Morten Frydenberg Version: Thursday, 16 June 2011

Størrelse: px
Starte visningen fra side:

Download "Morten Frydenberg Version: Thursday, 16 June 2011"

Transkript

1 Morten Frydenberg Verson: Thursday, 6 June 20 Logstc regresson og andre regresonsmodeller Morten Frydenberg Deartt of Bostatscs, Aarhus Unv, Denmar Hvornår an man bruge logsts regresson. Ldt om odds og sandsynlgheder Esemler En bnær og en ontnuert varabel ngen effetmodfaton En bnær og en ategors varable med flere nveauer ngen effetmodfaton En bnær og en ontnuert varabel med effetmodfaton Logsts regresson generelt Modellen og antagelserne. Data og antagelsen om uafhængghed. Estmaton og nferens : RsoDfferens modeller RelatveRso modeller Cox roortnal hazard regresson Posson regresson 2 Logstc regresson models: Introducton En logsts regressonsmodel an være en mulg model hvs den afhængge varabel (resons) er dotomt/bnært dvs døde/lve syg/ras osv. Der er INGEN antagelser om de forlarende varable. De an være ategors eller ontnuerte. Når man arbejder med bnært resons vl man ode en ostv begvenhed (fx død) som og en negatv begvenhed (lve) som 0. En logst regressons model modellerer sandsynlgheden for en ostve begvenhed va odds. Og måler assocatoner vha. odds ratoer Hus at hvs begvenheden er sjælden og assocatonerne er moderate, så an odds ratoer toles som relatve rsc. 3 Logstc regresson models: Introducton Ie matchede case-control studer an analyseres vha. logsts regresson. Ved en sådan analyse har onstant ledet ngen ng. Og odds ratoerne svarer svarer tl odds ratoerne fra et follow-u stude. Mange andre edemologs degns an/sal analyseres vha af logsts regresson. 4 Senor ursus Regresson 2 Bnært data

2 Morten Frydenberg Verson: Thursday, 6 June 20 Esemlet V ser å en del af Frammngham data studet, bestående 4690 ersoner med endt BMI ved start. VI fouserer her å fedme (BMI 30 g/m 2 ). Ud af de 4690 ersoner var 60 = 2.8% fede. Odelt å øn Wo Men Obese 375 (4%) 226 (.0%) Der er en højere rævalens blandt vnder: OR:.33 (;.59). Not-Obese Dvs. odds for at være fed var mellem 2 og 59 rocent højere for vnder end for mænd.( χ 2 =0 -værd=0.00) 5 Sandsynlgheder og odds If denotes the robablty of an event (the rs, the revalence roorton, or cumulated ncdence roorton) then the odds s gven by : = odds + odds bemær: odds= =0.5 (odds)=0 ( odds) = I matemat blver denne funton af aldt for logt funtonen. logt ( ) = 6 Sandsynlgheder og odds Fedme øn og alder: verson V har set å samhængen mellem øn og alder. Probablty Plot0 Så lad os se å en model der nvolvere både øn og alder. Den smleste å logt salaen er : β + β woman + β age 45 ( ) ( ) 0 2 Den er baseret å fre antagelser: Addtvtet å logt salaen: Bdragene fra øn og alder adderes..3 Proortonaltet å logt salaen: Bdraget fra alder er roortonal med alderen logt=(odds) 7 Ingen effetmodfaton å logt salaen: Bdraget fra en forlarende varabel er det samme uanset værderne af de andre forlarende varable. Uafhængghed mellem ndvder. 8 Senor ursus Regresson 2 Bnært data 2

3 Morten Frydenberg Verson: Thursday, 6 June 20 Fedme øn og alder: verson ( odds) = β + β woman + β ( age ) ( odds) = β + β woman + β ( age ) Bemær Addton å log salaen betyder multlaton å odds salaen woman ( ) ( ) ( ) ( age 45 ) ex β ex β ex β 0 2 woman ( age 45) oddsref ORsex OR age Fortong af arametrene: β 0 : log odds for en 45 årrg mand. β : log odds rato, når man samlgner en vnde med en man å samme alder β 2 : log odds rato, når man samlgner to ersoner med samme øn hvor den første er et år ældre end den anden. β 2 * age: log odds rato, når man samlgner to ersoner med samme øn hvor den første er age år ældre end den anden. 9 0 ( ) ( ) β0 + β woman + β2 age 45 Estmaton Stata: logt obese b.sex age45 Iteraton 0: log lelhood = Iteraton 3: log lelhood = Logstc regresson Number of obs = 4690 LR ch2(2) = Prob > ch2 = Log lelhood = Pseudo R2 = obese Coef. Std. Err. z P> z [95% Conf. Interval] sex (base) age _cons Test: No assocaton wth sex No assocaton wth age Prevalence s 50% among 45 year old ( odds) = β + β woman + β ( age ) logt obese b.sex age45,, or obese Odds Rato Std. Err. z P> z [95% Conf. Interval] sex age OR for vnder versus mænd adjusted for age :.32 (.0;.57) Det uorrgerede estmat var.33 (;.59). 2 Senor ursus Regresson 2 Bnært data 3

4 Morten Frydenberg Verson: Thursday, 6 June 20 log odds Fedme øn og alder: verson 45 ( odds) = β + β woman + β ( age ) wo 0 2 revalence wo Den estmerede samhæng Alder nddelt 7 gruer: Fedme øn og alder: verson 2 tabstat age,by(agegr7) stat( mn max count) Summary for varables: age by categores of: agegr7 agegr7 mn max N Total Fedme øn og alder: verson 2 logt obese b.sex b2.agegr7,baselevel Iteraton 0: log lelhood = Iteraton : log lelhood = Iteraton 2: log lelhood = Iteraton 3: log lelhood = Iteraton 4: log lelhood = Logstc regresson Number of obs = 4690 LR ch2(7) = Prob > ch2 = Log lelhood = Pseudo R2 = 0.08 obese Coef. Std. Err. z P> z [95% Conf. Interval] sex (base) agegr (base) _cons Fedme øn og alder: verson 2 logt,or obese Odds Rato Std. Err. z P> z [95% Conf. Interval] sex (base) agegr (base) OR for vnder versus mænd adjusted for age : før:eær alder.357 (.022;.5706) her:alder 7 gruer.359 (.09;.573) 6 Senor ursus Regresson 2 Bnært data 4

5 Morten Frydenberg Verson: Thursday, 6 June 20 log odds wo Fedme øn og alder: verson 2 revalence wo Den estmerede samhæng 7 I verson : arameter tl at besrve betydnngen af alder: obese Odds Rato Std. Err. z P> z [95% Conf. Interval] age I verson 2 : 6 arametre tl at besrve betydnngen af alder: obese Odds Rato Std. Err. z P> z [95% Conf. Interval] agegr (base) De 6 -værder samlgner med referencegruen En -værd for ngen forsel mellem aldersgruerne får ved testarm testarm.agegr7 ( ) [obese]0.agegr7 = 0 ( 2) [obese].agegr7 = 0 ( 3) [obese]3.agegr7 = 0 ( 4) [obese]4.agegr7 = 0 ( 5) [obese]5.agegr7 = 0 ( 6) [obese]6.agegr7 = 0 ch2( 6) = 545 Prob > ch2 = Fedme øn og alder: verson 3 β0 + β woman + β2 age 45 + β3 woman age 45 Estmater log odds og log odds ratoer: ( ) ( ) ( ) logt obese b.sex##c.age obese Coef. Std. Err. z P> z [95% Conf. Interval] sex age sex#c.age _cons Men Dfference between wo and Estmates odds ratos: obese Odds Rato Std. Err z P> z [95% Conf. Interval] sex age sex#c.age Fedme øn og alder: verson ( odds) = β + β woman + β ( age ) + β woman ( age ) log odds wo revalence.3. 0 wo Den estmerede samhæng 20 Senor ursus Regresson 2 Bnært data 5

6 Morten Frydenberg Verson: Thursday, 6 June 20 Logstc regresson modeller generelt x = ( ) β0 Modellen bygger å tre antagelser udover uafhængghed: a.addtvtet å logt salaen: Bdragene fra de enelte forlarende varable adderes. b.proortonaltet å logt salaen: Bdraget fra en forlarende værd er roortonal med dens værd. c.ingen effetmodfaton å logt salaen: Bdraget fra en forlarende varabel er det samme uanset værderne af de andre forlarende varable Bemær a. an også formuleres som en multlatv model å odds salaen. x x2 x odds = odds OR OR OR Logstc regresson modeller generelt Hvs v betrager to ersoner der afvger med x x, x 2 x 2 og x x så er dfference log odds : = β x Igen ser v at bdragene fra de enelte forlarende varable: blver adderet, er roortonale med forsellen og uafhængg af forsellene de andre forlarende varable å log odds salaen. x = ( ) β0 22 Logstc regresson modeller generelt x = ( ) β0 Hvs v betrager to ersoner der afvger med Data: Logstc regresson modeller generelt x = ( ) β0 Y =/0 Bnær/dotom afhængg varabel x x, x 2 x 2 og x x så er OR mellem dsse ersoner : OR = OR OR OR x x2 2 x Bemær modellen an også formuleres: ex β0 x = = Pr[ Y = ] = + ex β0 x = 23 x, x 2 x uafhængge/forlarende varable Som den normale regresson antages det at Y s er uafhængge gvet de forlarende varable Denne antagelse an som regel un checes ved at gennemgå desgnet. Se efter om data ommer lumer (clusters): Patenter med samme læge. Børn samme famle: Tvlger. 24 Senor ursus Regresson 2 Bnært data 6

7 Morten Frydenberg Verson: Thursday, 6 June 20 Estmaton: Logstc regresson model n general Med undtagelse af 2x tabeller, så fndes der e formler for estmaterne. Estmater fndes (som regel) vha maxmum lelhood. Estmaton foregår ved teraton. Standard errors, serhedsntervaller og alle test er baseret å asymtot. Dvs. al statsts nference er aroxmatv. Jo mere data jo flere events desto bedre arosmatoner. Mange teratoner (mere end 7) eller bredde serhedsntervaller (øvre OR/nedre OR >0) tyder roblemer. 25 Relatv Rso modeller Logstc regresson modeller har fous å Odds Ratoer Det er det man an og sal case-control studer. I follow-u studer er Relatv Rso ofte et mere relevant assocatonsmål. (ersonal rs). Så følgende model unne være mere relevant: Pr( event) = 0 RR RR2 RR3 { ( event) } = ( 0 ) + ( RR ) + ( RR2 ) + ( RR3 ) Pr { ( )} = α + ( β x ) Pr event gven the covarates Dvs. en eær o log-sandsynlgheds salaen. = 26 Rso Dfferens modeller Logstc regresson modeller har fous å Odds Ratoer Det er det man an og sal case-control studer. I follow-u studer er Rso Dfferens ofte et mere relevant assocatonsmål. (oulatons effeter). Så følgende model unne være mere relevant: Pr( event) = 0 + RD + RD2 + RD3 ( ) = + ( ) Pr event gven the covarates = Dvs en eær model å sandsynlgheds salaen. α β x estmaton af RR or RD modeller Relatv Rso og Rso Dfferens modeller an estmeters mange rogrammer vha såaldte Generalzed (e general) Lnear Models. I Stata gør man det lettest va bnreg ommandoen med oton rr eller rd. Men as å etmatons vl mulgvs e vre /onvergere, ford Sandsynlgheden for en event er e begrænset tl at være mndre end RR-modeller Sandsynlgheden for en event er e begrænset tl at være større end 0 eller mndre end RD-modeller Senor ursus Regresson 2 Bnært data 7

8 Morten Frydenberg Verson: Thursday, 6 June 20 Tre forsellge modeller for Obese = sex + age Tre forsellge modeller for Obese = sex + age revalence 5.5 OR RD RR OR RR RD% Sex Men 0 Wo.32 (.0;.57) 9 (.;.50).60 (-06; 3.47) Age (years).04 (.02;.05).03 (.02;.04) 0.36 (04; 0.47) Rs 45 year old man (%) 0.5 (9;.9) 0.3 (9.;.7).6 (0; 2.9) h ( t) Outcome: Desgn: rob. of event before t + t gven no event before t = t Watng tme and event/censored Follow-u Measure of assocaton: Hazard (rate) ratos The default choce of statstcal model: Proortonal hazard (Cox) regresson ( β ) = ( h( t) ) = β0 ( t) + β x ( t) = h ( t) ex( β x ) Ln h 0 ex Hazard (rate) rato assocated wth Cox roortonal hazard regresson x 3 Outcome: Desgn: Number of events and tme at rs Follow-u Measure of assocaton: Rate ratos The default choce of statstcal model: Posson regresson ex Ln ( Rate) = β0 + β x Rate = Rate0ex ( β x ) ( β ) Posson regresson = Rate rato assocated wth x 32 Senor ursus Regresson 2 Bnært data 8

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,

Læs mere

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006 Dagens program: Øonometr 1 Heterosedastctet 30. otober 006 Effcent estmaton under heterosedastctet (Wooldrdge 8.4): Sdste gang: Kendte vægte - Weghted Least Squares (WLS) Generalzed Least Squares (GLS)

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)? Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan

Læs mere

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet

Læs mere

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1 Økonometr 1 Avancerede Paneldata Metoder I 24.november 2006 F18: Avancerede Paneldata Metoder I 1 Paneldatametoder Sdste gang: Paneldata begreber og to-perode tlfældet (kap 13.3-4) Uobserveret effekt modellen:

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.4) Kvanttatve metoder Heteroskedastctet 6. aprl 007 Sdste gang: Konsekvenser af heteroskedastctet for OLS Whte s korrekton af OLS varansen Test for heteroskedastctet

Læs mere

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Morten Frydenberg Bostatstk verson dato: -03-0 Effektmodfkaton Hvad er det - Kvantfcerng - Test Bostatstk uge 7 mandag Morten Frydenberg, Afdelng for Bostatstk Vægtede gennemsnt - Formler for standard

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E y] = α... [ 3 3 4 4

Læs mere

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen Landbrugets efterspørgsel efter Kunstgødnng Angelo Andersen.. Problemformulerng I forbndelse med ønsket om at reducere kvælstof udlednngen fra landbruget kan det være nyttgt at undersøge hvordan landbruget

Læs mere

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1 Økonometr 1 Heteroskedastctet 27. oktober 2006 Økonometr 1: F12 1 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.3-4) Sdste gang: I dag: Konsekvenser af heteroskedastctet for OLS Korrekton af varansen

Læs mere

2. Sandsynlighedsregning

2. Sandsynlighedsregning 2. Sandsynlghedsregnng 2.1. Krav tl sandsynlgheder (Sandsynlghedens aksomer) Hvs A og B er hændelser, er en sandsynlghed, hvs: 1. 0 ( A) 1 n 2. ( A ) 1 1 3. ( A B) ( A) + ( B), hvs A og B ngen udfald har

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelsøgnng Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E[ y] = α...

Læs mere

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse Økonometr Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Kommenteret vejledende besvarelse Resultaterne denne besvarelse er fremkommet ved brug af eksamensnummer 7. Dne

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 9

Kvantitative metoder 2 Forår 2007 Ugeseddel 9 Kvanttatve metoder 2 Forår 2007 Ugeseddel 9 Program for øvelserne: Introdukton af problemstllng og datasæt Gruppearbejde SAS øvelser Paneldata for tlbagetræknngsalder Ugesedlen analyserer et datasæt med

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet =( 1,, k

Læs mere

Statikstik II 4. Lektion. Generelle Lineære Modeller

Statikstik II 4. Lektion. Generelle Lineære Modeller Statkstk II 4. Lekton Generelle Lneære Modeller Generel Lneær Model Y afhængg skala varabel X 1,,X k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet X + k = E( Y X ) = α + β x + + β

Læs mere

Bilag 6: Økonometriske

Bilag 6: Økonometriske Marts 2015 Blag 6: Økonometrske analyser af energselskabernes omkostnnger tl energsparendsatsen Energstyrelsen Indholdsfortegnelse 1. Paneldataanalyse 3 Specfkaton af anvendte panel regressonsmodeller

Læs mere

Lineær regressionsanalyse8

Lineær regressionsanalyse8 Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret

Læs mere

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder Regressonsanalyse Epdemolog og Bostatstk Mogens Erlandsen, Insttut for Bostatstk Uge, torsdag (forelæsnng) 1.Smpel lneær regresson (Kaptel 11) systolsk blodtryk og alder. Multpel lneær regresson (Kaptel

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 9

Økonometri 1 Efterår 2006 Ugeseddel 9 Økonometr 1 Efterår 006 Ugeseddel 9 Program for øvelserne: Opsamlng på Ugeseddel 8 Gruppearbejde SAS øvelser Ugeseddel 9 består at undersøge, om der er heteroskedastctet vores model for væksten og så fald,

Læs mere

Forbedret Fremkommelighed i Aarhus Syd. Agenda. 1. Vurdering af forsøg Lukning af Sandmosevej

Forbedret Fremkommelighed i Aarhus Syd. Agenda. 1. Vurdering af forsøg Lukning af Sandmosevej Trafkgruppen Agenda 1. Vurderng af forsøg Luknng af Sandmosevej 2. Vurderng af foreslået forsøg Luknng af Sandmosevej og Brunbakkevej 3. Forslag tl forbedret fremkommelghed for hele Aarhus Syd 4. Kortsgtet

Læs mere

RESEARCH PAPER. Nr. 7, Prisoptimering i logitmodellen under homogen og heterogen forbrugeradfærd. Jørgen Kai Olsen

RESEARCH PAPER. Nr. 7, Prisoptimering i logitmodellen under homogen og heterogen forbrugeradfærd. Jørgen Kai Olsen RESEARCH PAPER Nr. 7, 23 Prsotmerng logtmodellen under homogen og heterogen forbrugeradfærd af Jørgen Ka Olsen INSTITUT FOR AFSÆTNINGSØKONOMI COPENHAGEN BUSINESS SCHOOL SOLBJERG PLADS 3, DK-2 FREDERIKSBERG

Læs mere

Morten Frydenberg 25. april 2006

Morten Frydenberg 25. april 2006 . gang: Introduktion til Logistisk Regression Morten Frydenberg 26 Afdeling for Biostatistik, Århus Universitet MPH. studieår specialmodul 4 Cand. San. uddannelsen. studieår Hvorfor logistisk regression

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 10

Kvantitative metoder 2 Forår 2007 Ugeseddel 10 Kvanttatve metoder 2 Forår 2007 Ugeseddel 0 Program for øvelserne: Gennemgang af teoropgave fra Ugesedel 9 Gruppearbejde og plenumdskusson SAS øvelser, spørgsmål -4. Sdste øvelsesgang (uge 2): SAS øvelser,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvanttatve metoder 2 Instrumentvarabel estmaton 14. maj 2007 KM2: F25 1 y = cy ( c 0) Plan for resten af gennemgangen F25: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

Tabsberegninger i Elsam-sagen

Tabsberegninger i Elsam-sagen Tabsberegnnger Elsam-sagen Resumé: Dette notat beskrver, hvordan beregnngen af tab foregår. Første del beskrver spot tabene, mens anden del omhandler de afledte fnanselle tab. Indhold Generelt Tab spot

Læs mere

Beregning af strukturel arbejdsstyrke

Beregning af strukturel arbejdsstyrke VERION: d. 2.1.215 ofe Andersen og Jesper Lnaa Beregnng af strukturel arbedsstyrke Der er betydelg forskel Fnansmnsterets (FM) og Det Økonomske Råds (DØR) vurderng af det aktuelle output gap. Den væsentlgste

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Fysik 3. Indhold. 1. Sandsynlighedsteori

Fysik 3. Indhold. 1. Sandsynlighedsteori Fysk 3 Indhold Termodynamk John Nclasen 1. Sandsynlghedsteor 1.1 Symboler 1.2 Boolsk Algebra 1.3 Betngede Udsagn 1.4 Regneregler 1.5 Bayes' formel 2. Fordelnger 2.1 Symboler 2.2 Bnomal Fordelngen 2.3 ultnomal

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006 Økonometr 1 Avancerede Paneldata Metoder II Introdukton tl Instrumentvarabler 27. november 2006 Paneldata metoder Sdste gang: Paneldata med to eller flere peroder og fxed effects estmaton. Første-dfferens

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts Danmarks Statstk MODELGRUPPEN Arbejdspapr [udkast] Andreas Østergaard Iversen 140609 Estmaton af CES - forbrugssystemet med og uden dynamk: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf3 Insttut for Matematske Fag Aalborg Unverstet Gvet n uafhængge

Læs mere

Binomialfordelingen. Erik Vestergaard

Binomialfordelingen. Erik Vestergaard Bnomalfordelngen Erk Vestergaard Erk Vestergaard www.matematkfysk.dk Erk Vestergaard,. Blleder: Forsde: Stock.com/gnevre Sde : Stock.com/jaroon Sde : Stock.com/pod Desuden egne fotos og llustratoner. Erk

Læs mere

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen Sandsynlghedsregnng. forelæsnng Bo Frs Nelsen Matematk og Computer Scence Danmarks Teknske Unverstet 800 Kgs. Lyngby Danmark Emal: bfn@mm.dtu.dk Dagens nye emner afsnt 6.5 Den bvarate normalfordelng Y

Læs mere

Kvantemekanik 2 Side 1 af 11 Schrödingerligningen. Bølgefunktionen

Kvantemekanik 2 Side 1 af 11 Schrödingerligningen. Bølgefunktionen Kvantemean Sde af Bølgefuntonen Inden for den lassse fys an en partels bevægelse besrves ved en, der ndeholder alle oplysnnger om partlens bevægelse stedfunton r( t) Pga den KM besrevne partel-bølge-dualtet

Læs mere

Husholdningsbudgetberegner

Husholdningsbudgetberegner Chrstophe Kolodzejczyk & Ncola Krstensen Husholdnngsbudgetberegner En model for husholdnngers daglgvareforbrug udarbejdet for Penge- og Pensonspanelet Publkatonen Husholdnngsbudgetberegner En model for

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 13

Økonometri 1 Efterår 2006 Ugeseddel 13 Økonometr 1 Efterår 2006 Ugeseddel 13 Prram for øvelserne: Gruppearbejde plenumdskusson SAS øvelser Øvelsesopgave: Vækstregressoner (fortsat) Ugeseddel 13 fortsætter den emprske analyse af vækstregressonen

Læs mere

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004 Dages program Økoometr De multple regressosmodel. september 004 Emet for dee forelæsg er stadg de multple regressosmodel (Wooldrdge kap. 3.4-3.5) Praktske bemærkg Opsamlg fra sdst Irrelevate varable og

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kvanttatve metoder 2 Forår 2007 Oblgatorsk opgave 2 Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Opgavens prmære formål er at lgne formen på tag-hjem delen af eksamensopgaven. Der

Læs mere

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36.

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36. Estmaton af varans/sprednng Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - rw@math.aau.dk Insttut for Matematske Fag Aalborg Unverstet Antag X,..., X n stokastske varable med fælles

Læs mere

Inertimoment for arealer

Inertimoment for arealer 13-08-006 Søren Rs nertmoment nertmoment for arealer Generelt Defntonen på nertmoment kan beskrves som Hvor trægt det er at få et legeme tl at rotere eller Hvor stort et moment der skal tlføres et legeme

Læs mere

Løsninger til kapitel 12

Løsninger til kapitel 12 Løsnnger tl kaptel 1 Opgave 1.1 HypoStat gver umddelbart: ft = 7 En P Teststørrelse H 0 : Alle P passer mandag 80 0,14857 48,8571 3,89737 H 1 : Ikke alle P passer trsdag 30 0,14857 48,8571 1,48899 onsdag

Læs mere

Luftfartens vilkår i Skandinavien

Luftfartens vilkår i Skandinavien Luftfartens vlkår Skandnaven - Prsens betydnng for valg af transportform Af Mette Bøgelund og Mkkel Egede Brkeland, COWI Trafkdage på Aalborg Unverstet 2000 1 Luftfartens vlkår Skandnaven - Prsens betydnng

Læs mere

Real valutakursen, ε, svinger med den nominelle valutakurs P P. Endvidere antages prisniveauet i ud- og indland at være identisk, hvorved

Real valutakursen, ε, svinger med den nominelle valutakurs P P. Endvidere antages prisniveauet i ud- og indland at være identisk, hvorved Lgevægt på varemarkedet gen! Sdste gang bestemtes følgende IS-relatonen, der beskrver lgevægten på varemarkedet tl: Y = C(Y T) + I(Y, r) + G εim(y, ε) + X(Y*, ε) Altså er varemarkedet lgevægt, hvs den

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes 25. april 2. gang: Introduktion til Logistisk Regression Morten Frydenberg 22 Institut for Biostatistik, Århus Universitet MPH. studieår specialmodul Cand. San. uddannelsen. studieår Hvorfor logistisk

Læs mere

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Opbygnng af statstsk model Eksploratv data-analyse Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

SERVICE BLUEPRINTS KY selvbetjening 2013

SERVICE BLUEPRINTS KY selvbetjening 2013 SERVICE BLUEPRINTS KY selvbetjenng 2013 EFTER Desgn by Research BRUGERREJSE Ada / KONTANTHJÆLP Navn: Ada Alder: 35 år Uddannelse: cand. mag Matchgruppe: 1 Ada er opvokset Danmark med bosnske forældre.

Læs mere

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10

Bernoullis differentialligning v/ Bjørn Grøn Side 1 af 10 Bernoullis differentialligning v/ Bjørn Grøn Side af 0 Bernoullis differentialligning Den logistise differentialligning er et esempel på en ie-lineær differentialligning Den logistise differentialligning

Læs mere

Validering og test af stokastisk trafikmodel

Validering og test af stokastisk trafikmodel Valderng og test af stokastsk trafkmodel Maken Vldrk Sørensen M.Sc., PhDstud. Otto Anker Nelsen Cv.Ing., PhD, Professor Danmarks Teknske Unverstet/ Banestyrelsen Rådgvnng 1. Indlednng Trafkmodeller har

Læs mere

Salg af kirkegrunden ved Vejleå Kirke - opførelse af seniorboliger. hovedprincipper for et salg af kirkegrunden, som vi drøftede på voii møde.

Salg af kirkegrunden ved Vejleå Kirke - opførelse af seniorboliger. hovedprincipper for et salg af kirkegrunden, som vi drøftede på voii møde. Ishøj Kommune Att.: Kommunaldrektør Anders Hvd Jensen Ishøj Store Torv 20 2635 Ishøj Lett Advokatfrma Rådhuspladsen 4 1550 København V Tlr. 33 34 00 00 Fax 33 34 00 01 lettl lett.dk www.lett.dk Kære Anders

Læs mere

Kreditrisiko efter IRBmetoden

Kreditrisiko efter IRBmetoden Kredtrsko efter IRBmetoden Vacceks formel Arbejdspapr, oktober 2013 1 KRAKAfnans - Fnanskrsekommssonens sekretarat Teknsk arbejdspapr udkast 15. oktober 2013 Indlednng Det absolutte mndstekrav tl et kredtnsttut

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med

Læs mere

DCI Nordsjælland Helsingrsgade SiR 3400 Hillerød tnordijaelland@dgi.dk Telefon 79 4047 00 Fax 79 4047 01 www.dgi.dk/nordsjaelland

DCI Nordsjælland Helsingrsgade SiR 3400 Hillerød tnordijaelland@dgi.dk Telefon 79 4047 00 Fax 79 4047 01 www.dgi.dk/nordsjaelland REDENSBORG KOMMUNE Ansøgnng om tlskud fra samarbejdspuljen Brug venlgst blokbstaver eller udfyld skemaet p dn pc. 1. Ansøgers forenng eller tlsvarende: DGl Nordsjælland 2. Ansøgers postadresse, emal telefonnummer:

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

1.1 Motivation... 6. 1.2 Formål og omfang... 9. 1.3 Rapportens opbygning... 9. 2.1 Det grundlæggende Capacitated Vehicle Routing Problem...

1.1 Motivation... 6. 1.2 Formål og omfang... 9. 1.3 Rapportens opbygning... 9. 2.1 Det grundlæggende Capacitated Vehicle Routing Problem... CENTER FOR STATISTIK HEURISTIK TIL LØSNING AF VEHICLE ROUTING PROBLEMS KANDIDATAFHANDLING ERHVERVSØKONOMI & MATEMATIK 3. JUNI 2011 SKREVET AF: VEJLEDER: STED: ANTAL NORMALSIDER: KENNETH KNUDSEN & MAMONA

Læs mere

econstor zbw www.econstor.eu

econstor zbw www.econstor.eu econstor www.econstor.eu Der Open-Access-Publkatonsserver der ZBW Lebnz-Informatonszentrum Wrtschaft The Open Access Publcaton Server of the ZBW Lebnz Informaton Centre for Economcs Jacobsen, Johan Gustav

Læs mere

Tabel 1. BMI, kropsvægt, overvægt og fedme for voksne og børn fordelt på køn. BMI gennemsnit Kropsvægt Normalvægtig Overvægtig Fed Totalt % (N) Alle voksne 25,60 50 35 15 100% (1746) Kvinder 25,54 52 33

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf Gvet n uafhængge målnger x,, x n af n størrelser µ,, µ n Målnger

Læs mere

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat.

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat. Håndbog grundvandsmodellerng, Sonnenborg & Henrksen (eds 5/8 GEUS Kaptel 14 IVERS MODELLERIG Torben Obel Sonnenborg Geologsk Insttut, Københavns Unverstet Anker Laer Høberg Hydrologsk Afdelng, GEUS øglebegreber:

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Sammenligning af proteiners 3-dimensionelle strukturer

Sammenligning af proteiners 3-dimensionelle strukturer Sammenligning af proteiners 3-dimensionelle struturer Køreplan 01005 Matemati 1 - FORÅR 2006 1 Formål Formålet med opgaven er at lave en metode til sammenligning af proteiners 3-dimensionale struturer

Læs mere

Brugerhåndbog. Del IX. Formodel til beregning af udlandsskøn

Brugerhåndbog. Del IX. Formodel til beregning af udlandsskøn Brugerhåndbog Del IX Formodel tl beregnng af udlandsskøn September 1999 Formodel tl beregnng af udlandsskøn 3 Formodel tl beregnng af udlandsskøn 1. Indlednng FUSK er en Formodel tl beregnng af UdlandsSKøn.

Læs mere

Marginale eksterne ulykkesomkostninger og personbilers vægt

Marginale eksterne ulykkesomkostninger og personbilers vægt Margnale eksterne ulykkesomkostnnger og personblers vægt Thomas Bue Bjørner De Økonomske Råds Sekretarat Merete Høj Kjeldsen De Økonomske Råds Sekretarat Krstan Vest Nelsen De Økonomske Råds Sekretarat

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Kædning og sæsonkorrektion af det kvartalsvise nationalregnskab

Kædning og sæsonkorrektion af det kvartalsvise nationalregnskab Danmarks Sask Naonalregnskab 9. november 00 ædnng og sæsonkorrekon af de kvaralsvse naonalregnskab Med den revderede opgørelse af de kvaralsvse naonalregnskab 3. kvaral 007 6. januar 008 blev meoden l

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

DANMARKS NATIONALBANK WORKING PAPERS 2011 74

DANMARKS NATIONALBANK WORKING PAPERS 2011 74 DANMARKS NATIONALBANK WORKING PAPERS 211 74 Johan Gustav Kaas Jacobsen Danmarks Natonalbank Søren Truels Nelsen Danmarks Natonalbank Betalngsvaner Danmark September 211 The Workng Papers of Danmarks Natonalbank

Læs mere

KAN DE SPOTTES, INDEN DE SMUTTER? OM UNGE, DER AFBRYDER BEHANDLING.

KAN DE SPOTTES, INDEN DE SMUTTER? OM UNGE, DER AFBRYDER BEHANDLING. KAN DE SPOTTES, INDEN DE SMUTTER? OM UNGE, DER AFBRYDER BEHANDLING. TEORI 4 TYPER LAV = Lav til moderat problemscore: Score lavt til moderat i eksternalisering og internalisering. SEP = Svært eksternaliserende:

Læs mere

BESKÆFTIGELSES- OG LØNSTATISTIK FOR KVINDER

BESKÆFTIGELSES- OG LØNSTATISTIK FOR KVINDER Dansk Journalstforbund Februar 2011 BESKÆFTIGELSES- OG LØNSTATISTIK FOR KVINDER Jobs og lønkroner er kke lgelgt fordelt blandt mandlge og kvndelge forbunds. Derfor har v her samlet fre oversgter, der sger

Læs mere

Pearsons formel for χ 2 test. Den teoretiske forklaring

Pearsons formel for χ 2 test. Den teoretiske forklaring Pearsos formel for χ test De teoretse forlarg Ole Wtt-Hase 04 Idhold. Normalfordelge og χ.... Pearsos formel for χ test... 3. Forlarg på Pearsos formel....4 Pearsos formel for χ test. Normalfordelge og

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Kombinationer af lande- og individdata. Multilevel analyse.

Kombinationer af lande- og individdata. Multilevel analyse. Kombinationer af lande- og individdata Multilevel analyse No 1 of 27 Kombinationer af lande- og individdata Multilevel analyse Henrik Lolle Indlæg ved arrangement i Selskab for Surveyforskning: Kunsten

Læs mere

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , ) Statistik for MPH: 7 29. oktober 2015 www.biostat.ku.dk/~pka/mph15 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Erhvervsakademiet Fyn Signalbehandling Aktivt lavpas filter Chebyshev Filter

Erhvervsakademiet Fyn Signalbehandling Aktivt lavpas filter Chebyshev Filter Erhvervsaademiet Fyn Signalbehandling Ativt lavpas filter --3 Chebyshev Filter Udarbejdet af: Klaus Jørgensen & Morten From Jacobsen. It- og Eletronitenolog, Erhvervsaademiet Fyn Udarbejdet i perioden:

Læs mere

Korrelation Pearson korrelationen

Korrelation Pearson korrelationen -9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen

Læs mere

er ikke kun for voksne

er ikke kun for voksne junor Coacng Coacng er kke kun for voksne Fre ungdomsryttere fra Sanrum Rklub aft mulged for at møs med en coac. Koort været at booste troen egne evner Tekst og foto: Tet R asmussen D e fleste nesker forbnr

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005 Dages program Økoometr De multple regressosmodel. september 005 Emet for dee forelæsg er de multple regressosmodel (Wooldrdge kap 3.-3.3+appedx E.-E.) Defto og motvato Fortolkg af parametree de multple

Læs mere

Hvorfor kan vi ikke bare bruge rene kvinter og stortertser?

Hvorfor kan vi ikke bare bruge rene kvinter og stortertser? Hvorfor an vi ie bare bruge rene vinter og stortertser? Problemet med alle de stemninger der tager udgangspunt i rene tertser eller rene vinter de vil løbe ind i problemer omring en-harmonise toner - dvs

Læs mere

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik ... september 1 Epidemiologi og biostatistik. Uge, mandag. september Michael Væth, Institut for Biostatistik. Ikke parametrisk statistiske test : Analyse af overlevelsesdata (ventetidsdata) Censurering

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Opsamlng vedr. nferens uden MLR.5: Beregnng af robuste standardfejl og kovarans under heteroskedastctet (W8.) W.6: Flere emner en multpel regressonsmodel Inferens den

Læs mere

Logistisk regression

Logistisk regression Logistisk regression http://biostat.ku.dk/ kach/css2 Thomas A Gerds & Karl B Christensen 1 / 18 Logistisk regression I dag 1 Binær outcome variable død : i live syg : rask gravid : ikke gravid etc 1 prædiktor

Læs mere

Samarbejdet mellem jobcentre og a-kasser inden for FTFområdet

Samarbejdet mellem jobcentre og a-kasser inden for FTFområdet BEU - 14.9.2009 - Dagsordenspunkt: 3 09-0855 - JEFR - Blag: 3 Samarbejdet mellem jobcentre og a-kasser nden for FTFområdet Det ndstlles: At BEU tlslutter sg, at KL/FTF-aftalen søges poltsk forankret gennem

Læs mere