Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol"

Transkript

1 Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelsøgnng Modelkontrol

2 Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E[ y] = α hvor,,, k er kvanttatve varable, f højde, alder og areal. I forbndelse med varansanalyse så v på modeller på formen E[ y] = α z z z hvor z, z,, z k er (0/) dummy-varable, der omkoder en kvaltatv varabel med 4 kategorer. Bemærk: Begge modeller er på samme form! Lad os kombnere dem! k k

3 Lneær regressonsmodel Generel form y. er kvanttatv afhængg varabel (for te observaton) j er enten kvanttatv varabel eller dummy-varabel ε er fejlledet for te observaton. ε erne er uafhængge og normalfordelte med mddelværd nul og konstant varans. Mddelværden for y er k k y ε α = [ ] k k y E α =

4 Eksempel: Indkomst vs Race og Udd. 80 personer har angvet: Plot: Race Sort, hspanc el. hvd Uddannelse Målt år Indkomst $000 / år. Smpel lneær regresson for hver race. Graphs Chart Bulder Scatter/Dot Grouped Scatter : Race under Set Color 4

5 Statstsk model Statstsk model: E[ y] = α z z y : Indkomst (afhængg var. /respons) : Uddannelse (kvanttatv forklarende var.) Race er omkodet vha. to dummy-varable, z og z Race z = z = Black 0 Hspanc 0 Whte 0 0 Bemærk: Kategoren Hvd er reference-gruppen. 5

6 Fortolknng For hvde har v z =0 og z =0 E[ y] = α 0 0 Hvd: α = α α Lgnngen for en ret lnje med Skærng α Hældnng Hvert ekstra års ekstra uddannelse øger gennemsntsndkomsten med. Nul års uddannelse gver en gennemsntsndtægt på α 6

7 Fortolknng Hvd: α For sorte har v z = og z =0 Hsp.: α E[ y] ( α ) = For hspanc har v z =0 og z = α Sort: α E y] = ( α ) [ Tre lnjer med samme hældnng = samme effekt af uddannelse. Fortolknng af på og : Forskel gennemsnts ndkomst for sorte forhold tl hvde ved samme antal års uddannelse. : Forskel ndkomst for hspancs forhold tl hvde. 7

8 Estmaton SPSS SPSS: Analyze General Lnear Model Unvarte Dependent Varable: Kvanttatv/kontnuerte afhængge varabel. Fed Factors: Kvaltatve/ kategorske forklarende varable. Covarate: Kvanttatve/ kontnuerte forklarende varable. Under Optons vælg Parameter Estmates 8

9 Modelspecfkaton SPSS Vores model har ngen vekselvrknng mellem uddannelse og race. Unde Model vælger v Custom. Vælg Type som Man effects. Marker de to forklarende varable og før dem over Model-kassen. 9

10 SPSS output a b b b Estmerede model: yˆ = a b b z = 5,66 4,4 b z 0.874z 4,94z Bemærk at der står 0 ud for [race=w], da hvd er referencegruppen. 0

11 Fortolknng Estmerede model: yˆ = 5,66 4,4 For hvde har v z =0 og z =0 yˆ = 5,66 4, z 4, 94z For sorte har v z = og z =0 yˆ = 6,547 4, 4 For hspanc har v z =0 og z = yˆ = 0,597 4, 4 Hvd: α Sort: (α ) Hsp.: (α )

12 Vekselvrknng Plot af data antyder, at effekten af uddannelse (hældnngen) afhænger af gruppen (race). Dvs. der er en vekselvrknng mellem race og uddannelse effekten på ndkomst. Som sædvanlgt opnår v en model med vekselvrknng ved at gange de to varable sammen: E[ y] = α z z z z Hovedeffekt af udd. Vekselvrknng Hovedeffekt af race

13 Fortolknng Model: For hvd har v z =0 og z =0: Dvs. ret lnje med skærng α hældnng Hvert års ekstra uddannelser øger gennemsntsndkomsten med. 4 ] [ z z z z y E α = y E α α = = ] [ 4

14 Fortolknng Model: For hvde har v z =0 og z =0: For sorte har v z = og z =0: Dvs. ret lnje med skærng α hældnng Bemærk: Både skærng og hældnng afvger fra referencen. 4 4 ] [ z z z z y E α = y E = α ] [ ( ) ( ) y E = = ] [ α α

15 Fortolknng For hvde har v z =0 og z =0: E[ y] For sorte har v z = og z =0: Afvgelser for sorte forhold tl referencen (hvde) skærng: hældnng: = α ( α ) ( ) E[ y] = Dvs. angver, hvordan effekten af uddannelser på ndkomst for den sorte gruppe afvger fra den hvde gruppe. 5

16 Modelspecfkaton SPSS V tlføjer vekselvrknngen: Som Type vælg Interacton. Marker de to forklarende varable og før dem over Model-kassen. 6

17 SPSS output a b b b b b 4 Estmerede model: yˆ = a b b z = 5,669 5,0 b z b z b 9,z 4 z 9,64z.4z,z 7

18 Fortolknng Estmerede model yˆ Hvd Hver ekstra års uddannelse øger ndkomsten med $50 Sort = 5,669 5,0 Effekten af uddannelse er reduceret med $4 tl $799 Hspanc yˆ = 5,669 5, 0 9,z 9,64z,4z, yˆ = 5,669 5,0 9,,4 = 6, yˆ = 5,669 5,0 9,64, = 6,49 4, 089 Effekten af uddannelse er reduceret med $ tl $4089 z 8

19 Hypotesetest Som sædvanlgt tester v vha. et F-test. Et F-test sammenlgner to modeller: en komplet model og en reduceret model. Eksempel: H 0 : Ingen vekselvrknng H a : Vekselvrknng er med. Komplette model: Model med vekselvrknng Reducerede model: Model uden vekselvrknng F-testet skal afgøre om det er ok, at gå fra den komplette tl den reducerede model. 9

20 F-test: Intuton For begge modeller fnder v SSE og R : Komplette model: SSE c og Reducerede model: SSE r og R c Rr R c ( ) F-teststørrelse: F = ( SSEr SSEc ) df ( Rc Rr ) = SSE df ( R c c ) df df df = forskel antal er df = n ( antal er) Intuton: Hvs den reducerede model er næsten lge så god som den komplette, så har v R, dvs. F er llle. f R c Hvs der er en stor forskel, så har v R <<, dvs. F er stor. r R c 0

21 F-test: Eksempel Hypoteser: H 0 : Ingen vekselvrknng (race*educ) ( = 4 = 0) H a : Vekselvrknng F-teststørrelse: F = Omdøb: ( SSE SSE ) r SSE SS race*educ = SSE r SSE C (Forskel SSE) c c df df SSE = SSE c F-teststørrelse: F = SS SSE df df MSrace MSE race * educ * educ = Bemærk: Forholdet mellem to mean sequares.

22 F-test af vekselvrknng Model: Hypoteser: E[ y] = α z z z z H 0 : = 4 = 0 vs H a : Enten 0 eller 4 0 Teststørrelse SSrace * educ df MSrace * educ F = = SSE df MSE = = =.465 Konkluson: Da P-værd = 0.8 > 0.05 kan v kke afvse at vekselvrknngen er unødvendg. 4 P-værd F =.465

23 F-test af hovedeffekt af race Vekselvrknngen er borte. Model: Spørgsmål: Kan modellen smplfceres yderlgere? H 0 : = = 0 Ingen hovedeffekt af race H a : Enten 0 eller 0 Der er en hovedeffekt af race F = 70/9 =, P-værd = 0.05 Konkluson: Der er nogen, men kke stærke tegn på en effekt af race på ndkomst. E[ y] = α z z

24 F-test af hovedeffekt af uddannelse Vekselvrknngen er borte. Model: Spørgsmål: Kan modellen smplfceres yderlgere? H 0 : = 0 Ingen effekt af uddannelse H a : 0 Der er en effekt af uddannelse F = 45/9 = 5, P-værd 0 Konkluson: Der er stærke tegn på at uddannelse har en effekt på ndkomst. E[ y] = α z z 4

25 Modelsøgnng En statstske analyse nvolverer ofte et stort antal forklarende varable. For at få overblk over, hvlke forklarende varable, der har betydnng for den afhængge varabel udføres en modelsøgnng. I en modelsøgnng, søger man en model, der kun ndeholder de forklarende varable, der har en reel betydnng for den afhængge varabel. Der fndes et utal af måder at udføre modelsøgnng. De mest almndelge er

26 Modelsøgnng: Prøv alle mulgheder V udfører en regresson på alle tænkelge kombnatoner af forklarende varable. Har v k forklarende varable gver det k forskellge modeller. Ved k = 4 forklarende varable har v allerede 4 = 6 modeller. For k = 5 => 5 = 768 modeller. V udvælger vores model blandt de k modeller f. den med største R, mndste MSE eller et andet mål for model-kvaltet.

27 Modelsøgnng: Backward søgnng Start med en model, hvor alle forklarende varable af nteresse er nkluderet. Den mndst vgtge ryger ud For alle varable fortager v et F-test for den tlsvarende parameter. Den varabel med højst P-værd over f 0.0 fjernes fra modellen. Hvem er nu mndst vgtg? I den reducerede model foretages et (nyt) F-test for hver af de tlbageværende varable. Igen fjernes den varabel, der har højst P-værd over 0.0. Dette gentages ndtl alle tlbageværende varable er sgnfkante, dvs. deres F-test alle har en P-værd under 0.0.

28 Multpel lneær regresson Eksempel: Y = Eport Eksport tl Sngapore mlloner $ X = M Money supply X = Lend Udlånsrente X = Prce Prsnde X 4 = Echange Vekselkurs ml. S pore $ og US $ Model: y = 44 α ε ε..d N(0, σ )

29 Backward: Eksempel Den fulde model (start-model): Støreste p-værd over 0.0 Fjerner Lend. Reducerede model: Fjern Echange. Reduceret model (slut-model): Støreste p-værd over 0.0 Ingen p-værd over 0.0

30 Modelsøgnng SPSS I Lnear Regresson kan man menuen Method bl.a. vælge mellem Enter (Uden søgnng) Backward Independent(s) ndeholder varable, der skal ndgå model-søgnngen. Bemærk: Denne automatske modelsøgnng vrker kun med Lnear Regresson -funktonen. Dvs. for General Lnear Model skal man lave søgnngen manuelt.

31 Lneær Regressonsmodel V har set på en lang række modeller på formen Hvert er enten kvanttatv varabel dummy-varabel relateret tl en kvaltatv varabel Om fejlleddene ε antager v Uafhængge Normalfordelte Mddelværd 0 Konstant standardafvgelse σ. (homoskedastske fejlled) k k y ε α = [ ] k k y E α =

32 Estmerede model Vha. mndste kvadraters metode får v ˆ a b b b b4 4 y =... b y = yˆ e Dvs. a er et estmat af α b er et estmat af b k er et estmat af κ Resdualet e er et estmat af fejlledet ε. Hvs moddel er korrekt, bør e erne opføre sg (ca.) som fejlleddene. k k

33 Fejlled: Antagelser ε er fejlledet for te observaton. ε erne er uafhængge normalfordelte med mddelværd nul og konstant varans (homoskedastske) Resdualerne bør (ca.) opfylde dsse antagelser. Gennemsnttet af resdualerne er pr. konstrukton nul, så det skal kke tjekkes. De andre antagelser tjekker v grafsk vha. plots.

34 Resdualplot Resdualer Resdualer 0 0 or y Homoskedastsk: Resdualerne ser ud tl at varere lge meget for alle eller ŷ. Desuden er resdualerne ufahængge af hnanden og. Resdualer Resdualer or y Heteroskedastsk: Varansen for resdualerne ændrer sg når ændrer sg. 0 0 Td Resdualerne udvser lneær trend med tden (ellern anden varabel v kke har brugt). Dette ndkerer at td skulle nkluderes modellen. or y Det buede mønster ndkerer en underlæggende kke-lneær sammenhæng.

35 Vrste e og ŷ ud af SPSS Vælg Save I Save vnduet vælges Unstandardzed både under Resduals (e erne) og ŷ Predcted Values ( erne). ŷ e 5

36 Resdual plot ŷ Scatterplot af e mod. Check af uafhængghed: Ser usystematsk ud. Check af konstant varans: Tendens tl stgende varans. 6

37 Resdualplot Hstogram af e Check af normalfordelngsantagelse: Ser ok ud. 7

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E y] = α... [ 3 3 4 4

Læs mere

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test Opsamlng Smpel/Multpel Lneær Regresson Logstsk Regresson Ikke-parametrske Metoder Ch--anden Test Opbygnng af statstsk model Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression Statstk Lekton 15 Mere Lneær Regresson Modelkontrol Prædkton Multpel Lneære Regresson Smpel Lneær Regresson - repetton Spørgsmål: Afhænger y lneært af x?. Model: y = β + β x + ε ε d N(0, σ 0 1 2 ) Systematsk

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Opbygnng af statstsk model Eksploratv data-analyse Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA)

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA) Statstk II Lekton 4 Generelle Lneære Modeller Smpel Lneær Regresson Multpel Lneær Regresson Flersdet Varansanalyse (ANOVA) Logstsk regresson Y afhængg bnær varabel X 1,,X k forklarende varable, skala eller

Læs mere

Statikstik II 4. Lektion. Generelle Lineære Modeller

Statikstik II 4. Lektion. Generelle Lineære Modeller Statkstk II 4. Lekton Generelle Lneære Modeller Generel Lneær Model Y afhængg skala varabel X 1,,X k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet X + k = E( Y X ) = α + β x + + β

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet =( 1,, k

Læs mere

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol Økonometr lekton 7 Multpel Lneær Regresson Testbaseret Modelkontrol MLR Model på Matrxform Den multple lneære regressons model kan skrves som X y = Xβ + Hvor og Mndste kvadraters metode gver følgende estmat

Læs mere

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed

Læs mere

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1 Økonometr 1 Heteroskedastctet 27. oktober 2006 Økonometr 1: F12 1 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.3-4) Sdste gang: I dag: Konsekvenser af heteroskedastctet for OLS Korrekton af varansen

Læs mere

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder Regressonsanalyse Epdemolog og Bostatstk Mogens Erlandsen, Insttut for Bostatstk Uge, torsdag (forelæsnng) 1.Smpel lneær regresson (Kaptel 11) systolsk blodtryk og alder. Multpel lneær regresson (Kaptel

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.4) Kvanttatve metoder Heteroskedastctet 6. aprl 007 Sdste gang: Konsekvenser af heteroskedastctet for OLS Whte s korrekton af OLS varansen Test for heteroskedastctet

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 9

Økonometri 1 Efterår 2006 Ugeseddel 9 Økonometr 1 Efterår 006 Ugeseddel 9 Program for øvelserne: Opsamlng på Ugeseddel 8 Gruppearbejde SAS øvelser Ugeseddel 9 består at undersøge, om der er heteroskedastctet vores model for væksten og så fald,

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)? Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan

Læs mere

Simpel Lineær Regression - repetition

Simpel Lineær Regression - repetition Smpel Leær Regresso - repetto Spørgsmål: Afhæger leært af?. Model: β + β + ε ε d N(0, σ 0 ) Sstematsk kompoet + Stokastsk kompoet Estmato - repetto Vha. Mdste Kvadraters Metode fder v regressosle hvor

Læs mere

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse Økonometr Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Kommenteret vejledende besvarelse Resultaterne denne besvarelse er fremkommet ved brug af eksamensnummer 7. Dne

Læs mere

Lineær regressionsanalyse8

Lineær regressionsanalyse8 Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret

Læs mere

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen Landbrugets efterspørgsel efter Kunstgødnng Angelo Andersen.. Problemformulerng I forbndelse med ønsket om at reducere kvælstof udlednngen fra landbruget kan det være nyttgt at undersøge hvordan landbruget

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Morten Frydenberg Bostatstk verson dato: -4- Bostatstk uge mandag Morten Frydenberg, Afdelng for Bostatstk Resume: Hvad har v været gennem ndtl nu Lneær (normal) regresson en kontnuert forklarende varabel

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet

Læs mere

Bilag 6: Økonometriske

Bilag 6: Økonometriske Marts 2015 Blag 6: Økonometrske analyser af energselskabernes omkostnnger tl energsparendsatsen Energstyrelsen Indholdsfortegnelse 1. Paneldataanalyse 3 Specfkaton af anvendte panel regressonsmodeller

Læs mere

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Opsamlng vedr. nferens uden MLR.5: Beregnng af robuste standardfejl og kovarans under heteroskedastctet (W8.) W.6: Flere emner en multpel regressonsmodel Inferens den

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf3 Insttut for Matematske Fag Aalborg Unverstet Gvet n uafhængge

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 10

Kvantitative metoder 2 Forår 2007 Ugeseddel 10 Kvanttatve metoder 2 Forår 2007 Ugeseddel 0 Program for øvelserne: Gennemgang af teoropgave fra Ugesedel 9 Gruppearbejde og plenumdskusson SAS øvelser, spørgsmål -4. Sdste øvelsesgang (uge 2): SAS øvelser,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvanttatve metoder 2 Instrumentvarabel estmaton 14. maj 2007 KM2: F25 1 y = cy ( c 0) Plan for resten af gennemgangen F25: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 13

Økonometri 1 Efterår 2006 Ugeseddel 13 Økonometr 1 Efterår 2006 Ugeseddel 13 Prram for øvelserne: Gruppearbejde plenumdskusson SAS øvelser Øvelsesopgave: Vækstregressoner (fortsat) Ugeseddel 13 fortsætter den emprske analyse af vækstregressonen

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kvanttatve metoder 2 Forår 2007 Oblgatorsk opgave 2 Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Opgavens prmære formål er at lgne formen på tag-hjem delen af eksamensopgaven. Der

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1 Økonometr 1 Avancerede Paneldata Metoder I 24.november 2006 F18: Avancerede Paneldata Metoder I 1 Paneldatametoder Sdste gang: Paneldata begreber og to-perode tlfældet (kap 13.3-4) Uobserveret effekt modellen:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006 Dagens program: Øonometr 1 Heterosedastctet 30. otober 006 Effcent estmaton under heterosedastctet (Wooldrdge 8.4): Sdste gang: Kendte vægte - Weghted Least Squares (WLS) Generalzed Least Squares (GLS)

Læs mere

Beregning af strukturel arbejdsstyrke

Beregning af strukturel arbejdsstyrke VERION: d. 2.1.215 ofe Andersen og Jesper Lnaa Beregnng af strukturel arbedsstyrke Der er betydelg forskel Fnansmnsterets (FM) og Det Økonomske Råds (DØR) vurderng af det aktuelle output gap. Den væsentlgste

Læs mere

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006 Økonometr 1 Avancerede Paneldata Metoder II Introdukton tl Instrumentvarabler 27. november 2006 Paneldata metoder Sdste gang: Paneldata med to eller flere peroder og fxed effects estmaton. Første-dfferens

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 9

Kvantitative metoder 2 Forår 2007 Ugeseddel 9 Kvanttatve metoder 2 Forår 2007 Ugeseddel 9 Program for øvelserne: Introdukton af problemstllng og datasæt Gruppearbejde SAS øvelser Paneldata for tlbagetræknngsalder Ugesedlen analyserer et datasæt med

Læs mere

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36.

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36. Estmaton af varans/sprednng Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - rw@math.aau.dk Insttut for Matematske Fag Aalborg Unverstet Antag X,..., X n stokastske varable med fælles

Læs mere

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00 Fagblok 4b: Regnskab og fnanserng 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 tl 31.01 2004 kl. 14.00 Dette opgavesæt ndeholder følgende: Opgave 1 (vægt 50%) p. 2-4 Opgave 2 (vægt 25%) samt opgave 3 (vægt

Læs mere

Binomialfordelingen. Erik Vestergaard

Binomialfordelingen. Erik Vestergaard Bnomalfordelngen Erk Vestergaard Erk Vestergaard www.matematkfysk.dk Erk Vestergaard,. Blleder: Forsde: Stock.com/gnevre Sde : Stock.com/jaroon Sde : Stock.com/pod Desuden egne fotos og llustratoner. Erk

Læs mere

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts Danmarks Statstk MODELGRUPPEN Arbejdspapr [udkast] Andreas Østergaard Iversen 140609 Estmaton af CES - forbrugssystemet med og uden dynamk: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Læs mere

To-sidet variansanalyse

To-sidet variansanalyse Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Undersøgelse af pris- og indkomstelasticiteter i forbrugssystemet - estimeret med AIDS

Undersøgelse af pris- og indkomstelasticiteter i forbrugssystemet - estimeret med AIDS Danmarks Statstk MODELGRUPPEN Arbedspapr* Mads Svendsen-Tune 13. marts 2008 Undersøgelse af prs- og ndkomstelastcteter forbrugssystemet - estmeret med AIDS Resumé: For at efterse nestnngsstrukturen forbrugssystemet

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Fastlæggelse af strukturel arbejdsstyrke

Fastlæggelse af strukturel arbejdsstyrke d. 23.5.2013 Fastlæggelse af strukturel arbedsstyrke Dokumentatonsnotat tl Dansk Økonom, Forår 2013 For at kunne vurdere økonomens langsgtede vækstpotentale og underlggende saldoudvklng og for at kunne

Læs mere

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol Udvklng af en metode tl effektvurderng af Mljøstyrelsens Kemkalenspektons tlsyn og kontrol Orenterng fra Mljøstyrelsen Nr. 10 2010 Indhold 1 FORORD 5 2 EXECUTIVE SUMMARY 7 3 INDLEDNING 11 3.1 AFGRÆNSNING

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf Gvet n uafhængge målnger x,, x n af n størrelser µ,, µ n Målnger

Læs mere

Husholdningsbudgetberegner

Husholdningsbudgetberegner Chrstophe Kolodzejczyk & Ncola Krstensen Husholdnngsbudgetberegner En model for husholdnngers daglgvareforbrug udarbejdet for Penge- og Pensonspanelet Publkatonen Husholdnngsbudgetberegner En model for

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC

PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC MEDDELELSE NR. 1075 Vrknngsgraden (gennemslaget) tl en produktonsbesætnng for avlsværdtallet for hanlg fertltet Duroc blev fundet tl 1,50, hvlket

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat.

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat. Håndbog grundvandsmodellerng, Sonnenborg & Henrksen (eds 5/8 GEUS Kaptel 14 IVERS MODELLERIG Torben Obel Sonnenborg Geologsk Insttut, Københavns Unverstet Anker Laer Høberg Hydrologsk Afdelng, GEUS øglebegreber:

Læs mere

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger Vaansanalyse (ANOVA) Repetton, ANOVA Tjek af model antagelse Konfdensntevalle fo mddelvædene Tukey s test fo pavse sammenlgnnge ANOVA - defnton ANOVA (ANalyss Of VAance), også kaldet vaansanalyse e en

Læs mere

Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model)

Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model) Statstk 9. gag REGRESSIONSANALYSE Korrelato kotrol af model Regresso tlpasg af model Statstk 9. gag KORRELATIONS ANALYSE. Grad af fælles varato mellem X og Y. Område og fordelg af sample data 3. Optræde

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2005II, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2005II, Økonometri 1 Rettevejlednng tl Økonomsk Kanddateksamen 005II, Økonometr 1 Vurderngsgrundlaget er selve opgavebesvarelsen og blaget, nklusve det afleverede SAS program. Materalet på dskette/cd bedømmes som sådan kke,

Læs mere

Løsninger til kapitel 12

Løsninger til kapitel 12 Løsnnger tl kaptel 1 Opgave 1.1 HypoStat gver umddelbart: ft = 7 En P Teststørrelse H 0 : Alle P passer mandag 80 0,14857 48,8571 3,89737 H 1 : Ikke alle P passer trsdag 30 0,14857 48,8571 1,48899 onsdag

Læs mere

Luftfartens vilkår i Skandinavien

Luftfartens vilkår i Skandinavien Luftfartens vlkår Skandnaven - Prsens betydnng for valg af transportform Af Mette Bøgelund og Mkkel Egede Brkeland, COWI Trafkdage på Aalborg Unverstet 2000 1 Luftfartens vlkår Skandnaven - Prsens betydnng

Læs mere

Morten Frydenberg Version: Thursday, 16 June 2011

Morten Frydenberg Version: Thursday, 16 June 2011 Morten Frydenberg Verson: Thursday, 6 June 20 Logstc regresson og andre regresonsmodeller Morten Frydenberg Deartt of Bostatscs, Aarhus Unv, Denmar Hvornår an man bruge logsts regresson. Ldt om odds og

Læs mere

Validering og test af stokastisk trafikmodel

Validering og test af stokastisk trafikmodel Valderng og test af stokastsk trafkmodel Maken Vldrk Sørensen M.Sc., PhDstud. Otto Anker Nelsen Cv.Ing., PhD, Professor Danmarks Teknske Unverstet/ Banestyrelsen Rådgvnng 1. Indlednng Trafkmodeller har

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

Tabsberegninger i Elsam-sagen

Tabsberegninger i Elsam-sagen Tabsberegnnger Elsam-sagen Resumé: Dette notat beskrver, hvordan beregnngen af tab foregår. Første del beskrver spot tabene, mens anden del omhandler de afledte fnanselle tab. Indhold Generelt Tab spot

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Morten Frydenberg Bostatstk verson dato: -03-0 Effektmodfkaton Hvad er det - Kvantfcerng - Test Bostatstk uge 7 mandag Morten Frydenberg, Afdelng for Bostatstk Vægtede gennemsnt - Formler for standard

Læs mere

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005 Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle

Læs mere

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen Sandsynlghedsregnng. forelæsnng Bo Frs Nelsen Matematk og Computer Scence Danmarks Teknske Unverstet 800 Kgs. Lyngby Danmark Emal: bfn@mm.dtu.dk Dagens nye emner afsnt 6.5 Den bvarate normalfordelng Y

Læs mere

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004 Dages program Økoometr De multple regressosmodel. september 004 Emet for dee forelæsg er stadg de multple regressosmodel (Wooldrdge kap. 3.4-3.5) Praktske bemærkg Opsamlg fra sdst Irrelevate varable og

Læs mere

Brugerhåndbog. Del IX. Formodel til beregning af udlandsskøn

Brugerhåndbog. Del IX. Formodel til beregning af udlandsskøn Brugerhåndbog Del IX Formodel tl beregnng af udlandsskøn September 1999 Formodel tl beregnng af udlandsskøn 3 Formodel tl beregnng af udlandsskøn 1. Indlednng FUSK er en Formodel tl beregnng af UdlandsSKøn.

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Økonometr 1 Efterår 2006 Ugeseddel 10: Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Om opgavens formål: Opgavesættets prmære formål er - så vdt mulgt - at lgne formen

Læs mere

Økonomisk Kandidateksamen 2005II Økonometri 1. Lønpræmier

Økonomisk Kandidateksamen 2005II Økonometri 1. Lønpræmier Økonomsk Kanddateksamen 005II Økonometr 1 Lønpræmer Praktske anvsnnger tl ndvduel tag-hjem eksamen Økonometr 1: Start med at skre dg at du kan få adgang tl data og blag (se næste sde). Opgaven skal besvares

Læs mere

Forberedelse til den obligatoriske selvvalgte opgave

Forberedelse til den obligatoriske selvvalgte opgave MnFremtd tl OSO 10. klasse Forberedelse tl den oblgatorske selvvalgte opgave Emnet for dn oblgatorske selvvalgte opgave (OSO) skal tage udgangspunkt dn uddannelsesplan og dt valg af ungdomsuddannelse.

Læs mere

porsche design mobile navigation ß9611

porsche design mobile navigation ß9611 porsche desgn moble navgaton ß9611 [ DK ] Indholdsfortegnelse 1 Indlednng ---------------------------------------------------------------------------------------------- 07 1.1 Om denne manual -------------------------------------------------------------------------------------------

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvattatve metoder Iferes de leære regressosmodel 9. marts 007 Opsamlg vedr. feres e leær regressosmodel uder Gauss-Markov atagelser (W.4-5) Eksempel med flere restrktoer (F-test) Lagrage

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

FRIE ABELSKE GRUPPER. Hvis X er delmængde af en abelsk gruppe, har vi idet vi som sædvanligt i en abelsk gruppe bruger additiv notation at:

FRIE ABELSKE GRUPPER. Hvis X er delmængde af en abelsk gruppe, har vi idet vi som sædvanligt i en abelsk gruppe bruger additiv notation at: FRIE ABELSKE GRUPPER. IAN KIMING Hvs X er delmængde af en abelsk gruppe, har v det v som sædvanlgt en abelsk gruppe bruger addtv notaton at: X = {k 1 x 1 +... + k t x t k Z, x X} (jfr. tdlgere sætnng angående

Læs mere

TEORETISKE MÅL FOR EMNET:

TEORETISKE MÅL FOR EMNET: TEORETISKE MÅL FOR EMNET: Kende begreberne ampltude, frekvens og bølgelængde samt vde, hvad begreberne betyder Kende (og kende forskel på) tværbølger og længdebølger Kende lysets fart Kende lysets bølgeegenskaber

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Støbning af plade. Køreplan 01005 Matematik 1 - FORÅR 2005

Støbning af plade. Køreplan 01005 Matematik 1 - FORÅR 2005 Støbnng af plade Køreplan 01005 Matematk 1 - FORÅR 2005 1 Ldt hstorsk baggrund Det første menneske beboede Jorden for over 100.000 år sden. Arkæologske studer vser, at det allerede havde opdaget fænomenet

Læs mere

Fysik 3. Indhold. 1. Sandsynlighedsteori

Fysik 3. Indhold. 1. Sandsynlighedsteori Fysk 3 Indhold Termodynamk John Nclasen 1. Sandsynlghedsteor 1.1 Symboler 1.2 Boolsk Algebra 1.3 Betngede Udsagn 1.4 Regneregler 1.5 Bayes' formel 2. Fordelnger 2.1 Symboler 2.2 Bnomal Fordelngen 2.3 ultnomal

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Note til Generel Ligevægt

Note til Generel Ligevægt Mkro. år. semester Note tl Generel Lgevægt Varan kap. 9 Generel lgevægt bytteøkonom Modsat partel lgevægt betragter v nu hele økonomen på én gang; v betragter kke længere nogle prser for gvet etc. Den

Læs mere

MfA. V Udstyr. Trafikspejle. Vejregler for trafikspejles egenskaber og anvendelse. Vejdirektoratet -Vejregeludvalget Oktober 1998

MfA. V Udstyr. Trafikspejle. Vejregler for trafikspejles egenskaber og anvendelse. Vejdirektoratet -Vejregeludvalget Oktober 1998 > MfA V Udstyr Trafkspejle Vejregler for trafkspejles egenskaber og anvendelse Vejdrektoratet -Vejregeludvalget Oktober 1998 Vejreglernes struktur I henhold tl 6, stk. 1 lov om offentlge veje (Trafkmnsterets

Læs mere

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 260912 Brevd. 1957603 Ref. LAOL Dr. tlf. 4631 3152 lasseo@rosklde.dk NOTAT: Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2013 19. august

Læs mere

RESEARCH PAPER. Nr. 7, Prisoptimering i logitmodellen under homogen og heterogen forbrugeradfærd. Jørgen Kai Olsen

RESEARCH PAPER. Nr. 7, Prisoptimering i logitmodellen under homogen og heterogen forbrugeradfærd. Jørgen Kai Olsen RESEARCH PAPER Nr. 7, 23 Prsotmerng logtmodellen under homogen og heterogen forbrugeradfærd af Jørgen Ka Olsen INSTITUT FOR AFSÆTNINGSØKONOMI COPENHAGEN BUSINESS SCHOOL SOLBJERG PLADS 3, DK-2 FREDERIKSBERG

Læs mere

NOTAT:Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2014

NOTAT:Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2014 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 271218 Brevd. 2118731 Ref. KASH Dr. tlf. 4631 3066 katrnesh@rosklde.dk NOTAT:Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2014 17. august

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

2. Sandsynlighedsregning

2. Sandsynlighedsregning 2. Sandsynlghedsregnng 2.1. Krav tl sandsynlgheder (Sandsynlghedens aksomer) Hvs A og B er hændelser, er en sandsynlghed, hvs: 1. 0 ( A) 1 n 2. ( A ) 1 1 3. ( A B) ( A) + ( B), hvs A og B ngen udfald har

Læs mere

Baggrundsnotat omhandlende metode til Elforbrugspanelerne

Baggrundsnotat omhandlende metode til Elforbrugspanelerne Baggrundsnoa omhandlende meode l Elforbrugspanelerne 8. maj 01 1 Formål... 1 Modelbeskrvelse... 1 3 Forudsænnger for og mulge es af den lneære regressonsmodel... 3.1 OLS modellen og dens opbygnng... 3.

Læs mere

FOLKEMØDE-ARRANGØR SÅDAN!

FOLKEMØDE-ARRANGØR SÅDAN! FOLKEMØDE-ARRANGØR SÅDAN! Bornholms Regonskommune står for Folkemødets praktske rammer. Men det poltske ndhold selve festvalens substans blver leveret af parter, organsatoner, forennger, vrksomheder og

Læs mere