MM502+4 forelæsningsslides. uge 6, 2009
|
|
|
- Kim Johnsen
- 8 år siden
- Visninger:
Transkript
1 MM502+4 forelæsningsslides uge 6,
2 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x, y) f 2 (x, y) := lim k 0 k f 1 (x, y) hedder den partielle afledede af f(x, y) i x-retningen, f 2 (x, y) hedder den partielle afledede af f(x, y) i y-retningen. Man bestemmer f 1 (x, y) ved at opfatte y-variablen i f(x, y) som en konstant, hvorved f(x, y) bliver en funktion i een variabel x, som nu differentieres på sædvanlig vis. På tilsvarende måde bestemmes f 2 (x, y). Notationer: For en funktion z = f(x, y) i 2 variable benyttes erne: f 1 (x, y) = z f(x, y) = x x = f x(x, y) = D 1 f(x, y) f 2 (x, y) = z f(x, y) = y y = f y(x, y) = D 2 f(x, y) Notationer: Evaluering af partielle afledede i et punkt (a, b): ( ) f 1 (a, b) = f(x, y) = z = f x (a, b) = D 1 f(a, b) x (a,b) x (a,b) ( ) f 2 (a, b) = f(x, y) = z = f y (a, b) = D 2 f(a, b) y (a,b) y (a,b) 2
3 Definition partielle afledede: For en funktion i flere end to variable, fx. f(x, y, z) eller f(x 1, x 2,..., x n ), defineres de partielle afledede f 1 (x, y, z) = x f(x, y, z), f 2(x, y, z) = y f(x, y, z), f 3(x, y, z) = f(x, y, z) z hhv. f 1 (x 1, x 2,..., x n ) = x 1 f(x 1, x 2,..., x n ), f 2 (x 1, x 2,..., x n ) = x 2 f(x 1, x 2,..., x n ), f n (x 1, x 2,..., x n ) = f(x 1, x 2,..., x n ) x n helt analogt! Tangentplan og normallinie til grafen for f(x, y): Tangentplanen til grafen for f(x, y) i punktet (a, b) er udspændt af de to retningsvektorer T 1 = i + f 1 (a, b)k, T 2 = j + f 2 (a, b)k. Normalvektoren n til tangentplanen er vinkelret på T 1 og T 2, og kan således bestemmes til at være n = f 1 (a, b)i + f 2 (a, b)j k. Tangentplanen til grafen for f(x, y) i punktet (a, b) går igennem punktet (a, b, f(a, b)) og har normalvektor n, og har derfor ligningen f 1 (a, b)(x a) + f 2 (a, b)(y b) + ( 1)(z f(a, b)) = 0, som kønnere kan skrives på formen: z = f(a, b) + f 1 (a, b)(x a) + f 2 (a, b)(y b). Normallinien til grafen for f(x, y) i punktet (a, b) går gennem punktet (a, b, f(a, b)) og har retningsvektor n, og har derfor parameterfremstillingen (a, b, f(a, b)) + t n, eller og ligningerne (a + tf 1 (a, b))i + (b + tf 2 (a, b))j + (f(a, b) t)k, t R, x a f 1 (a, b) = y b f 2 (a, b) z f(a, b) =, 1 (sidstnævnte forudsætter, at f 1 (a, b) 0 og f 2 (a, b) 0). 3
4 Definition Højere partielle afledede: For en funktion z = f(x, y) af to variable defineres de højere afledede bla. som følger: 2 z := z x 2 x x 2 z := z y 2 y y 2 z := z x y x y 2 z y x := z y x 3 z := 2 z x 2 y x x y = f 11 (x, y) = f xx (x, y) = f 22 (x, y) = f yy (x, y) = f 21 (x, y) = f yx (x, y) = f 12 (x, y) = f xy (x, y) = f 211 (x, y) = f yxx (x, y) Theorem 1: Hvis f(x, y) er en funktion af to variable, hvis P = (a, b) er et punkt i domænet for f(x, y), og hvis de partielle afledede 2 x y f(x, y) og 2 f(x, y) y x findes og er kontinuerte i en omegn af punktet P, da er 2 f(a, b) = 2 x y f(a, b). y x Denne sætning betyder, at vi under passende, men ikke særligt strenge betingelser på f(x, y) kan ombytte differentiationsrækkefølgen. Også for funktioner af flere end to variable. Bla. er 4 x y z x f(x, y, z) = 4 f(x, y, z), x 2 y z hvis alle de involverede højere partielle afledede findes og er kontinuerte. 4
5 Kæderegel, Version I: Hvis f(x, y) er en funktion i 2 variable og u(t) og v(t) er funktioner i en variabel, hvis f(x, y), u(t) og v(t) er differentiable, og hvis g(t) := f(u(t), v(t)), da er g(t) differentiabel og g (t) = f 1 (u(t), v(t)) u (t) + f 2 (u(t), v(t)) v (t) = f ( ) u(t), v(t) du f ( ) (t) + u(t), v(t) dv x dt y dt (t). Reglen kan omformuleres ved at bruge z istedet for f(x, y): Hvis z afhænger differentiabelt af x og y, og hvis x og y begge afhænger differentiabelt af en parameter t, da er dz dt = z dx x dt + z dy y dt. 5
6 Kæderegel, Version II: Hvis f(x, y) er en funktion i 2 variable og u(s, t) og v(s, t) er funktioner i to variable, hvis f(x, y), u(s, t) og v(s, t) er differentiable, og hvis g(s, t) := f ( u(s, t), v(s, t) ), da er g(s, t) differentiabel og ( ) u g 1 (s, t) = f 1 u(s, t), v(s, t) s (s, t) + f 2(u(s, t), v(s, t)) v (s, t) s = f ( ) u f ( ) v u(s, t), v(s, t) (s, t) + u(s, t), v(s, t) (s, t). x s y s ( ) u g 2 (s, t) = f 1 u(s, t), v(s, t) (s, t) = f x ( u(s, t), v(s, t) ) u t t (s, t) + f 2(u(s, t), v(s, t)) v t f (s, t) + y ( ) v u(s, t), v(s, t) (s, t). t Også her kan reglen omformuleres ved at bruge z istedet for f(x, y): Hvis z afhænger differentiabelt af x og y, og hvis x og y begge afhænger differentiabelt af variable s og t, da er z s = z x x s + z y y s og z t = z x x t + z y y t Linearisering: Lineariseringen af en funktion f(x, y) i to variable i punktet (a, b) er funktionen L(x, y) = f(a, b) + f 1 (a, b)(x a) + f 2 (a, b)(y b). Lineariseringen er defineret, hvis de partielle afledede f 1 (a, b) og f 2 (a, b) findes. Ligning for tangentplan: z = L(x, y) Ligning for graf: z = f(x, y) Vi forventer, at f(x, y) L(x, y) når (x, y) er tæt på (a, b). 6
7 Gradient definition: Til en funktion f(x, y), som har første partielle afledede, defineres gradienten ved f(x, y) = f 1 (x, y)i + f 2 (x, y)j Bemærk, at gradienten f(x, y) er en vektor. Den benævnes også gradf(x, y). Theorem 6 Hvis f(x, y) er differentiabel i punktet (a, b) og hvis f(a, b) 0, da er f(a, b) vinkelret på niveaukurven gennem (a, b). f(x, y) vokser mest i retningen f(a, b), f(x, y) aftager mest i retningen f(a, b), f(x, y) er konstant langs niveaukurven gennem (a, b) Retningsafledede definition: Antag at f(x, y) er differentiabel i punktet (a, b). Til enhver enhedsvektor u = (u, v) defineres den retningsafledede af f(x, y) i retningen u ved D u f(a, b) = lim t 0 f(a + tu, b + tv) f(a, b) t Den retningsafledede u f(a, b) kaldes også rate of change i retningen u. Hvis f(x, y) er differentiabel i (a, b), så findes den retningsafledede i hver retning u, og den er i bekræftende fald bestemt ved D u f(a, b) = u f(a, b) Rate of change i retningen bestemt ved f(a, b) er lig med f(a, b) : D u f(a, b) = f(a, b), når u = f(a, b)/ f(a, b) D i f(a, b) = f 1 (a, b), D j f(a, b) = f 2 (a, b), D i f(a, b) = f 1 (a, b). D j f(a, b) = f 2 (a, b). 7
8 Gradient i 3 eller flere dimensioner definition: Gradienten af en funktion f(x 1, x 2,..., x n ) i n variable, som har alle første afledede, defineres ved f(x 1, x 2,..., x n ) = f x 1 e 1 + f x 2 e f x n e n Her er e 1, e 2,..., e n enhedsvektorer langs koordinatretningerne. Specielt, hvis f(x, y, z) er en funktion i 3 variable, har vi f(x, y, z) = f x i + f y j + f z k Også her kan vi tale om retningsafledede og rate of change, som vi i tre dimensioner kan definere ved D u f(a, b, c) = u f(x, y, z) Funktionen f(x, y, z) vokser mest i retningen bestemt ved f, den aftager mest i retningen f, og f er vinkelret på niveaufladerne for f(x, y, z). 8
Funktion af flere variable
Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel
Partielle afledede og retningsafledede
Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen
MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen
MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner
MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen
MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner f : R R En funktion f : R R er differentiabel
Gradienter og tangentplaner
enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem
Oversigt [S] 2.7, 2.9, 11.4
Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable
Funktion af flere variable
Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk
Funktioner af flere variable
Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,
Oversigt [S] 2.7, 2.9, 11.4
Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv
Funktioner af to variable
enote 15 1 enote 15 Funktioner af to variable I denne og i de efterfølgende enoter vil vi udvide funktionsbegrebet til at omfatte reelle funktioner af flere variable; vi starter udvidelsen med 2 variable,
Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning
Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleord og begreber Differentiabel funktion i en variabel Partielle afledede i flere variable Notation og regneregler for partielle afledede Test partielle afledede Grafisk
Mere om differentiabilitet
Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget
Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1
Oversigt [S]. Nøgleord og begreber Retningsafledt Gradientvektor Gradient i flere variable Fortolkning af gradientvektoren Agst, opgave 5 Delvis afledt [S]. Directional derivatives and te... Definition
Oversigt Matematik Alfa 1, August 2002
Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums
Differentiabilitet. f(h) = f(x 0 +h) f(x 0 ). y = f(x) f(h) df(h) Figur 1: Tangent, tilvækst og differential. lim. df(h) = f (x 0 )h.
Differentiabilitet 1 Funktioner af én reel variabel Tilvækstfunktionen f med udgangspunkt i x 0 er en reel funktion af tilvæksten : f() = f(x 0 +) f(x 0 ). y = f(x) Tangent (x 0,f(x 0 )) df() f() x 0 x
MM501 forelæsningsslides
MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele
Figur y. Nøgleord og begreber Tangentlinje for graf Tangentplan for graf
Oversigt [S] 2.7, 2.9, 11. Tangentlinje [S] 2.7 Derivatives Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Figur y y = f(a) + f (a)( a) Test tangentplan Lineær approimation i en og flere
Vejledende besvarelse på august 2009-sættet 2. december 2009
Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,
Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet
Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal
Reeksamen i Calculus
Reeksamen i Calculus Torsdag den 11. august 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 8 nummererede sider
MATEMATIK A-NIVEAU-Net Forberedelsesmateriale
STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale
INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010
INSTITUT FOR MATEMATIK OG DATALOGI TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010 Forord Denne opgavesamling indeholder samtlige eksamensopgaver, der har været stillet
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w
Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation
Største- og mindsteværdi Uge 11
Uge 11 : Definitioner Efterår 2009 : Definitioner Lad A R n og f : A R en reel funktion af n. : Definitioner : Definitioner Lad A R n og f : A R en reel funktion af n. Punktet a = (a 1, a 2,..., a n )
Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med
Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform
Løsninger til eksamensopgaver på A-niveau 2017
Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på
MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen
MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible
GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f
GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar
Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet
Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning
Reeksamen i Calculus
Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 0. februar 019 Dette eksamenssæt
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne
Ekstrema, Teori og Praksis
Kasper H. Christensen Andreas D. Christoffersen Christoffer Gøthgen Stine M. Jensen Kenneth V. L. Offersen Vini M. Olsen Ekstrema, Teori og Praksis - Ikke-lineæar optimeringsproblemer Vejleder: Martin
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 19 Opgave 1 (6 point) En funktion
Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En
Matematisk modellering og numeriske metoder
Matematisk modellering og numeriske metoder Morten Grud Rasmussen 5. september 2016 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).
Differentialligninger med TI-Interactive!
Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4
11. Funktionsundersøgelse
11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med
Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3.
Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. januar 7 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.
CALCULUS "SLIDES" TIL CALCULUS 1 + 2
CALCULUS "SLIDES" TIL CALCULUS + INSTITUT FOR MATEMATISKE FAG AARHUS UNIVERSITET 4 Indhold Forord 5 I. Differentiation 7. Kontinuitet 7. Partielle afledede 7 3. Tangentplan 5 4. Kædereglen 34 5. Gradient
Matematisk modellering og numeriske metoder. Lektion 11
Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 17. oktober, 2013 1 Partielle differentialligninger 1.1 D Alemberts løsning af bølgeligningen [Bogens sektion 12.4 på side 553]
Prøveeksamen i Calculus
Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.
Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium
Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium
Reeksamen i Calculus
Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 08 Dette eksamenssæt består af 8 nummererede sider med afkrydsningsopgaver.
Mat H /05 Note 2 10/11-04 Gerd Grubb
Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med
(Prøve)Eksamen i Calculus
(Prøve)Eksamen i Calculus Sæt 1, april 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende (prøve)eksamenssæt består af 7 nummererede sider
Ekstremumsbestemmelse
Ekstremumsbestemmelse Preben Alsholm 24. november 2008 1 Ekstremumsbestemmelse 1.1 Ekstremum for funktion af én variabel: Definitioner Ekstremum for funktion af én variabel: Definitioner Punktet a kaldes
Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A
Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00
Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.
Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums
Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )
Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,
Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005
Lokalt ekstremum DiploMat 01905
Lokalt ekstremum DiploMat 0905 Preben Alsholm Institut for Matematik, DTU 6. oktober 00 De nition Et stationært punkt for en funktion af ere variable f vil i disse noter blive kaldt et egentligt saddelpunkt,
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017
Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
INDHOLDSFORTEGNELSE. Side Indledning 2. Kapitel 1 Introduktion til funktioner af 2 variable 3 Niveaukurver 5
INDHOLDSFORTEGNELSE Side Indledning Kapitel 1 Introduktion til funktioner af variable 3 Niveaukurver 5 Kapitel Partiel differentiation og gradienten 7 Kapitel 3 Differentialet 1 Fejlvurdering 13 Tangentplan
Matematisk modellering og numeriske metoder. Lektion 13
Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 9. november 25 Divergens af et vektorfelt [Sektion 9.8 og.7 i bogen, s. 43]. Definition af og og egenskaber for divergens Lad
Besvarelser til de to blokke opgaver på Ugeseddel 7
Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,
Besvarelser til Calculus Ordinær Eksamen Juni 2018
Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over
Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet
Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx131-MATn/A-29052013 Onsdag den 29. maj 2013 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret
Geometriske grundbegreber 8. lektion
1 / 14 Geometriske grundbegreber 8. lektion Martin Raussen Institut for matematiske fag Aalborg Universitet 1.4.2008 2 / 14 (Regulære) parameterfremstillinger for en flade Eksempler Kurver på flader og
Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018
Besvarelser til Calculus Ordinær Eksamen - 5. Januar 18 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0.
Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums
Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt
Oversigt [S] 5., 5.3, 5.4,.,. Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 6 Uge 39.
Differential- regning
Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7
Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.
Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums
Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne:
Vektorer i 3D. Grundegreer. Koordinater z k P OP i 0 j x y Enhedsvektorerne De ortogonale enhedsvektorer kaldes for: i, j og k Vektor OP Hvis punkt p har koordinaterne: P ( a a a3 ) Så har vektor OP koordinaterne:
af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning
EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens
Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)
Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer
x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet
Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen
Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo
SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den
Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium
Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...
Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.
Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen
MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable
MOGENS ODDERSHEDE LARSEN Funktioner af flere variable. udgave 015 i FORORD Dette notat giver en kort indføring i, hvorledes man ved anvendelse af passende regnemidler og benyttelse af partielle afledede
To find the English version of the exam, please read from the other end! Eksamen i Calculus
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår
Differentialligninger. Ib Michelsen
Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Om første og anden fundamentalform
Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt
Epistel E2 Partiel differentiation
Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +
