Lineær regressionsanalyse8

Størrelse: px
Starte visningen fra side:

Download "Lineær regressionsanalyse8"

Transkript

1 Lneær regressonsanalyse8

2 Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret lne dsse punkter lgger. Dette gennemgk v under overskrften Lneær regresson, sde 66, og v bestemte denne lneære funkton ved hjælp af bl.a. CAS-værktøj. Lneær regresson er altså en måde, hvorpå man tl et gvet antal punkter koordnatsystemet kan bestemme den lneære funkton, hvs graf passer bedst på dsse punkter. Den tlpassede lnje (eller estmerede) skrver v som ŷ= ax+ b. Symbolet over ŷ læses som y hat. ŷ = ax + b ŷ = f(x ) = ax + b ê = y ŷ = y (ax + b) = y ax b y x Fgur V kan på punkterne fgur se, at de er fordelt omkrng den ndtegnede rette lne. Derfor vl det være naturlgt at vælge regressonsfunktonen som den tlpassede lnje, dvs. ŷ= ax+ b. Bemærk, at v altså forlanger, at v, nden regressonsanalysen foretages, ved, hvlken type funkton der er tale om. Dette kan f.eks. som ovenstående tlfælde kontrolleres grafsk. På fguren er der ndtegnet en ret lne, der på øjemål ser ud

3 8. Lneær regressonsanalyse 337 tl at være den bedste. Men hvad vl det sge at fnde den bedste lne, og hvorfor er det den bedste? I det følgende skal v ud fra nogle gvne krterer forsøge at fnde den lne, der repræsenterer alle punkterne bedst, dvs. v skal bestemme a og b denne lnes lgnng: ŷ= ax+ b. Det er ofte sådan, at ngen af de afsatte punkter lgger på grafen for den fundne rette lne. Et krterum for at bestemme den bedste rette lne kan være, at den lodrette afstand, der måles fra punktet og op/ned tl lnen, samlet set skal være så llle som mulgt. Dvs. v kan måle afstanden fra punktet tl lnen for hvert eneste målepunkt og derefter summere alle dsse afstande. Hvs lnen er den bedste, vl den samlede summerede afstand være så llle som overhovedet mulgt. Forestller v os, at der på fgur er afsat n punkter ( x, y),( x, y ),...,( xn, yn) vl et vlkårlgt punkt kunne betegnes ( x, y ), hvor =,..., n. Denne betegnelse vl v benytte fremover. I hvert eneste punkt er y-værden y, og funktonsværden for den rette lne er yˆ = f( x) = ax + b. Derved kan v nu beregne den lodrette afstand ê (se fgur ) mellem punkt og lne. Denne forskel kalder v for den estmerede models resdualer og betegnes med ê. V har derfor at eˆ = y yˆ = y ( ax + b) = y ax b se fgur

4 Lneær regressonsanalyse Lad os se på et eksempel. Eksempel Sammenhængen mellem X og Y fremgår af tabel. X Y 50,4 60,48 65,6 75 3, , , ,48 0 4,43 5 4,60 0 4,76 Tabel Lad os prøve at bestemme resdualerne. Ved hjælp af CASværktøj bestemmer v først den bedste lnje tl yˆ 0, 039x 3, 685. = Se fgur : 4,8 4,4 4,0 3,6 3,,8,4, Fgur

5 8. Lneær regressonsanalyse 339 Resdsualerne, som er afrundet tl hele tal, fremgår af tabel : Bedste lnje Resdual Obs. nr. X Y yˆ 0, 039 x 3, 685. eˆ = y yˆ = 50,4,65 0,075 60,48,555-0, ,6,750-0, ,03 3,40-0, ,35 3,335 0, ,44 3,530-0, ,48 4,5 0, ,43 4,505-0, ,6 4,700-0, ,76 4,895-0,35 Tabel Summen af resdualerne får v tl: e = 0, 39. Symbolet 0 = betegner summen af de 0 resdualer, dvs. summen: e = e +e +e 3 + +e 0. Dette vender v tlbage tl afsnttet om test af forudsætnnger, dvs. modelkontrol. 0 Da afstanden e kan antage postve såvel som negatve værder, kan man opnå, at summen = 0, selvom alle n punkter e = lgger langt fra lnen, derfor bruges kvadratet på afstanden, e. V vl derfor undersøge den kvadrerede afstand: e = ( y yˆ ) Ved at regne med kvadratet på afstanden, er de enkelte bdrag n e 0, så den samlede sum e 0. Lghedstegnet gælder = kun, hvs alle punkter lgger på den rette lne. har opløftet anden, dvs. kvadreret Summen af de kvadrerede afstande fra alle punkter tl lnen blver nu:

6 Lneær regressonsanalyse e + e e = e = ( y y ˆ ) n n n = = = ( y ax b) + ( y ax b) ( y ax b) n n Denne størrelse udtrykker altså, hvor stor den samlede (kvadrerede) afstand er fra punkterne tl regressonslnen, og formålet må være, at gøre denne sum så llle som mulgt. har lagt alle afstandene sammen har ndsat e = y ˆ y hvor ˆ y = ax + b Menngen er nu, at v skal bestemme a og b, således at denne sum blver mnmeret. a og b er altså varable og kke konstanter, som de plejer at være. Den metode v skal anvende tl at bestemme a og b kaldes Mndste Kvadraters Metode (MKM), da a og b jo netop bestemmes således, at blver så llle som n mulgt. e = Eksempel Lad der være gvet punkterne ( 3, ), (,) og ( 58 ; ). Ved ndtegnng fås følgende y (5,8) (,) (-3,) x Fgur 3

7 8. Lneær regressonsanalyse 34 V ønsker ved hjælp af MKM at bestemme den rette n lne, der passer bedst tl punkterne, forstået sådan, at e blver så llle som = mulgt: e + e + e 3 = ( y ax b) + ( y ax b) + ( y ax b) 3 3 har skrevet de tre kvadrerede afstande op (da der er tre punkter) har ndsat e = y ax b = ( a ( 3) b) + ( a b) + ( 8 a 5 b) har ndsat koordnaterne = ( + 3a b) + ( a b) + ( 8 5a b) har reduceret Ideen er nu, at v skal bestemme a og b således, at udtrykket ( + 3a b) + ( a b) + ( 8 5a b ) mnmeres, dvs. blver så llle som mulgt. V ved fra kaptel 3 B-bogen, at en måde at mnmere en funkton på, er ved at dfferentere og sætte lg med 0. Så når v skal bestemme værden af kke én men to varable størrelser (nemlg a og b), vl v opfatte ( + 3a b) + ( a b) + ( 8 5a b ) først som en funkton, hvor a er den varable størrelse, og derefter som en funkton, hvor b er den varable størrelse. At dfferentere sådan en funkton af to varable kaldes at dfferentere partelt (partel = delvs). ) a er varabel: ha ( ) = ( + 3a b) + ( a b) + ( 8 5a b) h'( a) = ( + 3a b) 3+ ( a b) ( ) + ( 8 5 a b) 5 ( ) h'( a) = 6+ 8a 6b 4+ a+ b a+ 0b h'( a) = 70a+ 6b 78 har ndført funktonen h har dfferenteret, bl.a. ved hjælp af reglen om dfferentaton af sammensatte funktoner, se sætnng 4 kaptel B- bogen. Bemærk, at a er varabel og b er konstant. har ganget nd parenteserne har reduceret

8 34 8. Lneær regressonsanalyse ) b er varabel: kb ( ) = ( + 3a b) + ( a b) + ( 8 5a b) har ndført funktonen k k'( b) = ( + 3a b) ( ) + ( a b) ( ) + ( 8 5a b) ( ) har dfferenteret, bl.a. ved hjælp af reglen om dfferentaton af sammensatte funktoner, se kaptel B-bogen. Bemærk, at b er varabel og a er konstant. k'( b) = 6a+ b 4+ a+ b 6 + 0a+ b k'( b) = 6a+ 6b har ganget nd parenteserne har reduceret V ved også, at hvs begge funktoner skal mnmeres, skal der gælde: h'( a) = 0 og k'( b) = 0 70a+ 6b 78= 0 og 6a+ 6b = 0 følge sætnng kaptel 3 B-bogen har ndsat h'( a) og k'( b) Dette er to lgnnger med to ubekendte, som v kender fra MAT C, og hvs v løser dem med de metoder, der blev gennemgået MAT C, kaptel 3, fås: a = 0, 875 og b =, 79 og derved blver regressonsfunktonen, den bedste rette lne, yˆ = 0, 875x+, 79. Anvender v et CAS-værktøj får v følgende output: RegEqn m*x+b m b r² r Og v ser, at a = 0, 875 og b =, 79. Samme resultat som v fk ved brug af den ovenfor gennemgåede metode, MKM. Se fgur 4.

9 8. Lneær regressonsanalyse 343 y (5,8) 7 5 y = 0,875 x (,) (-3,) x Fgur 4 Øvelse Sktsér samme koordnatsystem såvel punkter som regressonslne fra eksempel. At v vrkelg har fundet et mnmum eksempel, kan v se af udtrykket, der skulle mnmeres: ( + 3a b) + ( a b) + ( 8 5a b) Hvs man forestllede sg, at v orkede at udregne dette udtryk, vlle man se, at der samlet set vl komme tl at stå 35a som et af leddene, og 3b som et andet af leddene. Begge dsse led har postve tal foran varablene a og b (nemlg 35 og 3), og så ved v fra MAT C om andengradsfunktoner, at det er parabler, der vender grenene opad. Så ved at sætte de afledede lg med 0, må det være parablernes toppunkter, dette tlfælde altså deres mnmumspunkter, v fnder. V kan let overbevse os selv om, at den gennemgåede metode eksempel 6 er tdkrævende med flere punkter end de tre koordnatsystemet. Så v konkluderer følgende uden bevs:

10 Lneær regressonsanalyse Sætnng Lad ( x, y ),( x, y ),...,( x, y ) n n være en række punkter et koordnatsystem. Den rette n n lne f( x)= ax + b mnmerer e = ( y ax b), hvs: = = a = n = ( x x) ( y y) n = ( x x) og b = y ax x og y står for gennemsnttene for x- og y-koordnaterne, og det vser sg, at regressonslnen går gennem punktet ( xy, ). Lad os se, hvordan dsse formler fungerer prakss: Eksempel 3 V vender tlbage tl eksempel med punkterne (-3,), (,) og ( 58, ). V udregner: x = = 3 og y = = 3, Herefter fås ved brug af sætnng : a = n = ( x x) ( y y) n = ( x x) a = ( 3 ) ( 3, 667 ) + ( ) ( 3, 667 ) + ( 5 ) ( 8 3, 667) ( 3 ) + ( ) + ( 5 ) har udregnet de to gennemsnt følge sætnng har ndsat koordnaterne a = 0, 875 har udregnet b= y ax følge sætnng b = 3, 667 0, 875 b =, 79 har ndsat de kendte størrelser har udregnet Dermed er værderne for a og b de samme som eksempel.

11 8. Lneær regressonsanalyse 345 Af CAS-udskrften ovenfor fremgår tllge at r = 0, 94 og r = 0, 855. Tallet r kaldes korrelatonskoeffcenten, og det angver hvor god overensstemmelse, der er mellem den beregnede funkton og de punkter, der er opgvet. Hvs der er fuldstændg overensstemmelse, er r = r =, og hvs der slet kke er nogen overensstemmelse, er r = 0. Hvs lnen er aftagende er r negatv. Værderne af r vl lgge ntervallet: r. Tallet r kaldes determnatonskoeffcenten, og den angver tlpasnngsgraden af en estmeret regressonslne. Hvs der er fuldstændg tlpasnng, er r =, og hvs der slet kke er nogen tlpasnng, er r = 0. Værderne af r vl lgge ntervallet: 0 r, hvlket betyder, at r kan opfattes som en procentdel, og det er meget almndelgt at konklusonen for r = 0, 855 er, at 85,5 % af varatonen den afhængge varabel (y) kan forklares af varatonen den uafhængge varabel (x). V kan gennemføre regressonsanalyser som er baseret på andre end lneære sammenhænge. V bestemmer altså på forhånd hvlken type regresson v vl gennemføre. Nedenfor fremgår resultatet af en eksponentel regressonsanalyse med de samme punkter som ovenfor. Som det ses, har både r og r bedre værder, hvorfor den eksponentelle funkton f( x) =, 943, 97 er bedre overensstemmelse med de x gvne data. V skal kke gå nærmere nd de forskellge regressonstyper, men alene se på lneære regressoner. Resultat af eksponentel regressonsanalyse: RegEqn a*b^x a b r² r

12 Lneær regressonsanalyse Eksempel 4 Sammenhængen mellem X og Y fra eksempel er: X Y 50,4 60,48 65,6 75 3, , , ,48 0 4,43 5 4,60 0 4,76 Tabel 3 V ønsker at bestemme korrelatons- og determnatonskoeffcenten. Ved hjælp af CAS-værktøj får v følgende resultat: r² r Som det ses, er der en høj grad af lneær overensstemmelse samt tlpasnngsgrad mellem X og Y. Anvender v fortolknngen af r som v så ovenfor, betyder det dette eksempel, at 97,4 % af varatonen (udsvng) den afhængge varabel (Y) kan forklares af varatonen (udsvng) den uafhængge varabel (X). Øvelse Sammenhængen mellem dsponbel ndkomst efter fradrag af faste udgfter og daglgvareforbrug pr. husholdnng, fremgår af tabel 4.

13 8. Lneær regressonsanalyse 347 Indkomst Forbrug Tabel 4 Bestem den bedste rette lne samt r og r regresson. vha. lneær Øvelse 3 Sammenhængen mellem ugentlg salg tusnde kr. og testscores for en stkprøve bestående af 8 salgskonsulenter fremgår af tabel 5: Ugentlg salg Test scores Tabel 5 Bestem den bedste rette lne samt r og r vha. lneær regresson.

14 Lneær regressonsanalyse Øvelse 4 Prsen på DVD-afspllere sættes forskellgt 8 forskellge regoner af landet, se nedenfor. Prsen er opgvet hundrede dollar, se tabel 6: Antal solgt Prs 5,5 6,0 6,5 6,0 5,0 6,5 4,5 5,0 Tabel 6 Bestem den bedste rette lne samt r og r regresson. vha. lneær Test lneære regressoner Spørgsmålet er, om det v har gennemgået ovenfor, er tlstrækkelg tl at anvende resultatet fra en lneær regresson tl prognoser? Når vores resultater baseres på populatonsdata, vl resultatet af undersøgelsen være sand. Men, som v har set kaptlet om test MAT B-bogen, vl v prakss sjældent undersøge et spørgsmål ved at bruge data fra hele populatonen, men ved at udtage en stkprøve fra populatonen. Det betyder, at resultatet af sådan en stkprøve er behæftet med uskkerhed, det en anden stkprøve fra samme populaton jo kunne gve et andet resultat. V må derfor supplere ovenstående med gennemførelse af test lneære regressoner. I denne sammenhæng vl v koncentrere os to test:. Test af forudsætnnger.. Test af om stgnngstallet β antager vsse værder, herunder konfdensnterval for lnjens stgnngstal. β er det teoretske stgnngstal den lneære regressonsmodel: y= a+β x. β er det græske bogstav, der svarer tl b Læg mærke tl at forhold tl den måde v normalt skrver lnens lgnng y= ax+ b på, er det almndelgt statstkbøger at skrve det som y= a+β x.

15 8. Lneær regressonsanalyse 349 Styrken ved lneær regresson lgger endvdere det faktum, at modellen, som nævnt, kan anvendes tl forudsgelser (prognoser), hvorfor det er særdeles vgtgt, at v kan stole på modellens resultater. Når v gennem lneær regresson fastlægger den bedste lne, er det udtryk for et estmat, som v resten af kaptlet skrver således: ŷ= a+ bx. Læg mærke tl, at modellen har en hat over y et, hvlket betyder, som v så ovenfor, at der er tale om et bedste bud (= estmat) for den lneære sammenhæng. b angver stgnngstallet og a skærng med y-aksen. V gennemfører altså kke en test af modellens hældnngskoeffcenten b, men af den teoretske hældnngskoeffcent β. Test af forudsætnnger, modelkontrol Som v har set ovenfor defnerede v resdualerne som forskellen mellem de observerede og de tlpassede y-værder, dvs.: eˆ y yˆ =. Den vgtgste forudsætnng, som skal være opfyldt, for gennemførelse af smpel lneær regressonsanalyse er, at: E( e ) = 0, dvs. at mddelværden af resdualerne skal være 0, eller tæt på 0. Hvs der kke ekssterer en lneær sammenhæng mellem de to varable, vl den bedste lnje kke gve de rgtge værder for de fleste x-værder, og mddelværden af resdualerne vl være forskellg fra 0. Normalt vl man, udover at teste om E( e ) = 0, skulle undersøge om yderlgere fre forudsætnnger er opfyldt. V nøjes denne sammenhæng med at nævne to af dsse forudsætnnger:. e erne er normalfordelte. σ σ ( e ) =, dvs. samme sprednng for alle resdualerne Eksempel 5 Lad os se på de data v har fra eksempel, og undersøge om forudsætnngen E e ( ) = 0 er opfyldt. Ved hjælp af CAS-værktøj får v tegnet en tendenslnje, se fgur og fgur 5 øverst.

16 Lneær regressonsanalyse 0 Som v kan se af fgur 5 er punkterne pænt og jævnt fordelt omkrng regressonslnen, hvorfor forudsætnngen ser 0 ud tl at være opfyldt. V så endvdere, at e = 0, 39, hvlket betyder, at E( e )= 0, 039, e = 0, 39, hvlket betyder, at E( e )= 0, 039, som ermeget tæt på0. = V kan endvdere tegne et såkaldt resdualplot over resdualerne, jfr. tabel. Resdualplottet ses nedenfor fgur 5 sammen med tendenslnjen: = y 4,8 4,4 4,0 3,6 3,,8 y = 0, x ,4, x 0,30 0,5 0,00-0,5 Fgur 5 Nedenfor fgur 6 har v medtaget et plot og en tendenslne hvor forudsætnngen kke er opfyldt, da punkterne kke lgger pænt og jævnt fordelt omkrng regressonslnen, men lgger klumper på hver sde af regressonslnen.

17 8. Lneær regressonsanalyse 35 y 6 4 y = 0, x + 8, Fgur x Øvelse 5 Anvend data fra henholdsvs øvelse, 3 og 4 og undersøg ved hjælp af tendenslnen om forudsætnngen E( e ) = 0 ser ud tl at være opfyldt. Beregn eventuelt E( e ). Suppler eventuelt med et resdualplot. β -test I en β -test tester man følgende hypoteser: H 0 : β = 0 ; ngen lneær sammenhæng mellem Xog Y H : β 0 ; lneær sammenhæng mellem Xog Y Man undersøger om der er en lneær sammenhæng mellem den afhængge varabel (Y) og den uafhængge varabet (X). Af H 0 ses det, at hvs β = 0 vl alle X-værder blve ganget med 0, og X-værderne vl dermed kke påvrke Y-værderne. Kun hvs H 0 afvses, dvs. at β 0, tyder det på, at der fndes en lneær sammenhæng. Når v gennemfører en β -test undersøger v altså om β antager vsse værder.

18 35 8. Lneær regressonsanalyse Følgende defnton er vgtg: Defnton Den lneære regressonsmodel y = a+βx er sgnfkant, hvs β 0 Det skal fastslås at en model, som er sgnfkant betyder, at alle p-værderne, med hensyn tl hældnngskoeffcenten β, er mndre end sgnfkansnveauet α. Se kaptel 7 B-bogen. Lad os se på et eksempel, hvor der er udtaget en stkprøve og hvor v ønsker at gennemføre en β -test. Eksempel 6 For at få undersøgt årsagerne tl udsvngene salget af cykelhjelme, har man sammenlgnet salget med en række andre varable. De enkelte data er ndsamlet for 4 tlfældgt udvalgte måneder og gengves nedenstående tabel. I undersøgelsen ndgk der 3 forskellge varable, salg af cykler, reklamendex og prsndex, der havde ndflydelse på salget af cykelhjelme. V vl koncentrere os salg af cykler, dvs. én varabel (= smpel lneær regresson), det v kke skal komme nærmere nd på det, der betegnes som multpel lneær regressonsanalyse.

19 8. Lneær regressonsanalyse 353 Sammenhængen mellem salg af cykler og salget af cykelhjelme. Salg af cykler x Salg af cykelhjelme y Tabel 7 Anvender v et CAS værktøj får v følgende resultat: RegEqn m*x+b m b r² r

20 Lneær regressonsanalyse y y = 0, x 46, Fgur 7 Som det ses af plottet og CAS-udskrften kan den estmerede model fastlægges således: yˆ = 46, , 0637 x. Af værderne r og r kan v endvdere se, at der er en god overensstemmelse og forklarngsgrad mellem salget af cykler og salget af cykelhjelme. x For at gennemføre en β -test, opstller v, jfr. ovenfor, følgende hypoteser: H H 0 : β = 0 : β 0 Som det ses af H 0 har salget af cykler ngen ndflydelse på salget af cykelhjelme. På samme måde ses det af H at salget af cykler vl have ndflydelse på salget af cykelhjelme. V skal kke gå detaljer med selve teoren bag denne test, men koncentrere os om testresultatet, hvor v vl fokusere på p-værden.

21 8. Lneær regressonsanalyse 355 Beslutnngsregel Ved fastlæggelse af et sgnfkansnveau på α = 005, vl v afvse nulhypotesen hvs p < α. Eksempel 7 Anvender v data fra eksempel 6 og bruger et CAS-værktøj får v følgende resultat: Alternatv Hyp β 0 RegEqn a+b*x PVal E-7 df. V skal fokusere på tallet PVal = p-værd. Ved p-værden forstås sandsynlgheden for at observere noget, der er mndst lge så ekstremt som det forelggende, på betngelse af at nul-hypotesen er korrekt. Sagt på en anden måde: Sgnfkanssandsynlghed kan fortolkes som sandsynlgheden for at forskellen mellem det forventede (hypotetske) og det observerede (= observerede salg af cykelhjelme på bass af solgte cykler) er tlfældg. Er sandsynlgheden tlstrækkelgt llle, dvs. p < α, antages forskellen (afvgelsen) kke tlfældg og så forkastes påstanden dvs. nulhypotesen (H o ). Tallet er skrevet på såkaldt eksponentel form, hvlket betyder, at tallet 6,7733 skal ganges med0 =, eller mere populært sagt, så skal du flytte kommaet 7 pladser tl venstre, hvlket gver os en p-værd = 0, Ifølge beslutnngsreglen kan v afvse nulhypotesen (v sger at parameteren salg af cykler er sgnfkant, da p-værden er stort set 0), hvlket betyder, at det med 95 % sandsynlghed må antages, at der fndes en lneær sammenhæng mellem salget af cykler og salget af cykelhjelme.

22 Lneær regressonsanalyse Som tdlgere nævnt lgger styrken den lneære regresson, at man kan anvende modellen tl prognoser eller forudsgelser. I vores eksempel vl det være nteressant at kunne forudsge salget af cykelhjelme på bass af et antal solgte cykler, hvor de anvendte data kke har været en del af stkprøven. Det skal dog bemærkes, at man skal være meget forsgtg med at lave forudsgelser, når man anvender x-værder (dvs. salg af cykler) udenfor det observerede nterval, da v jo kke kan have skkerhed for, at udvklngen salg af cykelhjelme fortsætter lneært. Den estmerede model er, jævnfør eksempel 6: yˆ = 46, , 0637 x, for 4987 < x < 744. Ønsker v at forudsge antallet af solgte cykelhjelme ved et salg på cykler, som lgger ndenfor ntervallet, se tabel 7, så kan v bestemme dette vha. følgende: yˆ = aˆ+ bx ˆ. V ndsætter modellen: y ˆ = 46, , = 67, Det må altså forudsges, at ved et salg på cykler, vl det kunne forventes at der sælges 67 cykelhjelme. Problemet med denne forudsgelse er, at der kke tages højde for den uskkerhed der er knyttet hertl. V vl derfor stedet bestemme det såkaldte 95 % forudsgelsesnterval. Igen skal v kke komme nærmere nd på formlerne bag bestemmelsen af dette nterval, men anvende et CAS-værktøj tl at beregne det. V får v følgende: Antal solgte cykelhjelme vl med 95% sandsynlghed lgge mellem 6 og 309, når der sælges 6500 cykler. Øvelse 6 I denne øvelse skal du arbejde vdere med eksemplet ovenfor, det salget af cykelhjelme nu søges forklaret vha. reklamendex. Reklamendex er et ndex for det anvendte beløb tl reklame. Tallene fremgår af tabel 8.

23 8. Lneær regressonsanalyse 357 Reklame-ndex x Salg af cykelhjelme y Tabel 8 a) Bestem den bedste lneære model, der forklarer salget af cykelhjelme på bass af reklamendex. b) Vurder modellens holdbarhed vha. r og r. c) Gennemfør en β -test. d) Bestem et 95 % forudsgelsesnterval på salget af cykelhjelme, hvs reklamendex er 80. Øvelse 7 I denne øvelse skal du gen arbejde vdere med eksemplet ovenfor, det salget af cykelhjelme nu søges forklaret vha. prsndexet. Prsndexet er udtryk for det generelle prsnveau samfundet de valgte måneder. Tallene fremgår af tabel 9. Sammenhængen mellem prsndex og salget af cykelhjelme.

24 Lneær regressonsanalyse Prsndex x Salg af cykelhjelme y Tabel 9 a) Bestem den bedste lneære model, der forklarer salget af cykelhjelme på bass af prsndex. b) Vurder modellens holdbarhed vha. r og r. c) Test forudsætnngen om at E( e ) = 0. Suppler eventuelt med et resdualplot. d) Gennemfør en β - test. e) Bestem et 95 % forudsgelsesnterval på salget af cykelhjelme, hvs prsndex er henholdsvs og 6. Tl sdst vl v se på fastlæggelse af konfdensnterval for lnens hældnngskoeffcent. Et konfdensnterval er, som v så kaptel 7 MAT B-bogen, et nterval hvor v med en vs stor sandsynlghed har tlld tl, at den sande værd for lnens hældnngskoeffcent lgger. Uden at v kommer yderlgere nd på det, bestemmes et konfdensnterval for lnens hældnngskoeffcent ved hjælp af CAS-værktøj.

25 8. Lneær regressonsanalyse 359 Eksempel 8 Lad os gen tage udgangspunkt de data v har fra eksempel. Ved hjælp af CAS-værktøj får v følgende 95 % -konfdensnterval for hældnngskoeffcenten b: 0, 0337 < b < 0, Det betyder, at b med 95 % skkerhed lgger mellem 0,0337 og 0,0439. Eksempel 9 Lad os nu tage udgangspunkt eksempel 6, hvor v så på sammenhængen mellem salg af cykler og salg af cykelhjelme. Ved hjælp af CAS-værktøj får v følgende 95 % -konfdensnterval for hældnngskoeffcenten b: 0, 0490 < b < 0, Af dette kan v tolke, at b med 95 % skkerhed lgger mellem 0,0490 og 0,0785. V er altså 95 % skre på, at antallet af solgte cykelhjelme stger med et antal mellem 0,0490 og 0,0785, når salget af cykler stger med. Øvelse 8 Anvend data fra øvelse, 3 og 4 tl bestemmelse af et 95 % -konfdensnterval for hældnngskoeffcenten b.

26 Lneær regressonsanalyse Opgaver Opgave Marketngafdelngen en større vrksomhed har samarbejde med deres brancheorgansaton besluttet at nvestere salgsfremmende foranstaltnnger. Salget af vare A påvrkes selvfølgelg af prsen. For at vurdere denne faktor har de første omgang bedt statstkafdelngen om at udarbejde en regressonsanalyse, som beslutnngsgrundlag. Resultatet fremgår af tabel 0. Prsndeks for vare A Antal solgte vare A Tabel 0 a) Bestem den bedste lneære model, der forklarer salget af vare A på bass af prsndex. b) Vurder modellens holdbarhed vha. r og r. c) Test forudsætnngen om at E( e ) = 0. Suppler eventuelt med et resdualplot. d) Gennemfør en β -test. e) Bestem et 95 % forudsgelsesnterval på salget af vare A, hvs prsndex er 05.

27 8. Lneær regressonsanalyse 36 Opgave Vrksomheden IT Onlne, som kke øjeblkket har harddsk-optagere st sortment, ønsker på grund af den store efterspørgsel at udvde st sortment tl også at omfatte harddsk-optagere. For at få en fornem melse af hvlke harddsk-optagere der sælger bedst, har vrksomheden ndhentet salgsoplysnnger på 5 tlfældg forskellge harddskoptagere for aprl 0. I første omgang har man koncentreret sg om sammenlgnng af prs og afsætnng. Resultatet ses tabel. Afsætnng Prs kr Tabel a) Bestem den bedste lneære model, der forklarer salget af harddsk-optagere på bass af prsen. b) Vurder modellens holdbarhed vha. r og r. c) Test forudsætnngen om at E( e ) = 0. Suppler eventuelt med et resdualplot. d) Gennemfør en β -test. e) Bestem et 95 % forudsgelsesnterval på salget af harddsk-optagere, hvs prsen er 80 kr.

28 36 8. Lneær regressonsanalyse Opgave 3 En vrksomhed sælger hængelåse og marketngafdelngen har undersøgt sammenhængen mellem antal solgte hængelåse og prsen på hængelåsene, udtrykt ved henholdsvs prsndekset samt den korte rente. Sammenhængen fremgår af tabel. Tabel Antal solgte hængelåse Den korte rente Prsndeks for hængelåse 700 3,00 0 7, , , 398 3, , , , , , ,0 0 Gennemfør en lneær regressonsanalyse samt β -test forklaret ved henholdsvs den korte rente og prsndeks. Vurder hvlken model, der bedst gver en forklarng på antal solgte hængelåse. Du kan også gennemføre forudsgelser.

29 8. Lneær regressonsanalyse 363 Opgave 4 Udvklngen prsndeks for ejendomssalg fordelt på enfamlehuse peroden Sammenhængen fremgår af tabel 3. Prsndeks for ejendomssalg (006=00) efter td og ejendomskategor Enfamlehuse , 008 0, , , , , ,4 00 6, , , , , , , , , ,0 99 3, Tabel 3 Klde: Statstkbanken, Danmarks Statstk. a) Gennemfør en lneær regressonsanalyse samt β -test. b) Test forudsætnngen om at E( e ) = 0. Suppler eventuelt med et resdualplot. c) Bestem et 95 % -konfdensnterval for hældnngskoeffcenten b. Du kan eventuelt overveje hvad der er årsagerne tl, at prsndekset er faldet fra 006 tl 009.

30 Lneær regressonsanalyse Opgave 5 Fra sundhedsmyndghedernes sde er man nteresseret at undersøge hvad der er bestemmende for sprtusforbruget. Man har udtaget en stkprøve på 4 personer og sammenlgnet sprtusforbruget med deres alder og uddannelsestd. Resultatet fremgår af tabel 4. Sprtusforbrug Antal genstande pr. uge alder Uddannelsestd Antal år alt Tabel 4

31 8. Lneær regressonsanalyse 365 a) Gennemfør to lneære regressonsanalyser, hvor den forklarende varabel er henholdsvs alder og uddannelsestd. b) Undersøg gennem en β -test af de to regressoner hvlken af de to varable (alder eller uddannelsestd), der gver den bedste forklarng på det ugentlge sprtusforbrug. Opgave 6 Brug Danmarks Statstks Databank tl at gennemføre lneære regressonsanalyser samt β -test.

32 Lneær regressonsanalyse Sammenfatnng I lneær regressonsanalyse bestemmes den bedste lneære sammenhæng mellem måleresultater af to varable x og y. Resdualerne bestemmes som: eˆ = y yˆ. Test forudsætnngen om at E( e ) = 0. Metoden tl bestemmelse af den bedste lne kaldes Mndste Kvadraters Metode (MKM). β-test ( β = det græske bogstav beta): Den lneære regressonsmodel ŷ= a+β x er sgnfkant, hvs β 0. For at gennemføre en β -test opstller v følgende hypoteser: H H 0 : β = 0 : β 0 Beslutnngsregel vedr. β -test: V fastsætter sgnfkansnveauet tl α = 005, og vl afvse nulhypotesen hvs p < α. Konfdensnterval for lnens hældnngskoeffcent bestemmes ved hjælp af CAS-værktøj. 95 % forudsgelsesnterval: Angver med 95 % sandsynlghed hvlket nterval det må antages at det afhængge varabel vlle lgge.

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression Statstk Lekton 15 Mere Lneær Regresson Modelkontrol Prædkton Multpel Lneære Regresson Smpel Lneær Regresson - repetton Spørgsmål: Afhænger y lneært af x?. Model: y = β + β x + ε ε d N(0, σ 0 1 2 ) Systematsk

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet =( 1,, k

Læs mere

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse Økonometr Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Kommenteret vejledende besvarelse Resultaterne denne besvarelse er fremkommet ved brug af eksamensnummer 7. Dne

Læs mere

Bilag 6: Økonometriske

Bilag 6: Økonometriske Marts 2015 Blag 6: Økonometrske analyser af energselskabernes omkostnnger tl energsparendsatsen Energstyrelsen Indholdsfortegnelse 1. Paneldataanalyse 3 Specfkaton af anvendte panel regressonsmodeller

Læs mere

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder Regressonsanalyse Epdemolog og Bostatstk Mogens Erlandsen, Insttut for Bostatstk Uge, torsdag (forelæsnng) 1.Smpel lneær regresson (Kaptel 11) systolsk blodtryk og alder. Multpel lneær regresson (Kaptel

Læs mere

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen Landbrugets efterspørgsel efter Kunstgødnng Angelo Andersen.. Problemformulerng I forbndelse med ønsket om at reducere kvælstof udlednngen fra landbruget kan det være nyttgt at undersøge hvordan landbruget

Læs mere

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed

Læs mere

Binomialfordelingen. Erik Vestergaard

Binomialfordelingen. Erik Vestergaard Bnomalfordelngen Erk Vestergaard Erk Vestergaard www.matematkfysk.dk Erk Vestergaard,. Blleder: Forsde: Stock.com/gnevre Sde : Stock.com/jaroon Sde : Stock.com/pod Desuden egne fotos og llustratoner. Erk

Læs mere

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol Udvklng af en metode tl effektvurderng af Mljøstyrelsens Kemkalenspektons tlsyn og kontrol Orenterng fra Mljøstyrelsen Nr. 10 2010 Indhold 1 FORORD 5 2 EXECUTIVE SUMMARY 7 3 INDLEDNING 11 3.1 AFGRÆNSNING

Læs mere

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1 Økonometr 1 Heteroskedastctet 27. oktober 2006 Økonometr 1: F12 1 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.3-4) Sdste gang: I dag: Konsekvenser af heteroskedastctet for OLS Korrekton af varansen

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelsøgnng Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E[ y] = α...

Læs mere

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA)

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA) Statstk II Lekton 4 Generelle Lneære Modeller Smpel Lneær Regresson Multpel Lneær Regresson Flersdet Varansanalyse (ANOVA) Logstsk regresson Y afhængg bnær varabel X 1,,X k forklarende varable, skala eller

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)? Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kvanttatve metoder 2 Forår 2007 Oblgatorsk opgave 2 Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Opgavens prmære formål er at lgne formen på tag-hjem delen af eksamensopgaven. Der

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E y] = α... [ 3 3 4 4

Læs mere

Statikstik II 4. Lektion. Generelle Lineære Modeller

Statikstik II 4. Lektion. Generelle Lineære Modeller Statkstk II 4. Lekton Generelle Lneære Modeller Generel Lneær Model Y afhængg skala varabel X 1,,X k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet X + k = E( Y X ) = α + β x + + β

Læs mere

Tabsberegninger i Elsam-sagen

Tabsberegninger i Elsam-sagen Tabsberegnnger Elsam-sagen Resumé: Dette notat beskrver, hvordan beregnngen af tab foregår. Første del beskrver spot tabene, mens anden del omhandler de afledte fnanselle tab. Indhold Generelt Tab spot

Læs mere

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet

Læs mere

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol Økonometr lekton 7 Multpel Lneær Regresson Testbaseret Modelkontrol MLR Model på Matrxform Den multple lneære regressons model kan skrves som X y = Xβ + Hvor og Mndste kvadraters metode gver følgende estmat

Læs mere

Beregning af strukturel arbejdsstyrke

Beregning af strukturel arbejdsstyrke VERION: d. 2.1.215 ofe Andersen og Jesper Lnaa Beregnng af strukturel arbedsstyrke Der er betydelg forskel Fnansmnsterets (FM) og Det Økonomske Råds (DØR) vurderng af det aktuelle output gap. Den væsentlgste

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.4) Kvanttatve metoder Heteroskedastctet 6. aprl 007 Sdste gang: Konsekvenser af heteroskedastctet for OLS Whte s korrekton af OLS varansen Test for heteroskedastctet

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Opbygnng af statstsk model Eksploratv data-analyse Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Inertimoment for arealer

Inertimoment for arealer 13-08-006 Søren Rs nertmoment nertmoment for arealer Generelt Defntonen på nertmoment kan beskrves som Hvor trægt det er at få et legeme tl at rotere eller Hvor stort et moment der skal tlføres et legeme

Læs mere

Note til Generel Ligevægt

Note til Generel Ligevægt Mkro. år. semester Note tl Generel Lgevægt Varan kap. 9 Generel lgevægt bytteøkonom Modsat partel lgevægt betragter v nu hele økonomen på én gang; v betragter kke længere nogle prser for gvet etc. Den

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 9

Økonometri 1 Efterår 2006 Ugeseddel 9 Økonometr 1 Efterår 006 Ugeseddel 9 Program for øvelserne: Opsamlng på Ugeseddel 8 Gruppearbejde SAS øvelser Ugeseddel 9 består at undersøge, om der er heteroskedastctet vores model for væksten og så fald,

Læs mere

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00 Fagblok 4b: Regnskab og fnanserng 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 tl 31.01 2004 kl. 14.00 Dette opgavesæt ndeholder følgende: Opgave 1 (vægt 50%) p. 2-4 Opgave 2 (vægt 25%) samt opgave 3 (vægt

Læs mere

Luftfartens vilkår i Skandinavien

Luftfartens vilkår i Skandinavien Luftfartens vlkår Skandnaven - Prsens betydnng for valg af transportform Af Mette Bøgelund og Mkkel Egede Brkeland, COWI Trafkdage på Aalborg Unverstet 2000 1 Luftfartens vlkår Skandnaven - Prsens betydnng

Læs mere

FTF dokumentation nr. 3 2014. Viden i praksis. Hovedorganisation for 450.000 offentligt og privat ansatte

FTF dokumentation nr. 3 2014. Viden i praksis. Hovedorganisation for 450.000 offentligt og privat ansatte FTF dokumentaton nr. 3 2014 Vden prakss Hovedorgansaton for 450.000 offentlgt og prvat ansatte Sde 2 Ansvarshavende redaktør: Flemmng Andersen, kommunkatonschef Foto: Jesper Ludvgsen Layout: FTF Tryk:

Læs mere

Real valutakursen, ε, svinger med den nominelle valutakurs P P. Endvidere antages prisniveauet i ud- og indland at være identisk, hvorved

Real valutakursen, ε, svinger med den nominelle valutakurs P P. Endvidere antages prisniveauet i ud- og indland at være identisk, hvorved Lgevægt på varemarkedet gen! Sdste gang bestemtes følgende IS-relatonen, der beskrver lgevægten på varemarkedet tl: Y = C(Y T) + I(Y, r) + G εim(y, ε) + X(Y*, ε) Altså er varemarkedet lgevægt, hvs den

Læs mere

HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskij

HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskij HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskj Den store russske forfatter tænkte naturlgvs kke på markedsførng, da han skrev dsse lner.

Læs mere

Husholdningsbudgetberegner

Husholdningsbudgetberegner Chrstophe Kolodzejczyk & Ncola Krstensen Husholdnngsbudgetberegner En model for husholdnngers daglgvareforbrug udarbejdet for Penge- og Pensonspanelet Publkatonen Husholdnngsbudgetberegner En model for

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvanttatve metoder 2 Instrumentvarabel estmaton 14. maj 2007 KM2: F25 1 y = cy ( c 0) Plan for resten af gennemgangen F25: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,

Læs mere

NOTAT:Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2014

NOTAT:Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2014 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 271218 Brevd. 2118731 Ref. KASH Dr. tlf. 4631 3066 katrnesh@rosklde.dk NOTAT:Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2014 17. august

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 9

Kvantitative metoder 2 Forår 2007 Ugeseddel 9 Kvanttatve metoder 2 Forår 2007 Ugeseddel 9 Program for øvelserne: Introdukton af problemstllng og datasæt Gruppearbejde SAS øvelser Paneldata for tlbagetræknngsalder Ugesedlen analyserer et datasæt med

Læs mere

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 260912 Brevd. 1957603 Ref. LAOL Dr. tlf. 4631 3152 lasseo@rosklde.dk NOTAT: Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2013 19. august

Læs mere

Forberedelse til den obligatoriske selvvalgte opgave

Forberedelse til den obligatoriske selvvalgte opgave MnFremtd tl OSO 10. klasse Forberedelse tl den oblgatorske selvvalgte opgave Emnet for dn oblgatorske selvvalgte opgave (OSO) skal tage udgangspunkt dn uddannelsesplan og dt valg af ungdomsuddannelse.

Læs mere

Notat om porteføljemodeller

Notat om porteføljemodeller Notat om porteføljemodeller Svend Jakobsen 1 Insttut for fnanserng Handelshøjskolen Århus 15. februar 2004 1 mndre modfkatoner af Mkkel Svenstrup 1 INDLEDNING 1 1 Indlednng Dette notat ndeholder en opsummerng

Læs mere

Analytisk modellering af 2D Halbach permanente magneter

Analytisk modellering af 2D Halbach permanente magneter Analytsk modellerng af 2D Halbach permanente magneter Kaspar K. Nelsen kak@dtu.dk, psjq@dtu.dk DTU Energ Konverterng og -Lagrng Danmarks Teknske Unverstet Frederksborgvej 399 4000, Rosklde, Danmark 17.

Læs mere

PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC

PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC MEDDELELSE NR. 1075 Vrknngsgraden (gennemslaget) tl en produktonsbesætnng for avlsværdtallet for hanlg fertltet Duroc blev fundet tl 1,50, hvlket

Læs mere

Brugerhåndbog. Del IX. Formodel til beregning af udlandsskøn

Brugerhåndbog. Del IX. Formodel til beregning af udlandsskøn Brugerhåndbog Del IX Formodel tl beregnng af udlandsskøn September 1999 Formodel tl beregnng af udlandsskøn 3 Formodel tl beregnng af udlandsskøn 1. Indlednng FUSK er en Formodel tl beregnng af UdlandsSKøn.

Læs mere

Kreditrisiko efter IRBmetoden

Kreditrisiko efter IRBmetoden Kredtrsko efter IRBmetoden Vacceks formel Arbejdspapr, oktober 2013 1 KRAKAfnans - Fnanskrsekommssonens sekretarat Teknsk arbejdspapr udkast 15. oktober 2013 Indlednng Det absolutte mndstekrav tl et kredtnsttut

Læs mere

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat.

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat. Håndbog grundvandsmodellerng, Sonnenborg & Henrksen (eds 5/8 GEUS Kaptel 14 IVERS MODELLERIG Torben Obel Sonnenborg Geologsk Insttut, Københavns Unverstet Anker Laer Høberg Hydrologsk Afdelng, GEUS øglebegreber:

Læs mere

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1 Økonometr 1 Avancerede Paneldata Metoder I 24.november 2006 F18: Avancerede Paneldata Metoder I 1 Paneldatametoder Sdste gang: Paneldata begreber og to-perode tlfældet (kap 13.3-4) Uobserveret effekt modellen:

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 13

Økonometri 1 Efterår 2006 Ugeseddel 13 Økonometr 1 Efterår 2006 Ugeseddel 13 Prram for øvelserne: Gruppearbejde plenumdskusson SAS øvelser Øvelsesopgave: Vækstregressoner (fortsat) Ugeseddel 13 fortsætter den emprske analyse af vækstregressonen

Læs mere

2. Sandsynlighedsregning

2. Sandsynlighedsregning 2. Sandsynlghedsregnng 2.1. Krav tl sandsynlgheder (Sandsynlghedens aksomer) Hvs A og B er hændelser, er en sandsynlghed, hvs: 1. 0 ( A) 1 n 2. ( A ) 1 1 3. ( A B) ( A) + ( B), hvs A og B ngen udfald har

Læs mere

Fastlæggelse af strukturel arbejdsstyrke

Fastlæggelse af strukturel arbejdsstyrke d. 23.5.2013 Fastlæggelse af strukturel arbedsstyrke Dokumentatonsnotat tl Dansk Økonom, Forår 2013 For at kunne vurdere økonomens langsgtede vækstpotentale og underlggende saldoudvklng og for at kunne

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 10

Kvantitative metoder 2 Forår 2007 Ugeseddel 10 Kvanttatve metoder 2 Forår 2007 Ugeseddel 0 Program for øvelserne: Gennemgang af teoropgave fra Ugesedel 9 Gruppearbejde og plenumdskusson SAS øvelser, spørgsmål -4. Sdste øvelsesgang (uge 2): SAS øvelser,

Læs mere

Løsninger til kapitel 12

Løsninger til kapitel 12 Løsnnger tl kaptel 1 Opgave 1.1 HypoStat gver umddelbart: ft = 7 En P Teststørrelse H 0 : Alle P passer mandag 80 0,14857 48,8571 3,89737 H 1 : Ikke alle P passer trsdag 30 0,14857 48,8571 1,48899 onsdag

Læs mere

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen Sandsynlghedsregnng. forelæsnng Bo Frs Nelsen Matematk og Computer Scence Danmarks Teknske Unverstet 800 Kgs. Lyngby Danmark Emal: bfn@mm.dtu.dk Dagens nye emner afsnt 6.5 Den bvarate normalfordelng Y

Læs mere

Støbning af plade. Køreplan 01005 Matematik 1 - FORÅR 2005

Støbning af plade. Køreplan 01005 Matematik 1 - FORÅR 2005 Støbnng af plade Køreplan 01005 Matematk 1 - FORÅR 2005 1 Ldt hstorsk baggrund Det første menneske beboede Jorden for over 100.000 år sden. Arkæologske studer vser, at det allerede havde opdaget fænomenet

Læs mere

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006 Økonometr 1 Avancerede Paneldata Metoder II Introdukton tl Instrumentvarabler 27. november 2006 Paneldata metoder Sdste gang: Paneldata med to eller flere peroder og fxed effects estmaton. Første-dfferens

Læs mere

Fra små sjove opgaver til åbne opgaver med stor dybde

Fra små sjove opgaver til åbne opgaver med stor dybde Fra små sjove opgaver tl åbne opgaver med stor dybde Vladmr Georgev 1 Introdukton Den største overraskelse for gruppen af opgavestllere ved "Galle" holdkonkurrenen 009 var en problemstllng, der tl at begynde

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

TEORETISKE MÅL FOR EMNET:

TEORETISKE MÅL FOR EMNET: TEORETISKE MÅL FOR EMNET: Kende begreberne ampltude, frekvens og bølgelængde samt vde, hvad begreberne betyder Kende (og kende forskel på) tværbølger og længdebølger Kende lysets fart Kende lysets bølgeegenskaber

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf3 Insttut for Matematske Fag Aalborg Unverstet Gvet n uafhængge

Læs mere

SERVICE BLUEPRINTS KY selvbetjening 2013

SERVICE BLUEPRINTS KY selvbetjening 2013 SERVICE BLUEPRINTS KY selvbetjenng 2013 EFTER Desgn by Research BRUGERREJSE Ada / KONTANTHJÆLP Navn: Ada Alder: 35 år Uddannelse: cand. mag Matchgruppe: 1 Ada er opvokset Danmark med bosnske forældre.

Læs mere

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts Danmarks Statstk MODELGRUPPEN Arbejdspapr [udkast] Andreas Østergaard Iversen 140609 Estmaton af CES - forbrugssystemet med og uden dynamk: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Læs mere

Samarbejdet mellem jobcentre og a-kasser inden for FTFområdet

Samarbejdet mellem jobcentre og a-kasser inden for FTFområdet BEU - 14.9.2009 - Dagsordenspunkt: 3 09-0855 - JEFR - Blag: 3 Samarbejdet mellem jobcentre og a-kasser nden for FTFområdet Det ndstlles: At BEU tlslutter sg, at KL/FTF-aftalen søges poltsk forankret gennem

Læs mere

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36.

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36. Estmaton af varans/sprednng Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - rw@math.aau.dk Insttut for Matematske Fag Aalborg Unverstet Antag X,..., X n stokastske varable med fælles

Læs mere

www.olr.ccli.com Introduktion Online Rapport Din skridt-for-skridt guide til den nye Online Rapport (OLR) Online Rapport

www.olr.ccli.com Introduktion Online Rapport Din skridt-for-skridt guide til den nye Online Rapport (OLR) Online Rapport Onlne Rapport Introdukton Onlne Rapport www.olr.ccl.com Dn skrdt-for-skrdt gude tl den nye Onlne Rapport (OLR) Vgtg nformaton tl alle krker og organsatoner Ikke flere paprlster Sangrapporten går nu onlne

Læs mere

Undersøgelse af pris- og indkomstelasticiteter i forbrugssystemet - estimeret med AIDS

Undersøgelse af pris- og indkomstelasticiteter i forbrugssystemet - estimeret med AIDS Danmarks Statstk MODELGRUPPEN Arbedspapr* Mads Svendsen-Tune 13. marts 2008 Undersøgelse af prs- og ndkomstelastcteter forbrugssystemet - estmeret med AIDS Resumé: For at efterse nestnngsstrukturen forbrugssystemet

Læs mere

Udviklingen i de kommunale udligningsordninger

Udviklingen i de kommunale udligningsordninger Udvklngen de kommunale udlgnngsordnnger af Svend Lundtorp AKF Forlaget Jun 2004 Forord Dette Memo er skrevet de sdste måneder af 2003, altså før strukturkommssonens betænknng og før Indenrgsmnsterets

Læs mere

faktaark om nybygningens og 5. sporets kapacitet

faktaark om nybygningens og 5. sporets kapacitet Trafkudvalget 2008-09 TRU alm. del Blag 602 Offentlgt greve kommune holbæk kommune høje-taastrup kommune shøj kommune kalundborg kommune lejre kommune odsherred kommune rosklde kommune solrød kommune vallensbæk

Læs mere

DANMARKS NATIONALBANK WORKING PAPERS 2011 74

DANMARKS NATIONALBANK WORKING PAPERS 2011 74 DANMARKS NATIONALBANK WORKING PAPERS 211 74 Johan Gustav Kaas Jacobsen Danmarks Natonalbank Søren Truels Nelsen Danmarks Natonalbank Betalngsvaner Danmark September 211 The Workng Papers of Danmarks Natonalbank

Læs mere

BLÅ MEMOSERIE. Memo nr. 208 - Marts 2003. Optimal adgangsregulering til de videregående uddannelser og elevers valg af fag i gymnasiet.

BLÅ MEMOSERIE. Memo nr. 208 - Marts 2003. Optimal adgangsregulering til de videregående uddannelser og elevers valg af fag i gymnasiet. BLÅ MEMOSERIE Memo nr. 208 - Marts 2003 Optmal adgangsregulerng tl de vderegående uddannelser og elevers valg af fag gymnaset Karsten Albæk Økonomsk Insttut Købenavns Unverstet Studestræde 6, 1455 Købenavn

Læs mere

Stadig ligeløn blandt dimittender

Stadig ligeløn blandt dimittender Stadg lgeløn blandt dmttender Kvnder og mænd får stadg stort set lge meget løn deres første job, vser DJs dmttendstatstk for oktober 2013. Og den gennemsntlge startløn er nu på den pæne sde af 32.000 kr.

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

Kunsten at leve livet

Kunsten at leve livet Kunsten at leve lvet UNGE - ADFÆRD - RUSMIDLER 3. maj 2011 Hvad er msbrug? Alment om den emotonelle udvklng Hvem blver msbruger? Om dagnoser Om personlghedsforstyrrelser Mljøterap, herunder: - baggrund

Læs mere

Europaudvalget 2009-10 EUU alm. del Bilag 365 Offentligt

Europaudvalget 2009-10 EUU alm. del Bilag 365 Offentligt Europaudvalget 2009-10 EUU alm. del Blag 365 Offentlgt Notat Kemkaler J.nr. MST-652-00099 Ref. Doble/lkjo Den 5. maj 2010 GRUNDNOTAT TIL FOLKETINGETS EUROPAUDVALG Kommssonens forslag om tlpasnng tl den

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Morten Frydenberg Bostatstk verson dato: -03-0 Effektmodfkaton Hvad er det - Kvantfcerng - Test Bostatstk uge 7 mandag Morten Frydenberg, Afdelng for Bostatstk Vægtede gennemsnt - Formler for standard

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

FOLKEMØDE-ARRANGØR SÅDAN!

FOLKEMØDE-ARRANGØR SÅDAN! FOLKEMØDE-ARRANGØR SÅDAN! Bornholms Regonskommune står for Folkemødets praktske rammer. Men det poltske ndhold selve festvalens substans blver leveret af parter, organsatoner, forennger, vrksomheder og

Læs mere

1. Beskrivelse af opgaver inden for øvrig folkeskolevirksomhed

1. Beskrivelse af opgaver inden for øvrig folkeskolevirksomhed Bevllngsområde 30.32 Øvrg folkeskolevrksomhed Udvalg Børne- og Skoleudvalget 1. Beskrvelse opgaver nden for øvrg folkeskolevrksomhed Området omfatter aktvteter tlknytnng tl den almndelge folkeskoledrft

Læs mere

Capital Asset Pricing Modellen

Capital Asset Pricing Modellen Captal Asset Prcng Modellen og det danske aktearked Bachelorprojekt af Thoas Klesdorff Hougaard Vejleder Lone Sauelsen Afleverngsdato.05.006 Erhvervsøkono/HA-uddannelsen Insttut for Safundsvdenskab og

Læs mere

Kulturel spørgeguide. Psykiatrisk Center København. Dansk bearbejdelse ved Marianne Østerskov. Januar 2011 2. udgave. Kulturel spørgeguide Jan.

Kulturel spørgeguide. Psykiatrisk Center København. Dansk bearbejdelse ved Marianne Østerskov. Januar 2011 2. udgave. Kulturel spørgeguide Jan. Vdenscenter for Transkulturel Psykatr har ekssteret sden 2002 og skal fremme psykatrsk udrednng, dagnostk, behandlng, pleje og opfølgnng af patenter, der har en anden etnsk baggrund end dansk. Kulturel

Læs mere

Handleplan for Myndighed (Handicap og Socialpsykiatri)

Handleplan for Myndighed (Handicap og Socialpsykiatri) for Myndghed (Handcap og Socalpsykatr) Baggrund Økonomudvalget besluttede den 17. maj 2010, at der bl.a. på Myndghedsområdet for Handcap og Socalpsykatr skal udarbejdes en handleplan som følge den konstaterede

Læs mere

econstor zbw www.econstor.eu

econstor zbw www.econstor.eu econstor www.econstor.eu Der Open-Access-Publkatonsserver der ZBW Lebnz-Informatonszentrum Wrtschaft The Open Access Publcaton Server of the ZBW Lebnz Informaton Centre for Economcs Jacobsen, Johan Gustav

Læs mere

Konkurrenceniveau og risiko i banksektoren

Konkurrenceniveau og risiko i banksektoren Copenhagen Busness School 2013 Kanddatafhandlng, Cand.merc.mat. Konkurrencenveau og rsko banksektoren Level of competton and rsk n the bankng sector Morten N. Haastrup Vejleder: Hans Kedng Afleveret 23.

Læs mere

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger Vaansanalyse (ANOVA) Repetton, ANOVA Tjek af model antagelse Konfdensntevalle fo mddelvædene Tukey s test fo pavse sammenlgnnge ANOVA - defnton ANOVA (ANalyss Of VAance), også kaldet vaansanalyse e en

Læs mere

Fysik 3. Indhold. 1. Sandsynlighedsteori

Fysik 3. Indhold. 1. Sandsynlighedsteori Fysk 3 Indhold Termodynamk John Nclasen 1. Sandsynlghedsteor 1.1 Symboler 1.2 Boolsk Algebra 1.3 Betngede Udsagn 1.4 Regneregler 1.5 Bayes' formel 2. Fordelnger 2.1 Symboler 2.2 Bnomal Fordelngen 2.3 ultnomal

Læs mere

Vejledning om kontrol med krydsoverensstemmelse 2007

Vejledning om kontrol med krydsoverensstemmelse 2007 Vejlednng om kontrol med krydsoverensstemmelse 007 Maj 007 Mnsteret for Fødevarer, Landbrug og Fsker Drektoratet for FødevareErhverv Kolofon Vejlednng om kontrol med krydsoverensstemmelse 007 Maj 007 Denne

Læs mere

Validering og test af stokastisk trafikmodel

Validering og test af stokastisk trafikmodel Valderng og test af stokastsk trafkmodel Maken Vldrk Sørensen M.Sc., PhDstud. Otto Anker Nelsen Cv.Ing., PhD, Professor Danmarks Teknske Unverstet/ Banestyrelsen Rådgvnng 1. Indlednng Trafkmodeller har

Læs mere

Insttut for samfundsudvklng og planlægnng Fbgerstræde 11 9220 Aalborg Øst Ttel: Relatv Fasepostonerng Med bllge håndholdte GPS-modtagere Projektperode: Februar 2006 Jul 2006 Semester: 10. Projektgruppe:

Læs mere

Forberedelse INSTALLATION INFORMATION

Forberedelse INSTALLATION INFORMATION Forberedelse 1 Pergo lamnatgulvmateraler leveres med vejlednnger form af llustratoner. Nedenstående tekst gver forklarnger på llustratonerne og er nddelt tre områder: Klargørngs-, monterngs- og rengørngsvejlednnger.

Læs mere

Import af biobrændsler, er det nødvendigt?

Import af biobrændsler, er det nødvendigt? Vktor Jensen, sekretaratsleder Danske Fjernvarmeværkers Forenng Import af bobrændsler, er det nødvendgt? Svaret er: Nej, kke ud fra et ressourcemæssgt og kapactetsmæssgt synspunkt. Men ud fra et kommercelt

Læs mere

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs

Læs mere

Motivationseffekten af aktivering

Motivationseffekten af aktivering DET SAMFUNDSVIDENSKABELIGE FAKULTET KØBENHAVNS UNIVERSITET Kanddatspecale Bran Larsen Motvatonseffekten af aktverng Vejleder: Anders Holm Afleveret den: 03/03/06 Indholdsfortegnelse 1. Indlednng... 1 2.

Læs mere

Værktøj til beregning af konkurrenceeffekter ved udlægning af nyt butiksområde

Værktøj til beregning af konkurrenceeffekter ved udlægning af nyt butiksområde Dato: 6. oktober 217 Sag: DIPS- 16/1631 Sagsbehandler: /SBJ/DEB/PMO/KBA Værktøj tl beregnng af konkurrenceeffekter ved udlægnng af nyt butksområde KONKURRENCE- OG FORBRUGERSTYRELSEN ERHVERVSMINISTERIET

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

Erhvervsstyrelsen og Ernst & Young. 26. februar 2014

Erhvervsstyrelsen og Ernst & Young. 26. februar 2014 Erhvervsstyrelsen og Ernst & Young 26. februar 2014 Bass- og ex ante-målng af de admnstratve konsekvenser ved forslag tl lov om autorsaton af vrksomheder el-, vvs- og kloaknstallatonsområdet Indholdsfortegnelse

Læs mere

Kvalitet af indsendte måledata

Kvalitet af indsendte måledata Notat ELT2004-112 Aktørafregg Dato: 23. aprl 2004 Sagsr.: 5584 Dok.r.: 185972 v1 Referece: NIF/AFJ Kvaltet af dsedte måledata I Damark er det etvrksomhederes opgave at måle slutforbrug, produkto og udvekslg

Læs mere

Vækstregnskab for nm-erhvervet

Vækstregnskab for nm-erhvervet Danmarks Statstk MODEGRUPPEN Arbejdspapr* Erk Bjørsted 23. November 2005 Martn Junge Vækstregnskab for nm-erhvervet Resumé: Papret præsenterer et vækstregnskab for nm-erhvervet og sammenlgner den totale

Læs mere

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004 Dages program Økoometr De multple regressosmodel. september 004 Emet for dee forelæsg er stadg de multple regressosmodel (Wooldrdge kap. 3.4-3.5) Praktske bemærkg Opsamlg fra sdst Irrelevate varable og

Læs mere

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005 Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006 Dagens program: Øonometr 1 Heterosedastctet 30. otober 006 Effcent estmaton under heterosedastctet (Wooldrdge 8.4): Sdste gang: Kendte vægte - Weghted Least Squares (WLS) Generalzed Least Squares (GLS)

Læs mere

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4.

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4. 1 af 12 MAT A HHX Udskriv siden FACITLISTE TIL KAPITEL 8 Øvelser Øvelse 1 Graf tegnes med CAS. Øvelse 2 Bedste rette linie: Øvelse 3 Bedste rette linie: Øvelse 4 Bedste rette linie: Øvelse 5 ad øvelse

Læs mere

Forbedret Fremkommelighed i Aarhus Syd. Agenda. 1. Vurdering af forsøg Lukning af Sandmosevej

Forbedret Fremkommelighed i Aarhus Syd. Agenda. 1. Vurdering af forsøg Lukning af Sandmosevej Trafkgruppen Agenda 1. Vurderng af forsøg Luknng af Sandmosevej 2. Vurderng af foreslået forsøg Luknng af Sandmosevej og Brunbakkevej 3. Forslag tl forbedret fremkommelghed for hele Aarhus Syd 4. Kortsgtet

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2005II, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2005II, Økonometri 1 Rettevejlednng tl Økonomsk Kanddateksamen 005II, Økonometr 1 Vurderngsgrundlaget er selve opgavebesvarelsen og blaget, nklusve det afleverede SAS program. Materalet på dskette/cd bedømmes som sådan kke,

Læs mere