vi ved hvor ofte, der vil blive gt efter de forellige ngler, og ner at udnytte

Opgave 1 (40%) Vi har et antal ngler, om vi vil have anbragt i et getr. Vi ved hvor ofte, der vil blive gt efter de forellige ngler, og ner at udnytte Sriftlig Eamen Datatruturer og lgoritmer (DM02) Intitut for Matemati og Datalogi Odene Univeritet Mandag den 12. januar 1998, l. 9{13 lle dvanlige hjlpemidler (lrebger, notater, etc.) amt brug af lommeregner

Læs mere

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51 Skråplan Dan Elkvist Albrechtsen, Edin Ikanović, Joachi Mortensen Hold 4, gruppe n + 1, n {3}, uge 50-51 8. januar 2008 Figurer Sider ialt: 5 Indhold 1 Forål 3 2 Teori 3 3 Fregangsåde 4 4 Resultatbehandling

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

Bevægelse op ad skråplan med ultralydssonde.

Bevægelse op ad skråplan med ultralydssonde. Bevægelse op ad skråplan med ultralydssonde. Formål: a) At finde en formel for accelerationen i en bevægelse op ad et skråplan, og at prøve at eftervise denne formel, ud fra en lille vinkel og vægtskål

Læs mere

Geometrisk nivellement. Landmålingens fejlteori - Lektion 7 - Repetition - Fejlforplantning ved geometrisk nivellement. Modellen.

Geometrisk nivellement. Landmålingens fejlteori - Lektion 7 - Repetition - Fejlforplantning ved geometrisk nivellement. Modellen. Landmålingen fejlteori Lektion 7 Repetition Fejlforplantning ved geometrik nivellement h t f t f t f t 4 f 4 t n f n - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervining/lf Intitut for Matematike Fag

Læs mere

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Cirkelbevægelsen og klotoiden

Institut for Matematik, DTU: Gymnasieopgave. Cirkelbevægelsen og klotoiden Cirkelbeægelen og klotoiden ide Intitut for Matematik, DTU: Gymnaieopgae Cirkelbeægelen og klotoiden Teori: Erik Øhlenchlæger, Fyik for Diplomingeniører, Gyldendal 996, ide -4. Indledning Figur. Kørel

Læs mere

Matematisk modellering og numeriske metoder

Matematisk modellering og numeriske metoder Matematik modellering og numerike metoder Morten Grud Ramuen 4. oktober 26 Laplace-tranformationer. Definitionen af Laplace-tranformationen Definition. (Laplace-tranformation). Lad f være en funktion defineret

Læs mere

6 ARMEREDE BJÆLKER 1

6 ARMEREDE BJÆLKER 1 BETONELEMENTER, SEP. 009 6 ARMEREDE BJÆLKER 6 ARMEREDE BJÆLKER 1 6.1 Brudgrænetiltande 3 6.1.1 Bøjning 3 6.1.1.1 Tværnitanalye generel metode 3 6.1.1. Kanttøjning 5 6.1.1.3 Bøjning uden trykarmering 5

Læs mere

Impulsbevarelse ved stød

Impulsbevarelse ved stød Iulsbevarelse ved stød Indhold. Centralt stød.... Elastisk stød... 3. Uelastisk stød... 4. Iulsbevarelse ved stød... 5. Centralt elastisk stød...3 6. Centralt fuldstændig uelastisk stød...5 7. Ekseler

Læs mere

Faldmaskine. , får vi da sammenhængen mellem registreringen af hullerne : t = 2 r 6 v

Faldmaskine. , får vi da sammenhængen mellem registreringen af hullerne : t = 2 r 6 v Faldmaskine Rapport udarbejdet af: Morten Medici, Jonatan Selsing, Filip Bojanowski Formål: Formålet med denne øvelse er opnå en vis indsigt i, hvordan den kinetiske energi i et roterende legeme virker

Læs mere

Fysik A. Studentereksamen

Fysik A. Studentereksamen Fysik A Studentereksamen 2stx101-FYS/A-28052010 Fredag den 28. maj 2010 kl. 9.00-14.00 Opgavesættet består af 7 opgaver med tilsammen 15 spørgsmål. Svarene på de stillede spørgsmål indgår med samme vægt

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 23. august 2012 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 23. august 2012 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 23. august 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

En besvarelse af Mat-A Fys-A Projekt nr. 1

En besvarelse af Mat-A Fys-A Projekt nr. 1 En besvarelse af Mat-A Fys-A Projekt nr. 1 Ole G. Mouritsen og Hans Jørgen Munkholm 21. oktober 2003 1 Hængebroen Et stykke af kablet af den omtalte form har i vort koordinatsystem endepunkter med koordinater

Læs mere

Opgave Firkantet E F. Opgave Trekantet

Opgave Firkantet E F. Opgave Trekantet 1 Opgave Firantet E F Lad være et vilårligt punt på liniestyet mellem og, og tegn halvcirler til samme side over diametrene, og. Lad være det punt på halvcirlen, der har vinelret på, og lad EF være fællestangenten

Læs mere

A. Dimensionering af fugearmering

A. Dimensionering af fugearmering Dienionering af fugearering A. Dienionering af fugearering I dette afnit dienionere fugeareringen i alingen elle dækeleenterne over den langgående bærende indervæg, jf. Figur A.. ontagebolt Arering Dækeleent

Læs mere

Qi-Gong. (ikke presse) ind under kroppen, som vist til

Qi-Gong. (ikke presse) ind under kroppen, som vist til Qi-Gong Du skal - som det første du sætter på plads hver gang du starter træningen - sørge for at stå med vægten ligelig fordelt på foden, nøjagtig som i de indrammede områder vist på tegningen her til

Læs mere

Brugerundersøgelse 2013 Plejebolig

Brugerundersøgelse 2013 Plejebolig Brugerunderøgele 2013 Plejebolig Brugerunderøgelen er udarbejdet af Epinion AS og Afdeling for Data og Analye, Sundhed- og Omorgforvaltningen, København Kommune. Layout: KK deign Foridefoto: Henrik Friberg

Læs mere

Det skrå kast - med luftmodstand. Erik Vestergaard

Det skrå kast - med luftmodstand. Erik Vestergaard Det srå ast - ed luftodstand Eri Vestergaard Eri Vestergaard www.ateatisider.d Eri Vestergaard, Haderslev 9. Eri Vestergaard www.ateatisider.d 3. Indledning Denne note an danne udgangspunt for et 3g-projet

Læs mere

GETO Gigaport Volumenbagdøre

GETO Gigaport Volumenbagdøre L Til kae- eller preenningopbygninger Certificeret i henhold til DIN EN 122 Priguntig GETO Gigaport Volumenbagdøre TITGEMEYER Tf108DK(1007)2 Let læeadgang Optimal åbning på grund af dobbeltleddede hængler.

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 2. juni 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 2. juni 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 2. juni 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau 2008-2012. Maj 2008

Løsninger til eksamensopgaver på fysik A-niveau 2008-2012. Maj 2008 Løningerne er hentet på www.zyankipil.dk Quizpillene ASHRAM, MIR og SPORTSNØRD Løninger til ekaenopgaver på fyik A-niveau 008-01 Maj 008 Opgave 1: Geoterik anlæg a) Ved at uere de to effekter til en alet

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar - 1 Vankelige vilkår for generationkifte med nye regler - Afkaffele af formuekattekuren amt vækkele af ikkerheden trod bindende var Af advokat (L) Bodil Chritianen og advokat (H), cand. merc. (R) Tommy

Læs mere

Øvelse i Ziegler-Nichols med PID-regulator

Øvelse i Ziegler-Nichols med PID-regulator Øvele i Ziegler-Nichol med PID-regulator Formål Forøgoptilling 1-1. orden ytem Procerør Formålet med øvelen er at finde brugbare parametre til regulering af et 1. og 2. orden ytem ved hjælp af Ziegler-Nichol

Læs mere

cos( x) dt = 3.1 Vi udregner integralet: sin( x) 2 + cos( x) sin( x) 2 t cos( x)

cos( x) dt = 3.1 Vi udregner integralet: sin( x) 2 + cos( x) sin( x) 2 t cos( x) 6x-MA 7 (4..8) opg () Cec om den angivne værdi er orret b) ( sin( x) + cos( x) ) 3. Vi udregner integralet: sin( x) + cos( x) + sin( x) + sin( x) [x] + ( ) cos( x) sin( ) t cos( x) cos( x) cos( x) + sin(

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen Program Statitik og Sandynlighedregning 2 Normalfordelingen venner og bekendte Helle Sørenen Uge 9, ondag Reultaterne fra denne uge kal bruge om arbejdhete i projekt 1. I formiddag: χ 2 -fordelingen, t-fordelingen,

Læs mere

Regulering af dynamiske systemer

Regulering af dynamiske systemer Regulering af dynamike ytemer p. / Regulering af dynamike ytemer Seminar 2 Tom Pederen, Jan Dimon Bendten Aalborg Univeritet Regulering af dynamike ytemer p. 2/ deign Sytem V For () R() E() D() U() 0 5

Læs mere

A. Afløbsinstallationer

A. Afløbsinstallationer A. Aføbintaationer I dette afnit redegøre for den vagte pacering af edningerne ti pidevand og regnvand, amt for dimenioneringen af die. Aføbytemet udforme om et eparatytem, dv. et ytem, hvor pidevandet

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau 2013. 27. maj 2013

Løsninger til eksamensopgaver på fysik A-niveau 2013. 27. maj 2013 Løninger til ekaenopgaver på fyik A-niveau 01 7. aj 01 Opgave 1: Springvand ed olceller a) Det er elektronerne, der tranporterer energien, og da pændingfaldet er defineret o E pot U, dv. tabet i elektrik

Læs mere

Tennis eksempel på opgaveløsning i MatematiKan.nb

Tennis eksempel på opgaveløsning i MatematiKan.nb Opgave 1 1.1 Caroline alder, da hun blev profeionel: 2005-1990 15 18-11 7 Caroline var 15 år og 7 dage gammel. 1.2-1.6 1.5 Det er ud til, at den ekponentielle tendenlinje følger punkterne bedt. 1.6 R-kvadreret

Læs mere

INERTIMOMENT for stive legemer

INERTIMOMENT for stive legemer Projekt: INERTIMOMENT for stive legemer Formålet med projektet er at træne integralregning og samtidig se en ikke-triviel anvendelse i fysik. 0. Definition af inertimoment Inertimomentet angives med bogstavet

Læs mere

BRUGERUNDERSØGELSE 2015 PLEJEBOLIG LANGGADEHUS

BRUGERUNDERSØGELSE 2015 PLEJEBOLIG LANGGADEHUS BRUGERUNDERSØGELSE PLEJEBOLIG LANGGADEHUS Sundhed- og Omorgforvaltningen Brugerunderøgele : Plejebolig 1 Brugerunderøgele Plejebolig Brugerunderøgelen er udarbejdet af Epinion P/S og Afdeling for Data

Læs mere

Modelbanestyring med PC Indholdsfortegnelse

Modelbanestyring med PC Indholdsfortegnelse Modelbanestyring med PC Indholdsfortegnelse Modelbanestyring med PC... 1 Anvend Paint til tegning af skinnesymboler... 1 Start af Paint... 1 Ny tegning i Paint... 1 Tegn et sporskifte... 2 Valg af farve...

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

Konstruktion af SEGMENTBUE I MURVÆRK.

Konstruktion af SEGMENTBUE I MURVÆRK. Konstruktion af SEGMENTBUE I MURVÆRK. Murerviden.dk - 1 - RE Forudsætninger. Segmentbuens endepunkt i overkant sten Stander Overkant segmentbue i lejefuge Vederlag Pilhøjde Det er nødvendigt at kende visse

Læs mere

Statistisk mekanik 1 Side 1 af 11 Introduktion. Indledning

Statistisk mekanik 1 Side 1 af 11 Introduktion. Indledning Statistis meani Side af Indledning Statisti er et uundværligt matematis redsab til besrivelsen af et system med uoversueligt mange bestanddele. F.es. er der så mange luftmoleyler i blot mm 3 luft, at det

Læs mere

Sammenligning af proteiners 3-dimensionelle strukturer

Sammenligning af proteiners 3-dimensionelle strukturer Sammenligning af proteiners 3-dimensionelle struturer Køreplan 01005 Matemati 1 - FORÅR 2006 1 Formål Formålet med opgaven er at lave en metode til sammenligning af proteiners 3-dimensionale struturer

Læs mere

Mastektomi (Øvelsesprogram)

Mastektomi (Øvelsesprogram) Mastektomi (Øvelsesprogram) Information Efter operationen og senere under en eventuel strålebehandling kan vævet blive uelastisk og stramt. For at modvirke dette, er det vigtigt at du arbejder med forskydelighedsbehandling.

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Betinget hæftelse. Et regneeksempel 01-04-2014

Betinget hæftelse. Et regneeksempel 01-04-2014 Btingt hæftls Et rgnsmpl 01-04-2014 1 Indldning Notatt sr lidt nærmr på sammnhængn mllm btingt hæftls og dt forvntd afast for ationærr og rditorr i n (finansil) virsomhd, hvor gnapitalandln r lav. Notatt

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Færdighedstræning i vaginal fødsel af UK

Færdighedstræning i vaginal fødsel af UK Færdighedstræning i vaginal fødsel af UK Jette Led Sørensen, RH & Lone Krebs, Holbæk Vaginal fødsel af UK Betingelser opfyldt og pt.samtykke UL CTG Syntocinondrop klar Vurder løbende om betingelser for

Læs mere

STIGA COLLECTOR 30" B BRUGSANVISNING 8211-1227-02

STIGA COLLECTOR 30 B BRUGSANVISNING 8211-1227-02 STIGA COLLECTOR 30" B BRUGSANVISNING 8211-1227-02 S SVENSKA 1. 2. 3. 4. SVENSKA S 5. 6. 7. 8. 9. 10. 11. 12. S SVENSKA 13. 14. 15. 16. 17. 18. 19. DANSK DK SIKKERHEDSFORSKRIFTER 1. Lad aldrig nogen bruge

Læs mere

BRUGERUNDERSØGELSE 2014 PLEJEBOLIG. Dr. Ingrids Hjem. Sundheds- og Omsorgsforvaltningen - Brugerundersøgelse 2014: Plejebolig 1

BRUGERUNDERSØGELSE 2014 PLEJEBOLIG. Dr. Ingrids Hjem. Sundheds- og Omsorgsforvaltningen - Brugerundersøgelse 2014: Plejebolig 1 BRUGERUNDERSØGELSE 2014 PLEJEBOLIG Sundhed- og Omorgforvaltningen - Brugerunderøgele 2014: Plejebolig 1 Brugerunderøgele 2014 Plejebolig Brugerunderøgelen er udarbejdet af Epinion P/S og Afdeling for Data

Læs mere