MASKELIGNINGER - KIRCHHOFFS LOVE (DC) Eksempel

Størrelse: px
Starte visningen fra side:

Download "MASKELIGNINGER - KIRCHHOFFS LOVE (DC) Eksempel"

Transkript

1 MASKELIGNINGER - KIRCHHOFFS LOVE (DC) Eksempel

2 Ved beregning af kredsløb med flere masker og flere elektromotoriske kræfter (E), er det ofte ret besværligt at løse for ubekendte uden hjælpeværktøjer. Side 1 Kirchhoffs love

3 Side 2 Kirchhoffs love Ved beregning af kredsløb med flere masker og flere elektromotoriske kræfter (E), er det ofte ret besværligt at løse for ubekendte uden hjælpeværktøjer. Et sådant hjælpeværktøj er opstilling af maskeligninger ved brug af: Kirchhoffs love 1. Lov: Summen af strømmene der flyder til et knudepunkt, er lig med summen af strømmene der flyder fra et knudepunkt. 2. Lov: I en lukket elektrisk kreds er summen af de elektromotoriske kræfter regnet med fortegn, lig med summen af spændingsfaldene regnet med fortegn. E = I R

4 Eksempel. Lad os beregne strømmene der løber i kredsløbet her til højre, givet følgende oplysninger: Side 3

5 Eksempel. Lad os beregne strømmene der løber i kredsløbet her til højre, givet følgende oplysninger: Side 4

6 Kirchhoffs 1. lov Når kontakterne sluttes, kan det være vanskeligt med sikkerhed at sige hvilken vej strømmene kommer til at løbe. Side 5

7 Kirchhoffs 1. lov Når kontakterne sluttes, kan det være vanskeligt med sikkerhed at sige hvilken vej strømmene kommer til at løbe. Heldigvis er det helt uden betydning hvilken retning der vælges på de (her) 3 forskellige strømme, men det er vigtigt at der vælges en retning på dem! Side 6

8 Kirchhoffs 1. lov Når kontakterne sluttes, kan det være vanskeligt med sikkerhed at sige hvilken vej strømmene kommer til at løbe. Heldigvis er det helt uden betydning hvilken retning Der vælges på de (her) 3 forskellige strømme, men det er vigtigt at der vælges en retning på dem! Lad os slutte kredsen og vælge strømretninger: I + I 1 = I 2 Side 7

9 Kirchhoffs 1. lov Når kontakterne sluttes, kan det være vanskeligt med sikkerhed at sige hvilken vej strømmene kommer til at løbe. Heldigvis er det helt uden betydning hvilken retning Der vælges på de (her) 3 forskellige strømme, men det er vigtigt at der vælges en retning på dem! Lad os slutte kredsen og vælge strømretninger: I + I 1 = I 2 Hvis dette valg skulle vise sig at være forkert, kan det ses ved at den forkerte valgte strømretning vil få et negativt fortegn i den kommende beregning. Side 8

10 Når vi skal beregne strømmene i kredsløbet, opdeler vi kredsløbet i to separate kredsløb (masker), som til løses som to ligninger med to ubekendte. Side 9

11 Når vi skal beregne strømmene i kredsløbet, opdeler vi kredsløbet i to separate kredsløb (masker), som løses som to ligninger med to ubekendte. Maske 1 Vi opstiller en ligning for dette kredsløb efter følgende regler: Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 10

12 Maske 1 E G E B = Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 11

13 Maske 1 E G E B = R G I R B I 1 Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 12

14 Maske 1 E G E B = R G I R B I = 1 I 2 I 1 Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 13

15 Maske 1 E G E B = R G I R B I = 1 I 2 I 1 I = 2I Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 14

16 Maske 1 I = 2I Maske 2 E B = Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 15

17 Maske 1 I = 2I Maske 2 E B = R B I 1 + R I 2 Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 16

18 Maske 1 I = 2I Maske 2 E B = R B I 1 + R I 2 24 = 2 I I 2 Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 17

19 Maske 1 I = 2I Maske 2 E B = R B I 1 + R I 2 24 = 2 I I 2 Som det ses af de to maskeligninger, har vi stadig 3 ubekendte, og det dur ikke. Derfor erstatter vi nu I 2 i maske 2 med et udtryk fra det tidligere fundne i Kirchhoffs 1. lov: I + I 1 = I 2 Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 18

20 Maske 1 I = 2I Maske 2 E B = R B I 1 + R I 2 24 = 2 I I 2 24 = 2I I + I 1 Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 19

21 Maske 1 I = 2I Maske 2 E B = R B I 1 + R I 2 24 = 2 I I 2 24 = 2I I + I 1 8I = 10I Alle elektromotoriske kræfter på den ene side af lighedstegnet. De som virker i samme retning som valgte regneretning opstilles som positive, og de som virker imod som negative. Alle spændingsfald placeres på den anden side af lighedstegnet. De spændingsfald som forårsages af strømme der er valgt til at løbe i samme retning som regneretningen, opstilles som positive, og de spændingsfald som forårsages af strømme der er valgt til at løbe i modsat retning, opstilles som negative. Side 20

22 Maske 1 Maske 2 I = 2I I = 10I Herfra løses opgaven blot som 2 ligninger med 2 ubekendte: Side 21

23 Maske 1 Maske 2 I = 2I I = 10I Lige store koefficienters metode: I = 2I I = 10I I = 16I I = 10I I = 10I I 1 = 0 I 1 = 0 A Side 22

24 Maske 1 Maske 2 I = 2I I = 10I substitutionsmetoden: I = 2I I = 10I I = 10I I = 10I I 1 = 0 I 1 = 0 A Side 23

25 Maske 1 Maske 2 I = 2I I = 10I I 1 = 0 A Herefter indsættes der blot i maskeligningerne, for at finde de sidste 2 ubekendte strømme: Side 24

26 Maske 1 Maske 2 I = 2I I = 10I I 1 = 0 A Herefter indsættes der blot i maskeligningerne, for at finde de sidste 2 ubekendte strømme: I = 2I I = I = 3 A Side 25

27 Maske 1 Maske 2 I = 2I I = 10I I 1 = 0 A Herefter indsættes der blot i maskeligningerne, for at finde de sidste 2 ubekendte strømme: I = 2I I = I = 3 A For at finde I 2 skal den originale maskeligning for maske 2 bruges (slide 17): 24 = 2I 1 + 8I 2 8I 2 = I 2 = 3 A Side 26

28 Svaret på spørgsmålet er altså: I 1 = 0 A I = 3 A I 2 = 3 A Hvad kan vi så i øvrigt konkludere om kredsen med vores resultater? Side 27

29 Svaret på spørgsmålet er altså: I 1 = 0 A I = 3 A I 2 = 3 A Hvad kan vi så i øvrigt konkludere om kredsen med vores resultater? Da fortegn på beregnede strømme er positive, er valgte strømretning korrekt! Side 28

30 Svaret på spørgsmålet er altså: I 1 = 0 A I = 3 A I 2 = 3 A Hvad kan vi så i øvrigt konkludere om kredsen med vores resultater? Da fortegn på beregnede strømme er positive, er valgte strømretning korrekt! Jævnstrømsgeneratorens klemspænding må her være: U G = E G R G I U G = U G = 24 V Side 29

31 Svaret på spørgsmålet er altså: I 1 = 0 A I = 3 A I 2 = 3 A Hvad kan vi så i øvrigt konkludere om kredsen med vores resultater? Da fortegn på beregnede strømme er positive, er valgte strømretning korrekt! Jævnstrømsgeneratorens klemspænding må her være: U G = E G R G I U G = U G = 24 V Spændingen over resistansen R må være: U R = R I 2 U R = 8 3 U R = 24 V Side 30

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber 1 Basisbegreber ellæren er de mest grundlæggende størrelser strøm, spænding og resistans Strøm er ladningsbevægelse, og som det fremgår af bogen, er strømmens retning modsat de bevægende elektroners retning

Læs mere

IMPEDANSBEGREBET - SPOLEN. Faseforskydning mellem I og U Eksempel: R, X og Z I og U P, Q og S. Diagrammer

IMPEDANSBEGREBET - SPOLEN. Faseforskydning mellem I og U Eksempel: R, X og Z I og U P, Q og S. Diagrammer AC IMPEDANSBEGREBET - SPOLEN Faseforskydning mellem I og U Eksempel: R, X og Z I og U P, Q og S Diagrammer Spolens faseforskydning: En spole består egentlig af en resistiv del (R) og en ideel reaktiv del

Læs mere

Fysik rapport. Elektricitet. Emil, Tim, Lasse og Kim

Fysik rapport. Elektricitet. Emil, Tim, Lasse og Kim Fysik rapport Elektricitet Emil, Tim, Lasse og Kim Indhold Fysikøvelse: Ohms lov... 2 Opgave 1... 2 Opgave 2... 2 Opgave 3... 2 Opgave 4... 3 Opgave 5... 3 Opgave 6... 3 Opgave 7... 4 Opgave 8... 4 Opgave

Læs mere

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning.

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning. E2 Elektrodynamik 1. Strømstyrke Det meste af vores moderne teknologi bygger på virkningerne af elektriske ladninger, som bevæger sig. Elektriske ladninger i bevægelse kalder vi elektrisk strøm. Når enderne

Læs mere

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm Elektromagnetisme 7 Side 1 af 1 Med dette emne overgås fra elektrostatikken, som beskriver stationære ladninger, til elektrodynamikken, som beskriver ladninger i bevægelse (elektriske strømme, magnetfelter,

Læs mere

Generelle kommentarer omkring løsning af fysikopgaver

Generelle kommentarer omkring løsning af fysikopgaver Generelle kommentarer omkring løsning af fysikopgaver Det skal tydeligt fremgå af besvarelsen hvilken tankegang, der ligger bag løsningen. Dvs. fyldestgørende og præcis forklaring, men samtidig så kort

Læs mere

Thevenin / Norton. 1,5k. Når man går rundt i en maske, vil summen af spændingsstigninger og spændingsfald være lig med 0.

Thevenin / Norton. 1,5k. Når man går rundt i en maske, vil summen af spændingsstigninger og spændingsfald være lig med 0. Maskeligninger: Givet følgende kredsløb: 22Vdc 1,5k 1Vdc Når man går rundt i en maske, vil summen af spændingsstigninger og spændingsfald være lig med. I maskerne er der sat en strøm på. Retningen er tilfældig

Læs mere

KONDENSATORER (DC) Princip og kapacitans Serie og parallel kobling Op- og afladning

KONDENSATORER (DC) Princip og kapacitans Serie og parallel kobling Op- og afladning KONDENSATORER (DC) Princip og kapacitans Serie og parallel kobling Op- og afladning Dagsorden: Opladningens principielle forløb En matematisk tilgang til opladning (og kort om afladning afslutningsvis)

Læs mere

3.3 overspringes. Kapitel 3

3.3 overspringes. Kapitel 3 M4ELT1 Lektion 2 3.3 overspringes Kapitel 3 3.1 Elektromotorisk kraft. Klemspænding Fysisk betydning af E og r i Tegn sted/potential-graf Vælg nulpunkt for potentialet Belastningsforsøg R varieres I måles

Læs mere

Indre modstand og energiindhold i et batteri

Indre modstand og energiindhold i et batteri Indre modstand og energiindhold i et batteri Side 1 af 10 Indre modstand og energiindhold i et batteri... 1 Formål... 3 Teori... 3 Ohms lov... 3 Forsøgsopstilling... 5 Batteriets indre modstand... 5 Afladning

Læs mere

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm Elektromagnetisme 7 Side 1 af 12 Med dette emne overgås fra elektrostatikken, som beskriver stationære ladninger, til elektrodynamikken, som beskriver ladninger i bevægelse (elektriske strømme, magnetfelter,

Læs mere

KREDSLØBSTEORI 10 FORELÆSNINGER OM ELEKTRISKEKREDSLØB

KREDSLØBSTEORI 10 FORELÆSNINGER OM ELEKTRISKEKREDSLØB EE Basis, foråret 2010 KREDSLØBSTEORI 10 FORELÆSNINGER OM ELEKTRISKEKREDSLØB Jan H. Mikkelsen EE- Basis, Kredsløbsteori, F10, KRT1 1 Emner for idag IntrodukEon El kurset Kredsløbsteori Formål og indhold

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Her er der en kort introduktion til forskellige teknikker efterfulgt af opgaver hvor man kan

Læs mere

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Indledning: I B-bogen har vi i studieretningskapitlet i B-bogen om matematik-fsik set på parallelkoblinger af resistanser

Læs mere

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4 El-Teknik A Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen Klasse 3.4 12-08-2011 Strømstyrke i kredsløbet. Til at måle strømstyrken vil jeg bruge Ohms lov. I kredsløbet kender vi resistansen og spændingen.

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

1 v out. v in. out 2 = R 2

1 v out. v in. out 2 = R 2 EE Basis 200 KRT3 - Løsningsforslag 2/9/0/JHM Opgave : Figur : Inverterende forstærker. Figur 2: Ikke-inverterende. Starter vi med den inverterende kobling så identificeres der et knudepunkt ved OPAMP

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Øvelses journal til ELA Lab øvelse 4: Superposition

Øvelses journal til ELA Lab øvelse 4: Superposition Øvelses journal til ELA Lab øvelse 4: Navn: Thomas Duerlund Jensen, Jacob Christiansen, Kristian Krøier Øvelsesdato: 8/10-2002 Side 1 af 5 Formål: Eksperimentelt at eftervise superpositionsprincippet og

Læs mere

AARHUS UNIVERSITET. Det naturvidenskabelige fakultet 3. kvarter forår OPGAVESTILLER: Allan H. Sørensen

AARHUS UNIVERSITET. Det naturvidenskabelige fakultet 3. kvarter forår OPGAVESTILLER: Allan H. Sørensen AARHUS UNIVERSITET Det naturvidenskabelige fakultet 3. kvarter forår 2006 FAG: Elektromagnetisme OPGAVESTILLER: Allan H. Sørensen Antal sider i opgavesættet (inkl. forsiden): 5 Eksamensdag: fredag dato:

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011 Matematik A Højere teknisk eksamen Forberedelsesmateriale htx112-mat/a-26082011 Fredag den 26. august 2011 Forord Forberedelsesmateriale til prøverne i matematik A Der er afsat 10 timer på 2 dage til

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005)

Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (2005) Integralregning med TI-Interactive! Stamfunktioner Integraler Arealer Jan Leffers (005) Indholdsfortegnelse Indholdsfortegnelse... Stamfunktion og integralregning...3 Numerisk integration...3 Areal under

Læs mere

Benjamin Franklin Prøv ikke at gentage forsøget! hvor er den passerede ladning i tiden, og enheden 1A =

Benjamin Franklin Prøv ikke at gentage forsøget! hvor er den passerede ladning i tiden, og enheden 1A = E3 Elektricitet 1. Grundlæggende Benjamin Franklin Prøv ikke at gentage forsøget! I E1 og E2 har vi set på ladning (som måles i Coulomb C), strømstyrke I (som måles i Ampere A), energien pr. ladning, også

Læs mere

Grundlæggende elektroteknik

Grundlæggende elektroteknik indføring i den fysik og matematik, der udgør den teoretiske basis for arbejdet med elektriske energiinstallationer. Målgruppen er primært studerende ved erhvervsakademierne og maskinmesterskolerne. Bogen

Læs mere

Elektronikkens grundbegreber 1

Elektronikkens grundbegreber 1 Elektronikkens grundbegreber 1 B/D certifikatkursus 2016 Efterår 2016 OZ7SKB EDR Skanderborg afdeling Lektions overblik 1. Det mest basale stof 2. Både B- og D-stof 3. VTS side 21-28 4. Det meste B-stof

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Udarbejdet af: RA/ SLI/KW/

Udarbejdet af: RA/ SLI/KW/ Side 1 af 7 1. Formål. Den studerende skal have en elektroteknisk viden inden for områderne kredsløbsteori og almen elektroteknik i et sådant omfang, at forudsætninger for at udføre afprøvning, fejlfinding

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Indholdsfortegnelse:

Indholdsfortegnelse: Side 1 af 7 Dato: 19-03-2003 Indholdsfortegnelse: Hvad er ESD?...2 Hvor er der problemer med ESD?...2 Hvordan kan man nedsætte ESD-problemer ved generel håndtering?...3 Hvorfor bruges sort skum/ledende

Læs mere

Ohms lov. Formål. Princip. Apparatur. Brug af multimetre. Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd.

Ohms lov. Formål. Princip. Apparatur. Brug af multimetre. Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd. Ohms lov Nummer 136050 Emne Ellære Version 2017-02-14 / HS Type Elevøvelse Foreslås til 7-8, (gymc) p. 1/5 Formål Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd. Princip Et stykke

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model

HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model Energiregnskab som matematisk model side 2 Løsning af kalorimeterligningen side 3 Artiklen her knytter sig til kapitel 3, Energi GYLDENDAL

Læs mere

Modellering af elektroniske komponenter

Modellering af elektroniske komponenter Modellering af elektroniske komponenter Formålet er at give studerende indblik i hvordan matematik som fag kan bruges i forbindelse med at modellere fysiske fænomener. Herunder anvendelse af Grafregner(TI-89)

Læs mere

M4EAU1. Introduktion Tirsdag d. 25. august 2015

M4EAU1. Introduktion Tirsdag d. 25. august 2015 M4EAU1 Introduktion Tirsdag d. 25. august 2015 Introduktion Præsentation af mig Præsentation af faget Historie Kursusbeskrivelse Skema Blackboard Kalender Fildeling Meddelelser Undervisningsmateriale Øvelser

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger, marts 2008, Kirsten Rosenkilde 1 Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Vurdering af antallet af løsninger

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Torben Laubst. Grundlæggende. Polyteknisk Forlag

Torben Laubst. Grundlæggende. Polyteknisk Forlag Torben Laubst Grundlæggende Polyteknisk Forlag Torben Laubst Grundlæggende Polyteknisk Forlag DIA- EP 1990 3. udgave INDHOLDSFORTEGNELSE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Indledning Transformeres principielle

Læs mere

8. Jævn- og vekselstrømsmotorer

8. Jævn- og vekselstrømsmotorer Grundlæggende elektroteknisk teori Side 43 8. Jævn- og vekselstrømsmotorer 8.1. Jævnstrømsmotorer 8.1.1. Motorprincippet og generatorprincippet I afsnit 5.2 blev motorprincippet gennemgået, men her repeteres

Læs mere

MINI SRP MAT-IT. Lavet af Adam Kjærum og Frederik Franklin klasse 2.4 på Rokilde Tekniske Gymnasium. Lavet på Rokilde Tekniske Gymnasium

MINI SRP MAT-IT. Lavet af Adam Kjærum og Frederik Franklin klasse 2.4 på Rokilde Tekniske Gymnasium. Lavet på Rokilde Tekniske Gymnasium MINI SRP MAT-IT Lavet af Adam Kjærum og Frederik Franklin klasse 2.4 på Rokilde Tekniske Gymnasium Lavet på Rokilde Tekniske Gymnasium Indhold Forord... 2 Indledning... 2 Model og differentielligning...

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

formler og ligninger trin 1 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 1 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 1 ISBN: 978-87-92488-08-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Løsning til aflevering uge 11

Løsning til aflevering uge 11 Løsning til aflevering uge 11 100011/nm Opg.1 Beregninger på Foucaults pendul. Først en skitse A B c l a b l d C l c l E h d D 0.m Vandrette udsving a m a) Længden af pendulet kan beregnes ved at isolere

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2012 Institution Københavns tekniske Gymnasium/Sukkertoppen Uddannelse Fag og niveau Lærer Hold Htx Fysik

Læs mere

Facit 12. Opgave 1. Dansk El-Forbund sikre din uddannelse R1 = 5 Ω R2 = 10 Ω R4 = 20 Ω ΣR = 50 Ω. a) Beregn U1 U2 U3 U4 U 300 I = = = 6A

Facit 12. Opgave 1. Dansk El-Forbund sikre din uddannelse R1 = 5 Ω R2 = 10 Ω R4 = 20 Ω ΣR = 50 Ω. a) Beregn U1 U2 U3 U4 U 300 I = = = 6A Facit 12 Opgave 1 R1 = 5 Ω R2 = 10 Ω R4 = 20 Ω ΣR = 50 Ω a) Beregn U1 U2 U3 U4 I = = = 6A R 50 U 1 = I x R 1 = 5 x 6 = 30V U 2 = I x R 2 = 6 x 10 = 60V U 4 = I x R 4 = 6 x 20 = 120V U 3 = U - U 1 + U 2

Læs mere

Du kan lægge det samme tal til eller trække det samme tal fra på begge sider af lighedstegnet.

Du kan lægge det samme tal til eller trække det samme tal fra på begge sider af lighedstegnet. Ligninger 10 10 m02-01.cdr Et ligningssystem kan sammenlignes med en skålvægt i ligevægt. Vægten af lodderne på den ene vægtskål skal være lig med vægten af lodderne på den anden vægtskål. + og Du kan

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Theory Danish (Denmark) Ikke-lineær dynamik i elektriske kredsløb (10 point)

Theory Danish (Denmark) Ikke-lineær dynamik i elektriske kredsløb (10 point) Q2-1 Ikke-lineær dynamik i elektriske kredsløb (10 point) Læs venligst de generelle instruktioner i den separate konvolut før du starter på opgaven. Introduktion Bi-stabile ikke-lineære halvlederkomponenter

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 27. juni 2008

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 27. juni 2008 KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 27. juni 2008 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner. Der må besvares

Læs mere

Elektriske netværk. Køreplan 01005 Matematik 1 - FORÅR 2005

Elektriske netværk. Køreplan 01005 Matematik 1 - FORÅR 2005 Elektriske netværk Køreplan 01005 Matematik 1 - FORÅR 2005 1 Indledning. Formålet med projektet er at anvende lineær algebra til at etablere det matematiske grundlag for elektriske netværk betstående af

Læs mere

Materialer: Strømforsyningen Ledninger. 2 fatninger med pære. 1 multimeter. Forsøg del 1: Serieforbindelsen. Serie forbindelse

Materialer: Strømforsyningen Ledninger. 2 fatninger med pære. 1 multimeter. Forsøg del 1: Serieforbindelsen. Serie forbindelse Formål: Vi skal undersøge de egenskaber de 2 former for elektriske forbindelser har specielt med hensyn til strømstyrken (Ampere) og spændingen (Volt). Forsøg del 1: Serieforbindelsen Materialer: Strømforsyningen

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Lektionsantal: Uddannelsesmål: Fredericia Maskinmesterskole Undervisningsplan Side 1 af 11. Underviser: EST/JBS. Efterår 2011

Lektionsantal: Uddannelsesmål: Fredericia Maskinmesterskole Undervisningsplan Side 1 af 11. Underviser: EST/JBS. Efterår 2011 Fredericia Maskinmesterskole Undervisningsplan Side 1 af 11 Lektionsantal: Modulet tilrettelægges med i alt 136 lektioner Uddannelsesmål: Den studerende skal have en elektroteknisk viden inden for områderne

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

Preben Holm - Copyright 2002

Preben Holm - Copyright 2002 9 > : > > Preben Holm - Copyright 2002! " $# %& Katode: minuspol Anode: pluspol ')(*+(,.-0/1*32546-728,,/1* Pilen over tegnet for spændingskilden på nedenstående tegning angiver at spændingen kan varieres.

Læs mere

Impedans. I = C du dt (1) og en spole med selvinduktionen L

Impedans. I = C du dt (1) og en spole med selvinduktionen L Impedans I et kredsløb, der består af andre netværkselementer end blot lække (modstande) og kilder vil der ikke i almindelighed være en simpel proportional, tidslig sammenhæng mellem strøm og spænding,

Læs mere

Kjaranstadir Vandkraftværk E-AFP 1, forår 2007

Kjaranstadir Vandkraftværk E-AFP 1, forår 2007 1. Kabler 1.1 Indledning I projektet er to ledere som der skal blive redegjort for valg af deres tværsnits areal. Det er trefase 400 V line fra turbine huset til sommer huset som flutter de 22 kw der blev

Læs mere

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 2 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 2 ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

brikkerne til regning & matematik formler og ligninger F+E+D preben bernitt

brikkerne til regning & matematik formler og ligninger F+E+D preben bernitt brikkerne til regning & matematik formler og ligninger F+E+D preben bernitt brikkerne til regning & matematik formler og ligninger, F+E+D ISBN: 978-87-92488-09-1 1. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere

Newtons love - bevægelsesligninger - øvelser. John V Petersen

Newtons love - bevægelsesligninger - øvelser. John V Petersen Newtons love - bevægelsesligninger - øvelser John V Petersen Newtons love 2016 John V Petersen art-science-soul Indhold 1. Indledning og Newtons love... 4 2. Integration af Newtons 2. lov og bevægelsesligningerne...

Læs mere

Øvelser til multimeter: 1. Indre modstand: 2. DC spændingsmåling. 3. DC strømmåling

Øvelser til multimeter: 1. Indre modstand: 2. DC spændingsmåling. 3. DC strømmåling Øvelser til multimeter: 1. Indre modstand: Find ud fra databladene for Unigor 4s, Davometer SV4, Unigor 1n og 3n, samt og Fluke 179 den indre modstand ved henholdsvis AC og DC måling af henholdsvis strøm

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version Rettevejledning, FP9, Prøven med hjælpemidler, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. Den udvidede rettevejledning

Læs mere

Bortset fra kendskabet til atomer, kræver forløbet ikke kendskab til andre specifikke faglige begreber, så det kan placeres tidligt i 7. klasse.

Bortset fra kendskabet til atomer, kræver forløbet ikke kendskab til andre specifikke faglige begreber, så det kan placeres tidligt i 7. klasse. Elektricitet Niveau: 7. klasse Varighed: 5 lektioner Præsentation: I forløbet Elektricitet arbejdes med grundlæggende begreber indenfor elektricitet herunder strømkilder, elektriske kredsløb, elektrisk

Læs mere

Om temperatur, energi, varmefylde, varmekapacitet og nyttevirkning

Om temperatur, energi, varmefylde, varmekapacitet og nyttevirkning Om temperatur, energi, varmefylde, varmekapacitet og nyttevirkning Temperaturskala Gennem næsten 400 år har man fastlagt temperaturskalaen ud fra isens smeltepunkt (=vands frysepunkt) og vands kogepunkt.

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold Campus Vejle HHX Matematik C Ejner Husum

Læs mere

O2 STYRING. Fra version 7 og version 10.033

O2 STYRING. Fra version 7 og version 10.033 O2 STYRING Fra version 7 og version 10.033 Indholds fortegnelse: Side 3 Advarsel om brug af produktet. Installation af lambda sonde. Side 4 Side 5 Side 6 Side 7 Side 8 Side 9 El diagram. Beskrivelse af

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Mattip om. Ligninger 1. Du skal lære: Kan ikke Kan næsten Kan. Hvad en ligning er. Hvordan du kan genkende en ligning

Mattip om. Ligninger 1. Du skal lære: Kan ikke Kan næsten Kan. Hvad en ligning er. Hvordan du kan genkende en ligning Mattip om Ligninger 1 Du skal lære: Hvad en ligning er Kan ikke Kan næsten Kan Hvordan du kan genkende en ligning Ligningsløsning ved gæt og kontrol Reducering og løsning af ligninger 2016 mattip.dk 1

Læs mere

KREDSLØBSTEORI 10 FORELÆSNINGER OM ELEKTRISKEKREDSLØB

KREDSLØBSTEORI 10 FORELÆSNINGER OM ELEKTRISKEKREDSLØB EE Basis, foråret 2009 KREDSLØBSTEORI 10 FORELÆSNINGER OM ELEKTRISKEKREDSLØB Jan H. Mikkelsen EE- Basis, Kredsløbsteori, F10, KRT2 1 Emner for idag Thevenin og Norton ækvivalenter Virkelige kilder SuperposiLon

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010-Juni 2011 Institution Teknisk Gymnasium Grenå Uddannelse Fag og niveau Lærer(e) Hold Htx Fysik

Læs mere

Velkommen til. EDR Frederikssund Afdelings Almen elektronik kursus. Joakim Soya OZ1DUG Formand. EDR Frederikssund afdeling Almen elektronik kursus

Velkommen til. EDR Frederikssund Afdelings Almen elektronik kursus. Joakim Soya OZ1DUG Formand. EDR Frederikssund afdeling Almen elektronik kursus Velkommen til EDR Frederikssund Afdelings Joakim Soya OZ1DUG Formand 2012-09-01 OZ1DUG 1 Kursus målsætning Praksisorienteret teoretisk gennemgang af elektronik Forberedelse til Certifikatprøve A som radioamatør

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj Juni 2014 Roskilde

Læs mere

El kredsløb. Hej med dig!

El kredsløb. Hej med dig! El kredsløb Hej med dig! Jeg er Thomas Tandstærk, og jeg ved en masse om teknik og natur. Jeg skal lære dig noget om at lave forsøg og undersøgelser. Når klassen er færdig får I et flot diplom! I dette

Læs mere

ELLÆRENS KERNE- BEGREBER (DC) Hvad er elektrisk: Ladning Strømstyrke Spændingsforskel Resistans Energi og effekt

ELLÆRENS KERNE- BEGREBER (DC) Hvad er elektrisk: Ladning Strømstyrke Spændingsforskel Resistans Energi og effekt ELLÆRENS KERNE- BEGREBER (DC) Hvad er elektrisk: Ladning Strømstyrke Spændingsforskel Resistans Energi og effekt Atomets partikler: Elektrisk ladning Lad os se på et fysisk stof som kobber: Side 1 Atomets

Læs mere

Teknologi & kommunikation

Teknologi & kommunikation Grundlæggende Side af NV Elektrotekniske grundbegreber Version.0 Spænding, strøm og modstand Elektricitet: dannet af det græske ord elektron, hvilket betyder rav, idet man tidligere iagttog gnidningselektricitet

Læs mere

4. Funktioner lineære & hyperbel

4. Funktioner lineære & hyperbel 4. 4.1 Tegn følgende lineære funktioner: a. y = 2 +1 b. y = 3 c. y = 3 d. y = ½ + 2 e. y = 2 + 350 f. y = -25 + 4200 g. y = 125-375 4.2 Tegn følgende lineære funktioner. Det er en stor fordel at isolere

Læs mere

AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet Augusteksamen OPGAVESTILLER: Allan H. Sørensen

AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet Augusteksamen OPGAVESTILLER: Allan H. Sørensen AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet Augusteksamen 2006 FAG: Elektromagnetisme OPGAVESTILLER: Allan H. Sørensen Antal sider i opgavesættet (inkl. forsiden): 6 Eksamensdag: fredag dato: 11.

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

DM13-1. Obligatoriske Opgave - Kredsløbs design

DM13-1. Obligatoriske Opgave - Kredsløbs design DM13-1. Obligatoriske Opgave - Kredsløbs design Jacob Christiansen moffe42@imada.sdu.dk Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense 1. Opgaven Opgaven består i at designe et kredsløb,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes: Maj-juni 2012 HTX Vibenhus - Københavns Tekniske Gymnasium

Læs mere

Matematik Grundforløbet

Matematik Grundforløbet Matematik Grundforløbet Mike Auerbach (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 2. udgave, 2015 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere