4. Funktioner lineære & hyperbel

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "4. Funktioner lineære & hyperbel"

Transkript

1 Tegn følgende lineære funktioner: a. y = 2 +1 b. y = 3 c. y = 3 d. y = ½ + 2 e. y = f. y = g. y = Tegn følgende lineære funktioner. Det er en stor fordel at isolere y på den ene side af lighedstegnet, inden du tegner funktionen. a. y + 4 = y = b. 2y = -4 8 y = c. ⅓ + y = 5 y = d. 2y + 10 = -5 y = e. 3y = 0 y = f y = -y + 4 y = 4.3 Find forskrifterne for funktionerne a-j

2 4.4 Bestem forskrifterne for graferne Tip: find to punkter langt fra hinanden Graf a Graf b Graf c

3 4.5 Fra virkelighed til funktion a. En taa tager et grundgebyr på 30 kr og derefter koster det 5 kr pr km. Opstil en funktion, der giver prisen på en taa-tur. Hvor langt kan man komme for 100 kr? b. Karl Åge vejer 159 kg. Hver uge taber han sig 3 kg. Opstil en funktion, som finder Karl Åges vægt. Hvad vejer han efter 7 uger? Hvornår vejer han 100 kg? Opgaver - funktioner c. Et telefonabonnement koster 59 kr pr måned og 0,37 kr pr minut taletid. Opstil en funktion, der beskriver den samlede pris pr måned afhængig af hvor meget der tales i telefonen. Hvad skal du betale, hvis du taler i telefon i 60 minutter? Hvis du skal betale 102 kr, hvor meget har du talt i telefon? d. Peter har lavet et limonadesalg. Han tager 3 kr pr glas. Udgifterne til limonadesalget udgør 142 kr. Lav en funktion, som giver Peters udbytte af limonadesalget. Hvor meget tjener Peter, hvis han sælger 41 glas? Hvor meget skal han sælge, hvis han skal tjene 100 kr? 4.6 Lav et forskrift a. En lineær funktion går igennem punkterne (0; 3) og (4; 11). Bestem en forskrift for funktionen. b. Grafen for en lineær funktion går igennem punkterne (3; 27) og (6; -12). Bestem en forskrift for funktionen. c. En taa tager 52 kr for en tur på 5 km, og 85 kr for en tur på 16 km. Prisen for en taatur kan beskrives med en lineær funktion. Bestem funktionen. d. Antallet af medlemmer i en tennisklub er steget fra 57 ved klubbens 3-års dag til 134 ved klubbens 10-års dag. Bestem en lineær funktion for udviklingen i klubben. Hvor mange medlemmer startede klubben med? 4.7 Ligninger med 2 ubekendte a. + y = 2 - y = -4 b. + y = 5 - y = 3 c. 2y + = 6 3y - 4 =

4 d. -4y + 2 = -5 2y + ½ = 10 e. y = 2-3 y = + 1 f. 3y + 9 = = y g. 6-2y - 2 = y = 9 h. y = - 2 y = i. y + ½ = 4 y - = 1 j. y + 3 = 3 y - 7 = ½ k. 2y = y - 3 = 3 l. y = y = m. y = ,55 y = ,34 n. Summen af to tal er 10. Forskellen er 4. Find de to tal. o. På årets længste dag er dagen 10 timer og 54 minutter længere end natten. Hvor lang er dagen? p y = z + 4 2z 2y = 2 5 3z + 6y = 5 Opgaver - funktioner 4.8 Løs disse opgaver ved at opstille to ligninger med to ubekendte. a. Nielsen skal købe bil. Han overvejer at købe en Peugeot 206. Han kan vælge mellem en model, der kører på benzin, til kr eller en diesel-model til kr. Benzinmodellen koster 0,49 kr pr km i brændstof, mens diesel-modellen koster 0,28 kr pr km. Hvornår er de to modeller lige dyre? b. På en virksomhed overvejer man at anskaffe sig en ny kopimaskine. Hvis de køber en ny koster det kr i anskaffelse og 0,52 kr pr kopi. Hvis de leaser en kopimaskine koster det 1,25 kr pr kopi. Hvor mange kopier skal der tages, før det kan betale sig at købe frem for at lease?

5 c. Fru Andersen skal vælge mellem to typer telefonabonnementer. Der er standartabonnement, der koster 125 kr i måneden og minutprisen er 0,25 kr. Det andet er økonomi-abonnementet, der koster 199 kr i måneden og minutprisen er 0,18 kr. Sammenlign de to tilbud - hvornår er hvilket billigst? d. Fru Andersen har desuden fået et tilbud fra konkurrenten. Det lyder på 195 kr i måneden og en minutpris på 0,20 kr. Dertil kommer, at de første 200 minutter er gratis. Sammenlign dette med de to tilbud fra opgave c? e. I butikken Kalles Kolde Køleskabe står der to lige store køleskabe i vinduet. Det ene koster kr og bruger cirka 286 kwh om året, mens det andet koster kr og bruger cirka 102 kwh om året. Hvilket køleskab er billigst, hvis prisen på 1 kwh er 52 ører? f. Hvilket køleskab er billigst, hvis prisen på 1 kwh er 75 ører? g. Hvad skal prisen på strøm være, hvis de to køleskab skal være lige dyre efter 5 år? 4.9 En hundegård er planlagt til at have form af en rektangel med arealet 64 m 2. Hvor langt skal rektanglet være, hvis bredden er a. 12 m b. 8 m c. 4 m d. Tegn en graf, der viser sammenhængen mellem længde og bredde. e. Ved hvilken længde skal der bruges mindst hegn? 4.10 Peter køre fra Århus til Odense i bil. Mellem de to byer er der 145 km. a. Tegn en graf, der viser sammenhængen mellem Peters gennemsnitshastighed og tiden for turen. b. Lav forskriften for funktionen. c. For hvilke -værdier gælder denne funktion Ohms lov beskrives således: Strømstyrke * Modstand = Spænding eller I * R = U Beskriv sammenhængen mellem strømstyrke og modstand, hvis spændingen er konstant 220 V 4.12 Tegn disse funktioner: 1 a. y = 2 b. y =

6 12 c. y = d. = y 1 e. y= 0,5 a f. Hvilken betydning har størrelse og fortegnet på a for en hyperbel med forskriften: y =? 4.13 Lav en hyperbel, der går gennem punktet (2; -6) Find symmetriakserne for den hyperbel, der har forskriften: y = Hvad er forskrifterne på disse symmetriakser? Tegn funktionen: y 3 = a. Bestem forskriften for symmetriakserne. b. Beskriv hyperblens asymptoter med hver sin ligning Tegn funktionen: y 3 = + 1 Bestem koordinaterne for punktet, hvor de 2 asymptoter skærer hinanden 4.17 En hyperbel har forskriften: = a + b a. Hvilken betydning har b for hyperblen? y b. Hvordan skal forskriften ændres, hvis hyperblen skal skubbes mod venstre i koordinatsystemet (dvs. parallelforskydes i -aksens retning)? c. Lav en regel om, hvordan man kan finde koordinaterne til asymptoternes a skæringspunkt, når man har en funktion med forskriften: + b y = + c 4.18 Asymptoterne til en hyperbel skærer hinanden i punktet (3; -2). Bestem forskriften for denne hyperbel

7 4.19 Find ud af hvilke af disse grafer, der er funktioner. Begrund hvorfor. Forsøg evt. at lave et funktionsforskrift for funktionerne. a. b. c

8 d. Opgaver - funktioner e. f

9 g Fastslå definitionsmængden og værdimængden for funktionerne. a. 520 b. c. d. Der gives en funktion, som beskriver hvor langt tid man er om at køre fra København til Rom, hvis man kører med en gennemsnitshastighed på km/t: e f. g. 2 er en funktion, der beskriver svingningstiden på en pendul med en, snorelængde på meter. h. er en ikke nærmere beskrevet funktion, der beskriver hvor mange kartofler Ole Korsholm har spist igennem hans liv frem til en alder af år. i. er en funktion, som beskriver hvor meget man skal betale hvis man køber daim Lav forskrifter til funktionerne. Start med identificere den uafhængige variabel og den afhængige variabel. a. Kartofler koster 4,95 pr kg. Beskriv prisen på kartofler som en funktion af vægten. b. Et telefonabonnement koster 39 kr pr måned. Samtaler koster 0,89 kr pr minut. Beskriv prisen på telefoni i en måned som en funktion af antal minutter, der er talt i telefon. c. En lastbil skyder en gennemsnitsfart på 70 km/t. Beskriv den tilbagelagte afstand som en funktion af tiden. d. En lastbil skal køre 500 km. Beskriv tiden, som det vil tage at køre turen, som en funktion af gennemsnitsfarten

10 e. Du skal lave et rektangel, hvor den ene side er 5 m længere end den anden side. Beskriv arealet af rektanglet som en funktion af den korteste side. f. En fabrik køber en maskine til 4 millioner kr, som kan lave små yoghurtbægere. Hvert bæger koster 2,45 kr i fremstilling. Beskriv de samlede omkostninger (maskine + produktion) som en funktion af antal bægere yoghurt. g. Samme oplysninger som i forrige opgave. Beskriv udgiften pr bæger som en funktion af antal fremstillede bægere. h. Fortsat yoghurt-maskinen. Det forventes, at maskinen kan producere omkring bæger yoghurt i hele dens levetid. Beskriv den samlede fortjeneste som en funktion af salgsprisen pr. bæger. i. Fortsat yoghurt-maskinen. Fordi det ikke kan vides med sikkerhed præcis hvor mange bægere yoghurt, maskinen vil lave i hele dens levetid, skal du nu lave en funktion med 2 variabler! Det meste af arbejdet har du faktisk lavet i den forrige opgave! Kald funktionen f(p, a). Beskriv den samlede fortjeneste som en funktion af salgsprisen pr bæger (p) og det samlede antal bægere, maskinen producere i hele dens levetid (a). j. Du har en retvinklet trekant, hvor hypotenusen er 7 lang. Beskriv arealet af trekanten som en funktion af længden på den ene katete Smeltende is På grafen kan man se temperatursvingningerne, mens 1 kg is smelter a. Lav en funktionsforskrift for grafen. Tip: del den op i 3. b. Hvad er isens smeltepunkt? c. Hvornår kræver det mest energi at få temperaturen til at stige 1 - før eller efter isens smeltning? Hvordan kan man se det på grafen

11 Opgaver - funktioner

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner koordinatsystemer Brug af grafer koordinatsystemer Lineære funktioner Andre funktioner ligninger med ubekendte Lavet af Niels Jørgen Andreasen, VUC Århus. Redigeret af Hans Pihl, KVUC

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Matematikopgaver 10. kl

Matematikopgaver 10. kl Matematikopgaver 10. kl 1. Algebra og regneregler 1.1 Vær opmærksom på de negative tal a. 2 b. 10 c. -29 d. -11 e. 7 f. -25 g. 0 h. 21 1.2 Lav brøkerne om til rene brøker (f.eks: 3 ¾ = 15 / 4 ) a. 11 /2

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13 En funktion beskriver, hvordan en afhængig variabel afhænger af en uafhængig variabel. Læringsmål Forstå koordinatsystemet Vide hvad 1. og 2. aksen er Vide at x er 1. akse og y er 2. akse Forståelsen for

Læs mere

Start-mat. for stx og hf Karsten Juul

Start-mat. for stx og hf Karsten Juul Start-mat for stx og hf 0,6 5, 9 2017 Karsten Juul Start-mat for stx og hf 2017 Karsten Juul 1/8-2017 (7/8-2017) Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Løsning til aflevering uge 11

Løsning til aflevering uge 11 Løsning til aflevering uge 11 100011/nm Opg.1 Beregninger på Foucaults pendul. Først en skitse A B c l a b l d C l c l E h d D 0.m Vandrette udsving a m a) Længden af pendulet kan beregnes ved at isolere

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007. Matematik Niveau A

Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007. Matematik Niveau A Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007 07-0-1 Matematik Niveau A Dette opgavesæt består af 8 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Funktioner. Funktioner Side 150

Funktioner. Funktioner Side 150 Funktioner Brug af grafer koordinatsystemer... 151 Lineære funktioner ligefrem proportionalitet... 157 Andre funktioner... 163 Kært barn har mange navne... 165 Funktioner Side 15 Brug af grafer koordinatsystemer

Læs mere

MAT B GSK juni 2007 delprøven uden hjælpemidler

MAT B GSK juni 2007 delprøven uden hjælpemidler MAT B GSK juni 007 delprøven uden hjælpemidler Opg 1 Grafen for funktionen f er vist på bilag 1. Løs ligningen f() = 4 og uligheden f() < 4. Svar : f() = 4 =, = 1, = 1 eller = 3 ; L = { ; 1;1;3} (ses

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve juni 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time

Højere Handelseksamen Handelsskolernes enkeltfagsprøve juni 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time Højere Handelseksamen Handelsskolernes enkeltfagsprøve juni 2007 07-0-3-U Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Matematik på 9. og 10. klassetrin

Matematik på 9. og 10. klassetrin Matematik på 9. og 10. klassetrin Hayati Balo, AAMS, Forår 2013 Baseret på 9. klasse og 10. klasse udvidet kursus (Sigma), 1. udg. 8. oplæg 1986 og 1. udg. 6. oplæg 1986, af Henry Schultz, Johan Jacobsen,

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4 Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 5 Funktioner og grafer, modellering af variabelsammenhænge 2016 MATEMATIK A-NIVEAU Vejledende eksempler

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

Facitliste til MAT X Grundbog

Facitliste til MAT X Grundbog Facitliste til MAT X Grundbog Foreløbig udgave Det er tanken der tæller A Formlen bliver l + b, når l og b er i uforkortet stand. B Ingen løsningsforslag. C Ved addition fås det samme facit. Ved multiplikation

Læs mere

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve september Matematik Niveau B

Højere Handelseksamen Handelsskolernes enkeltfagsprøve september Matematik Niveau B Højere Handelseksamen Handelsskolernes enkeltfagsprøve september 2006 06-0-4 Matematik Niveau B Dette opgavesæt består af 8 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Værktøjskasse til analytisk Geometri

Værktøjskasse til analytisk Geometri Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 1 Introduktion... side 3 2 Grundlæggende færdigheder... side 4 2a Finde konstanterne a og b i en formel... side

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1) Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,

Læs mere

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner, G ISBN: 978-87-9288-11-4 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

i tredje brøkstreg efter lukket tiendedele primtal time

i tredje brøkstreg efter lukket tiendedele primtal time ægte 1 i tredje 3 i anden rumfang år 12 måle kalender lagt sammen resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn efter bagved foran placering kvart fjerdedel lagkage rationale

Læs mere

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014 Brobygningsopgaver Den foreliggende opgavesamling består af opgaver fra folkeskolens afgangsprøver samt opgaver på gymnasieniveau baseret på de samme afgangsprøveopgaver. Det er hensigten med opgavesamlingen,

Læs mere

GUX Matematik Niveau B prøveform b Vejledende sæt 1

GUX Matematik Niveau B prøveform b Vejledende sæt 1 GUX-013 Matematik Niveau B prøveform b Vejledende sæt 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Matematik på VUC Modul 3a Opgaver. Matematik på VUC. Modul 3a modeller med mere

Matematik på VUC Modul 3a Opgaver. Matematik på VUC. Modul 3a modeller med mere Matematik på VUC Modul a modeller med mere Indholdsfortegnelse Indledende talgymnastik...1 Formler... Reduktion...7 Ligninger...11 Ligninger som løsningsmetode i regneopgaver...17 Simulation... Blandede

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Omskriv følgende timer og minutter til timetal med komma.

Omskriv følgende timer og minutter til timetal med komma. Hvor lang tid er der imellem: 1) 9:22-22:00 = : 2) 8:00-20:36 = : 3) 7:12-15:00 = : 4) 7:00-17:10 = : 5) 2:51-14:00 = : 6) 10:00-17:34 = : 7) 9:47-15:00 = : 8) 8:23-20:00 = : 9) 8:21-22:00 = : 10) 3:00-19:02

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & ALMENT GYMNASIUM)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & ALMENT GYMNASIUM) Silkeborg 0-05-0 MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & ALMENT GYMNASIUM) Udarbejdet af matematiklærere fra HF, HHX, HTX & Det Almene Gymnasium.

Læs mere

Differentialligninger med TI-Interactive!

Differentialligninger med TI-Interactive! Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4

Læs mere

Tal og regning. 1 a 5 b 2 c 2 d 8 e 4 f 3 g 6 h 3. 3 a 2 b 5 c 3 d 3 e 2 f 12 g 2 h 7. 4 a 8 b 2 c 12 d 16 5... 7... 10. 6 2 og 5.

Tal og regning. 1 a 5 b 2 c 2 d 8 e 4 f 3 g 6 h 3. 3 a 2 b 5 c 3 d 3 e 2 f 12 g 2 h 7. 4 a 8 b 2 c 12 d 16 5... 7... 10. 6 2 og 5. Facitliste Tal og regning Tal og regning a 5 b c d 8 e 4 f g 6 h 9 a b 5 c d e f g h 7 4 a 8 b c d 6 5... 7... 0 6 og 5 7 9 cm og cm 8 a 4 b 6 c 0 d 0 e f g 4 h 9, 0 og 0 x 8 a 84 b 0 c d 56 e 44 f 5 g

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2013 Institution IBC Fredericia Middelfart afd. Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx10-mat/a-108010 Torsdag den 1. august 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Differential- ligninger

Differential- ligninger Differential- ligninger Et oplæg 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der kan gennemgås før man går i gang med en lærebogs fremstilling af emnet differentialligninger Læreren skal

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx103-mat/b-10122010 Fredag den 10. december 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

1 Løsningsforslag til årsprøve 2009

1 Løsningsforslag til årsprøve 2009 1 Løsningsforslag til årsprøve 009 Opgave 1 Figur 1 viser en tegning af en person der står på en skrænt og smider en sten ud over vandet. Vandet har overflade i t-aksen. Stenen følger grafen for funktionen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 12/13 Institution International Business College Fredericia-Middelfart Uddannelse Fag og niveau

Læs mere

MAT B GSK august 2007 delprøven uden hjælpemidler

MAT B GSK august 2007 delprøven uden hjælpemidler Opg MAT B GSK august 007 delprøven uden hjælpemidler Funktionen f har forskriften f() = ( + ) ( + ) ( ) Beregn nulpunkterne for f. Svar : f() = 0 = eller = eller = ; L = { ; ; } Polnomiers faktorisering

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007 07-0-6-U Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen

Læs mere

FS10 2012. Golf klubben

FS10 2012. Golf klubben FS10 2012 Golf klubben 1 Klubben Hammel Golf Klub blev grundlagt i januar 1992. 1 1, Hvor mange år har klubben eksisteret i? I Hammel Golf Klub bruger de en del strøm. De bruger årligt 43 995 kwh i klubhuset

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum:

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum: Forslag til hjemmeopgaver, som forbereder arbejdet med de ne emner den pågældende kursusgang, men primært er baseret på gmnasiepensum: Ordinær kursusgang : Introduktion til vektorer og matricer. Regning

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time.

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time. Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006 05-B-2-U Typeopgave 2 Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time. Dette opgavesæt består af 5 opgaver, der indgår

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Peter Harremoës Matematik A med hjælpemidler 15. december 2016 = 25 = x = = 10 2 =

Peter Harremoës Matematik A med hjælpemidler 15. december 2016 = 25 = x = = 10 2 = Opgave 6 a) Se bilag 2! Opgave 7 a) Omsætningen er givet ved R (x) = p (x) x = 500 x 1 /2 x = 500 x 1 /2 b) Den afsætning, som giver det største dækningsbidrag, bestemmes ved at løse ligningen R (x) =

Læs mere

Andengradsfunktionen

Andengradsfunktionen Andengradsfunktionen 1. Find først diskriminanten og efterfølgende også toppunktet for følgende andengradsfunktioner. A y = 2 x 2 + 4 x + 3 B y = 1 x 2 + 6 x + 2 C y = 1 / 2 x 2 + 2 x 2 D y = 1 x 2 + 6

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Symbolsprog og Variabelsammenhænge

Symbolsprog og Variabelsammenhænge Indledning til Symbolsprog og Variabelsammenhænge for Gymnasiet og Hf 1000 kr 500 0 0 5 10 15 timer 2005 Karsten Juul Brugsanvisning Du skal se i de fuldt optrukne rammer for at finde: Regler for løsning

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Den pythagoræiske læresætning

Den pythagoræiske læresætning Den pythagoræiske læresætning 1. Udfyld skemaet herunder dvs. find den manglende hypotenuse ved a 2 + b 2 = c 2 : 1 20 21 2 12 35 3 28 45 4 56 33 5 119 120 6 168 95 7 52 165 8 207 224 9 315 572 10 627

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

grafer og funktioner basis+g brikkerne til regning & matematik preben bernitt

grafer og funktioner basis+g brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner G ISBN: 978-87-92488-11 4 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel FP10 10.-klasseprøven Matematik December 2014 1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel 1 Huspriser

Læs mere

Matematik Grundforløbet

Matematik Grundforløbet Matematik Grundforløbet Mike Auerbach (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 2. udgave, 2015 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

MATEMATIK B. Xxxxdag den xx. måned åååå. Kl. 10.00 15.00 GL083-MAB. GU HHX DECEMBER 2008 Vejledende opgavesæt. Undervisningsministeriet

MATEMATIK B. Xxxxdag den xx. måned åååå. Kl. 10.00 15.00 GL083-MAB. GU HHX DECEMBER 2008 Vejledende opgavesæt. Undervisningsministeriet GU HHX DECEMBER 2008 Vejledende opgavesæt MATEMATIK B Xxxxdag den xx. måned åååå Kl. 10.00 15.00 Undervisningsministeriet GL083-MAB 574604_GL083-MAB_12s.indd 1 14/01/09 14:40:30 Matematik B Prøvens varighed

Læs mere

10 Elevplan. en tværfaglig læringsaktivitet. Når eleven skal have afvinket en læringsaktivitet eller et læringselement, vil det være samtlige

10 Elevplan. en tværfaglig læringsaktivitet. Når eleven skal have afvinket en læringsaktivitet eller et læringselement, vil det være samtlige 10 Elevplan Organisatoriske forhold Matematik kan i Elevplan udbydes som en selvstændig læringsaktivitet og/eller som elementer i tværfaglige aktiviteter. Beskrivelsen i Elevplan er en uddybning og præcisering

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 14/15 IBC-Fredericia

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Ang. skriftlig matematik B på hf

Ang. skriftlig matematik B på hf Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet

Læs mere