Differential- regning

Størrelse: px
Starte visningen fra side:

Download "Differential- regning"

Transkript

1 Differential- regning del () f () m l () 6 Karsten Juul

2 Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7 Differentialregning del udgave 6 6 Karsten Juul Dette hæfte kan downloades fra wwwmatdk Hæftet må benyttes i undervisningen hvis læreren med det samme sender en til som dels oplyser at dette hæfte benyttes, dels oplyser om hold, lærer og skole

3 Tretrinsreglen Definition af differentialkvotient Oplæg Figur a viser en interaktiv figur med grafen for funktionen (*),75,5 Linjen m er tangent til grafen for f () i grafpunktet med førstekoordinat Linjen l går gennem grafpunkterne med førstekoordinater og Man kan trække det hvide punkt frem og tilbage på førsteaksen og derved ændre tallet l går gennem punkterne (, y) (, f () ) og (, y ) (,75, f (,75) ) så l 's hældningskoefficient er y y f (,75) f (),75 hvilket er lig tallet på figur a,75 På figur b er så nær at l 's hældningskoefficient er næsten den samme som hældningskoefficienten for tangenten m Tangenthældningen f () er grænseværdien af l 's hældningskoefficient når går mod (c) Definition Ved differentialkvotienten f ( ) af en funktion f () i et tal forstås grænseværdien for gående mod af hældningskoefficienten for linjen gennem grafpunkterne med førstekoordinater og Med symboler kan denne definition skrives sådan: f ( ) lim f ( ) () f () l () f () f ( ) l,75 l 's hældn,75 m () Figur a,5 l 's hældn,75 m () Figur b Differentialregning Side 59 6 Karsten Juul

4 Øvelse (a) På figur a skærer l grafen i to punkter Beregn andenkoordinaten til hvert af disse punkter (b) Beregn hældningskoefficienten for linjen l på figur b (c) I tidligere afsnit har du (uden bevis) fået oplyst nogle formler der kan bruges til at beregne differentialkvotienter Brug disse til at beregne hældningskoefficienten for tangenten m i ramme Tretrinsreglen Oplæg Vi vil bruge definition c til at beregne hældningskoefficienten f () for tangenten m i ramme Dette gør vi i tre trin: () Grafpunkterne med førstekoordinater og har andenkoordinater, 5 og,75,5 Linjen l gennem disse to punkter har derfor hældningskoefficienten (,75,5 ),5 () Vi får lommeregneren til at reducere dette udtryk (se figur d) og får at det er lig,5 (,5) () Med metoden fra ramme 9 får vi at for gående mod er grænseværdien af l 's hældningskoefficient lig,5 (,5),75 Hældningskoefficienten f () for tangenten m er altså, 75 Figur d (e) Metode (tretrinsreglen) Differentialkvotienten f ( ) for en funktion f () i et tal kan bestemmes ved at gennemføre følgende tre trin: () Opskriv udtrykket for hældningskoefficienten for linjen gennem f-grafens punkter med førstekoordinater og () Omskriv udtrykket fra () så man kan bestemme dets grænseværdi for gående mod () Bestem denne grænseværdi Denne grænseværdi er f ) ( Differentialregning Side 6 6 Karsten Juul

5 4 Øvelse Gennemfør det der er beskrevet i oplægget i ramme 5 Kontinuerte funktioner (f) Regel Eksempel Da er Et regneudtryk med en variabel som er opbygget af de "sædvanlige" symboler, er kontinuert i enhver værdi af hvori udtrykket er defineret ( ) ( ) ( ) lim ( ) ifølge metoden fra ramme 9 For ifølge denne metode er grænseværdien lig værdien af for, da er kontinuert i 6 Øvelse (a) Bestem grænseværdien af (b) Bestem (c) Bestem lim ( ) lim 8 ( + ) for gående mod 7 Øvelse Brug tretrinsreglen (e) til at bestemme differentialkvotienten i 4 af Husk at du evt kan lade lommeregneren foretage reduktionen i trin () 8 Øvelse Brug tretrinsreglen (e) til at bestemme differentialkvotienten i af Differentialregning Side 6 6 Karsten Juul

6 9 Øvelse Brug tretrinsreglen (e) til at bestemme differentialkvotienten f ) for funktionen ( Differentiable funktioner Oplæg Vi vil forsøge at bestemme differentialkvotienten for tretrinsreglen: i ved hjælp af () Hældningskoefficienten for linjen gennem f-grafens punkter med førstekoordinater og er f ( ) () Vi lader lommeregneren reducere dette udtryk for hældningskoefficienten Vi får at vide at hældningskoefficienten er lig sign( ), dvs den er når er negativ, og når er positiv () Da hældningskoefficienten er når er negativ, og når er positiv, har den ikke nogen grænseværdi for gående mod Altså har ikke en differentialkvotient i (g) Definition af differentiabel funktion Man siger at en funktion f () er differentiabel i et tal hvis f ( ) hældningskoefficienten for linjen gennem grafpunkterne med førstekoordinater og har en grænseværdi for gående mod Øvelse (a) Forsøg at bestemme differentialkvotienten for i ved hjælp af tretrinsreglen f () (b) Hvorfor har hældningskoefficienten ikke en grænseværdi for gående mod? Differentialregning Side 6 6 Karsten Juul

7 Hvis differentiabel, så kontinuert Oplæg På figur h er tegnet grafen for en funktion f () som ikke er kontinuert i 4 Desuden er tegnet linjen l gennem grafpunkterne med førstekoordinater 4 og Det ses at hældningskoefficienten (*) f (4) 4 for l kan vi gøre så stor det skal være ved at vælge tæt nok på 4 Altså har (*) ikke nogen grænseværdi for gående mod 4, så f () er ikke differentiabel i 4 Figur h Hvis vi tegner grafen for en anden funktion f () der ikke er kontinuert i et tal, kan vi på lignende måde indse at funktionen heller ikke er differentiabel i tallet Der gælder: Hvis f () ikke er kontinuert i, så kan f () heller ikke være differentiabel i Dette er udtrykt i følgende sætning: (i) Sætning Når f () er en funktion, og er et tal, gælder Hvis f () er differentiabel i, så er f () kontinuert i Øvelse Vedr figur h f (4) (a) Bestem hældningskoefficienten for l når er 4, 5 og når er 4, 4 f (4) (b) Hvor tæt skal være på 4 for at er over? 4 Differentialregning Side 6 6 Karsten Juul

8 Formler for differentialkvotienter Differentialkvotient for (a) Sætning Når, gælder for ethvert tal at Bevis (* ) f () er differentiabel i og ( f ( ) ** ) For ethvert tal gælder at linjen gennem grafpunkterne med førstekoordinater og har hældningskoefficienten ( + )( ) + Da + er kontinuert i, har hældningskoefficienten en grænseværdi for gående mod (ifølge metoden fra ramme 9) Altså er (*) bevist Grænseværdien er værdien af + for, dvs + Altså er (**) bevist Øvelse (Uden hjælpemidler) (a) Udregn ( )( + + ) (b) Sætningen og beviset i ramme drejer sig om sætning med bevis der drejer sig om udtrykket for hældningskoefficienten Skriv en tilsvarende Brug svaret på (a) når du skal reducere Differentialregning Side 64 6 Karsten Juul

9 Differentialkvotient for a (b) Sætning For ethvert reelt tal a gælder: Hvis a så er a a Eksempel Hvis fås af sætning (b) at f ( ) Eksempel Vi vil finde differentialkvotienten for f Da ( ) fås Eksempel Vi vil finde differentialkvotienten af Da fås f ( ) 4 Øvelse Brug (b) til at bestemme differentialkvotienterne for følgende funktioner:,6, g ( ) og h( ),6 Differentialregning Side 65 6 Karsten Juul

10 5 Differentialkvotienten af og (c) Sætning Hvis så er Bevis Da f ( ) f ( ) kan vi bruge reglen for differentialkvotient af potens (regel b): hvilket skulle bevises (d) Sætning Bevis Hvis så er f ( ) Da kan vi bruge reglen for differentialkvotient af potens (regel b): f ( ) hvilket skulle bevises 6 Oversigt over differentialkvotienter f () f () k a a a f () f () a e k e ln a ln a e k k e cos sin sin cos Differentialregning Side 66 6 Karsten Juul

11 Regneregler for differentialkvotienter Differentialkvotient af f + g (a) Sætning om differentialkvotient af sum Bevis Hvis () to funktioner f () og g () er differentiable i et tal gælder: () Summen h ( ) + g( ) er differentiabel i, og () h ) f ( ) + g ( ) ( Linjen gennem h-grafens punkter med førstekoordinater og har hældningskoefficienten h (4) ( ) h ( ) ( + g( )) ( f ( ) + g( )) f ( f ( (5) + g( ) g( ) ) ) g( ) g( ) + Ifølge () har hvert af leddene i (5) en grænseværdi for gående mod Så må (4) også have dette, dvs vi har bevist () De to led i (5) har grænseværdierne f ( ) og g ( ), så udtrykket (5) må have grænseværdien f ( ) + g ( ) Dette er altså grænseværdien af (4), dvs vi har bevist () Øvelse (a) Brug (a) og 6 til at bestemme differentialkvotienten af hver af følgende: ln + e, (b) Bestem h () når h( ) + ln g ( ) +, p ( ) e + 6 og r( ) + e Differentialregning Side 67 6 Karsten Juul

12 Øvelse (a) Gæt ud fra tabellen grænseværdien af u ( ) for gående mod 4 (b) Gæt ud fra tabellen grænseværdien af u ( ) for gående mod 4 (c) Udfyld tabellens sidste række u ( ) + u ( ) : (d) Gæt ud fra den sidste række grænseværdien af u ) + u ( ) for gående mod 4 ( (e) Erstat tallene i tabellen med andre så der når går mod 4 gælder at summen af grænseværdierne af u ( ) og u ( ) er forskellig fra grænseværdien af u ) + u ( ), eller sig at det ikke kan lade sig gøre ( :,9,95,98 u ( ) :,5,, u ( ) : 5, 5,5 5, 4 Differentialkvotient af k f (b) Sætning om differentialkvotient af konstant gange funktion Hvis () en funktion f () er differentiabel i et tal og k er en konstant gælder: () Produktet h( ) k er differentiabelt i, og () h ) k f ( ) ( Eksempel Vi vil bestemme differentialkvotienten af Da og differentialkvotienten af er, fås af () i (b) at f ( ) Bemærk I () ovenfor står der k, der står ikke differentialkvotienten af k Hvis vi i eksemplet skulle have skrevet differentialkvotienten af, var resultatet blevet Hvis vi skal finde differentialkvotienten af g ( ) +, så skal vi derimod skrive differentialkvotienten af, altså Dette følger af () i sætning (a) Der gælder altså g ( ) + Differentialregning Side 68 6 Karsten Juul

13 5 Øvelse I ramme beviste vi sætning (a) ved hjælp af tretrinsreglen Sætning (b) kan bevises på lignende måde Gør det 6 Øvelse Brug (a), (b) og 6 til at bestemme differentialkvotienten for hver af følgende funktioner ln 4 ln, g( ) 4 + ln og h ( ) 4 7 Differentialkvotient af f g (c) Sætning om differentialkvotient af differens Hvis () to funktioner f () og g () er differentiable i et tal gælder: () Differensen h( ) g( ) er differentiabel i, og () h ) f ( ) g ( ) ( 8 Øvelse Sætning (c) kan bevises ved hjælp af tretrinsreglen på næsten samme måde som sætning (a) blev bevist, men du skal ikke bevise (c) på denne måde Du skal bevise (c) uden at bruge tretrinsreglen Det skal du gøre ved at bruge sætningerne (a) og (b) 9 Øvelse Brug (a), (b), (c) og 6 til at bestemme differentialkvotienten for hver af følgende funktioner ln, Øvelse (Uden hjælpemidler) g( ) e +, h( ) 4 ln Bestem en ligning for tangenten til grafen for funktionen + i punktet P (, f ()) Differentialregning Side 69 6 Karsten Juul

14 Differentialkvotient af f g (d) Sætning om differentialkvotient af produkt Bevis Hvis () to funktioner f () og g () er differentiable i et tal gælder: () Produktet h( ) g( ) er differentiabelt i, og () h ) f ( ) g( ) + f ( ) g ( ) ( Linjen gennem h-grafens punkter med førstekoordinater og har hældningskoefficienten h (4) ( ) h ( ) (5) g( ) f ( ) g( ) g( ) f ( ) g( ) + f ( ) g( ) f ( ) g( ) ( f ( )) g( ) + f ( ) ( g( ) g( )) f ( For gående mod gælder: ) g( ) g( ) g( ) + f ( ) Grænseværdierne af de to brøker i (5) er hhv f ) og g ) ifølge () Grænseværdien af g () er g ) da g () er kontinuert ifølge () ( Grænseværdien af f ) er f ) da f ) er en konstant ( ( Altså har (4) grænseværdien f ) g( ) + f ( ) g ( ), dvs () og () er bevist ( ( ( I tælleren er tilføjet f ) g( ) + f ( som er ( ) g( ( ) Øvelse Brug (d) til at bestemme differentialkvotienten for hver af følgende funktioner: ln og g( ) ( + ) e Differentialregning Side 7 6 Karsten Juul

15 Differentialkvotient af sammensat funktion Øvelse Der er givet funktionerne og g ( ) + (a) Bestem g () og f ( g() ) (b) Bestem g () og f ( g() ) (c) Bestem (t) f g(t) g og ( ) Øvelse Bestem f ( g() ) i hvert af følgende tilfælde: () ln( ) og g( ) () e og g ( ) + Definition af sammensat funktion (a) Definition Lad f () og g () være funktioner Man benytter følgende sprogbrug: f ( g() ) er en sammensat funktion hvor f () er den ydre funktion, og g () er den indre funktion Eksempler Hvis g ( ) og ( ) 8 Hvis g ( ) og I den sammensatte funktion ( ) f, så er ( g( ) ) 8 f, så er ( g( ) ) ( ) f er den indre funktion, og den ydre Bemærk at 'et i ikke er det der står i Man kunne have brugt forskellige bogstaver for de to 'er 4 Øvelse Angiv indre og ydre funktion for hver af følgende sammensatte funktioner: ( e ) +, g( ),7 e og ( ) ln( + ) h Differentialregning Side 7 6 Karsten Juul

16 5 Øvelse På hovedskærmen (den der fås frem ved at taste HOME ) kan man (som bekendt) bestemme en differentialkvotient ved hjælp af det blå d over 8-tallet F fås differentialkvotienten af hvis man skriver d(^,) og taster ENTER (a) Angiv differentialkvotienten for hver af funktionerne e, e + 5, e + 5 og e + Formuler en regel for at bestemme differentialkvotienter for funktioner af denne type Kontrollér om reglen også gælder når konstanterne er negative, og når konstanterne ikke er hele tal (b) Angiv differentialkvotienten for hver af funktionerne ln( ), ln( + ), ln( + 5), ln( + 5) Formuler en regel for at bestemme differentialkvotienter for funktioner af denne type Kontrollér om reglen også gælder når konstanterne er negative, og når konstanterne ikke er hele tal (c) Angiv differentialkvotienten for hver af funktionerne 4, ( +) 4, ( +5) 4 og ( +5) 4 Formuler en regel for at bestemme differentialkvotienter for funktioner af denne type Kontrollér om reglen også gælder når konstanterne er negative, og når konstanterne ikke er hele tal (d) Forestil dig at der i lommeregneren var indbygget to funktioner bip og pip hvor bip ( ) pip( ) Gæt differentialkvotienten af bip( a+ b) ved at sammenligne med dine svar på (a), (b) og (c) 6 Øvelse I tabellerne er funktionsværdierne afrundet til decimal Hvis der havde været flere decimaler, ville man kunne se at f-grafen og g-grafen krummer, 8, 9,,, g (), 6, 8,,, 4, 8, 9,,, f (), 4, 7,, 6, 9,, h ( ) f ( g( )) (a) Angiv skønnede værdier for g () og f () (b) Udfyld de tomme pladser i f ( g( )) -tabellen (c) Angiv skønnede værdier for () f g() h og ( ) Differentialregning Side 7 6 Karsten Juul

17 7 Øvelse (a) Om to funktioner f () og g () er oplyst at f ( 5) 4 og g ( ) Skriv tilnærmede værdier for de manglende funktionsværdier i f-tabellen og g-tabellen (b) Udfyld den tredje tabel, 8, 9,,, g () 5, 4, 8 4, 9 5, 5, 5, f () 7,, 9,, h ( ) f ( g( )) (c) Angiv en skønnet værdi for () f h (d) Udregn ( g( ) ) g () 8 Oplæg om differentialkvotient af sammensat funktion For at fremstille en vare skal man taste højden h i mm Prisen i kr afhænger af varens bredde b i mm Vi betragter følgende tre funktioner: br( h) bredde når højde er h, pr( b) pris når bredde er b, ( br( h) ) pris når højde er h PR( h) pr Når højde er mm, er bredde 9 mm, dvs br ( ) 9 Når højde er mm så øges bredde med mm hver gang højde øges mm, dvs b r ( ) Når bredde er 9 mm så øges pris med,5 kr hver gang bredde øges mm, dvs p r ( 9),5 Vi kan slutte at når højde øges mm, så øges pris i kr med (*),5 dvs P R ( ) Udregningen (*) kan også skrives Vi ser at r ( 9) br () r p eller p r ( br( ) ) b () ( br( h) ) br ( h) PR ( h) p r Differentialregning Side 7 6 Karsten Juul

18 9 Differentialkvotient af sammensat funktion (b) Sætning Hvis g () er differentiabel i og f () er differentiabel i g ( ) og funktionen ( ) f ( g( ) ) h er differentiabel i ( g( )) g ( ) h ( ) f, gælder at Eksemler på brug af sætning b Eksempel Vi vil bestemme differentialkvotienten af ln( + ) Det ses at ( g( )) h hvor h ( ) ln( ) og g ( ) + Da h ( ) og g ( ) er f ( ) h ( g( ) ) g ( ) g( ) + Eksempel Vi vil bestemme differentialkvotienten af Det ses at Da er + p ( ) 4( ) ( q( )) p ( ) r hvor r ( ) 4 + og q( ) r ( ) og q ( ) ( q( ) ) q ( ) ( q( ) ) ( ) ( ) p ( ) r Differentialregning Side 74 6 Karsten Juul

19 Øvelse Brug sætning b til at bestemme differentialkvotienten for hver af følgende funktioner: ln(4 ), g ( ) ( + + ), h ( ) + 4 Øvelse (Uden hjælpemidler) Bestem en ligning for tangenten til grafen for funktionen P (, f ( )) + i punktet Oversigt over regneregler for differentialkvotienter h () h () + g( ) f ( ) + g ( ) g( ) f ( ) g ( ) k f () k f () g( ) f ( ) g( ) + g ( ) g( ) f ( ) g( ) g ( ) ( g( ) ) f ( g() ) f ( g( ) ) g ( ) Differentialregning Side 75 6 Karsten Juul

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3 eks. Intro til differentialregning side 1 Opvarmningsopgaver 10. november 2012 12:58 Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3 Gang parentesen ud: Forkort brøken (x

Læs mere

Differentialligninger

Differentialligninger Differentialligninger for A-niveau i st, udgave SkÄrmbillede fra TI-Nspire 015 Karsten Juul Differentialligninger for A-niveau i st, udgave 1 Hvad er en differentialligning? 1a OplÄg til differentialligninger1

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Integralregning. 1. del. 2006 Karsten Juul. M l

Integralregning. 1. del. 2006 Karsten Juul. M l Integralregning del () M l () 6 Karsten Juul Indhold Stamunktion OplÄg om stamunktion Deinition a stamunktion 6 Kontrol a stamunktion 9 SÄtning om stamunktionerne til en unktion Deinition a ubestemt integral

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Trine Eliasen

Læs mere

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf. 2008 Karsten Juul Bogstavregning En indledning for stx og hf 2008 Karsten Juul Dette hæfte træner elever i den mest grundlæggende bogstavregning (som omtrent springes over i lærebøger for stx og hf). Når elever har lært

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

sammenhänge for gymnasiet og hf 2010 Karsten Juul

sammenhänge for gymnasiet og hf 2010 Karsten Juul LineÄre sammenhänge for gymnasiet og hf y 0,5x 2,5 200 Karsten Juul I dette häfte har jeg gjort meget for at teksten er skrevet sçdan at du nemmere kan fç overblik over reglerne og den sammenhäng der er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

sammenhänge 2008 Karsten Juul

sammenhänge 2008 Karsten Juul LineÄre sammenhänge y x 3 3 008 Karsten Juul Dette häfte er en fortsättelse af häftet "VariabelsammenhÄnge, 008". Indhold 8. Hvad er en lineär sammenhäng?... 3 9. Hvordan ser grafen ud for en lineär sammenhäng?...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2. juni 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding (tovholder) VUC Vest, Stormgade 47,

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 5. Differentialregning

Matematikkens mysterier - på et obligatorisk niveau. 5. Differentialregning Matematikkens mysterier - på et obligatorisk niveau af Kennet Hansen 5. Differentialregning Hvornår skærer graferne for funktionerne ln og inanden? 5. Differentialregning 5. Differentialregning 5. Funktioner

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Statistisk beskrivelse og test

Statistisk beskrivelse og test Statistisk beskrivelse og test 005 Karsten Juul Kapitel 1. Intervalhyppigheder Afsnit 1.1: Histogram En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid

Læs mere

Komplekse tal. enote 29. 29.1 Indledning

Komplekse tal. enote 29. 29.1 Indledning enote 29 1 enote 29 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R forudsætter enoten almindeligt kendskab til de reelle tal,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B Ashuak Jakob France

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt

potenstal og rodtal trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik potenstal og rodtal trin 2 preben bernitt brikkerne til regning & matematik potenstal og rodtal, trin 2 ISBN: 978-87-92488-06-0 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Projekt 4.12 Definition og differentiation af sammensat funktion og omvendt funktion

Projekt 4.12 Definition og differentiation af sammensat funktion og omvendt funktion ISBN 978-87-766-498- Projekter: Kapitel 4. Projekt 4. Deinition og dierentiation a sammensat unktion og omvendt unktion Projekt 4. Deinition og dierentiation a sammensat unktion og omvendt unktion Materialerne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Vestegnen HF & Vuc Uddannelse Fag og niveau Lærer Hf-enkeltfag Matematik B Gert

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin december 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding VUC Vest, Stormgade 47, 6700 Esbjerg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2009 EUC

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner FUNKTIONER del Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner -klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse FUNKTIONSBEGREBET... 3 Funktioner beskrevet ved mængder...

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Alexander

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 15 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold stx Matematik A Jan Houmann

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 15 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold stx Matematik niveau A Knud Søgaard

Læs mere

3. Differentialregning

3. Differentialregning 3. Differentialregning 3.1. Differentiabilitet Lad os for en lille stund se lidt på det velkendte, klassiske tangentbegreb, som allerede var kendt i antikkens græske geometri. Tangenter var kun knyttet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold HFe Mat C-B Henrik Jessen

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2013-forår 2014 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e)

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller 1 Ligninger a. Fortæl om algebraisk og grafisk løsning af ligninger ud fra ét eller flere eksempler. b. Gør rede for algebraisk løsning af andengradsligningen ax 2 + bx + c = 0. 2 Ligninger a. Fortæl om

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Undervisningsbeskrivelse for: 670e 1208 Ma

Undervisningsbeskrivelse for: 670e 1208 Ma Undervisningsbeskrivelse for: 670e 1208 Ma Fag: Matematik C->B, HFE Niveau: B Institution: VoksenUddannelsescenter Frederiksberg (147248) Hold: 670e 1208 Ma (Matematik C-B, halvårshold) Termin: December

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hfe Mat A Viktor Kristensen

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING MANDATFORDELING Dette materiale er lavet som supplement til Erik Vestergaards hjemmeside om samme emne. 1 http://www.matematiksider.dk/mandatfordelinger.html I dette materiale er en række øvelser der knytter

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

brikkerne til regning & matematik funktioner preben bernitt

brikkerne til regning & matematik funktioner preben bernitt brikkerne til regning & matematik funktioner 2+ preben bernitt brikkerne til regning & matematik funktioner 2+ beta udgave som E-bog ISBN: 978-87-92488-32-9 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 09/10 Institution Frederikshavn Handelsskole Uddannelse HHX Fag og niveau Matematik A (2 årigt forløb

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

penge, rente og valuta

penge, rente og valuta brikkerne til regning & matematik penge, rente og valuta trin 2 preben bernitt brikkerne til regning & matematik penge, rente og valuta, trin 2 ISBN: 978-87-92488-14-5 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Herningsholm Gymnasium, hhx i Herning Uddannelse Fag og niveau Lærer(e) hhx Matematik

Læs mere

Oversigt [S] 4.5, 5.10

Oversigt [S] 4.5, 5.10 Oversigt [S] 4.5, 5.0 Nøgleord og begreber Ubestemte udtryk l Hospitals regel l Hospitals regel 2 Test l Hospitals regel Uegentlige integraler Test uegentlige integraler Uegentlige integraler 2 Test uegentlige

Læs mere

Differentialligninger af første orden

Differentialligninger af første orden Differentialligninger af første orden Preben Alsholm Februar 2006 Basale begreber. Eksistens og entydighed. En differentialligning af første orden er en ligning, der sammenknytter differentialkvotienten

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere