Funktioner af flere variable

Størrelse: px
Starte visningen fra side:

Download "Funktioner af flere variable"

Transkript

1 Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde, A af R n, er en funktion f : A R, hvor A kaldes definitionsmængden for f. Topologi på R n Randen, A, til en mængde A, adskiller A fra det, der er udenfor A. Et randpunkt er defineret ved, at man i dette kan placere en kugle, der både indeholder elementer, der er med i A, og elementer, der ikke er med i A. Det indre af A er punkterne i A, der ikke er randpunkter. Tillukningen, A, af A er foreningsmængden af A og A. Dvs., A = A A. En Åben mængde er en mængde, der ikke indeholder nogle af sine randpunkter. En afsluttet mængde indeholder alle sine randpunkter. Eksempel 1 (En åben og afsluttet mængde). Mængden M = R 7 er både åben og afsluttet. Den er åben, fordi den ikke har nogen rand, således, at M =. Men da den tomme mængde er indeholdt i M (Husk: den tomme mængde er indeholdt i alle mængder!) er alle randpunkter indeholdt i M. Det følger heraf, at M både er åben og afsluttet. Eksempel 2 (En afsluttet mængde). Her er et ekspempel på en afsluttet mængde: { x R 3 x x x }. (1) Eksempel 3. Mængden, {(x, y) R 2 1 < x < 3 og 2 y 3}, (2) er hverken åben eller afsluttet, thi nogle randpunkter er med i mængden, og andre randpunkter ikke er med i mængden. 1

2 Eksempel 4 (En afsluttet mængde). Mængden, er afsluttet. {(x, y) R 2 1 x 3 og 2 y 3}, (3) En mængde er begrænset, hvis der findes en kugle, som indeholder hele mængden. En mængde er ubegrænset, hvis der ikke findes en kugle, der kan indeholde hele mængden. Et punkt, a A, er isoleret, hvis der ikke findes andre punkter i A, der er vilkårligt tæt på a. Et punkt, a, er et akkumulationspunkt, hvis a ligger i A og ikke er et isoleret punkt. Kontinuitet og differentiabilitet Definition 2. En funktion, f, er kontinuert i punktet a D f, hvis dette er et isoleret punkt for D f eller, at følgende gælder: lim f(x) = f(a) (4) x a Hvis en funktion er kontinuert i hele sin definitionsmængde siges, at funktionen er kontinuert. Sætning 1. Hvis funktionerne f og g er kontinuerte i a, så er funktionerne f + g, f g, f g og f g (Forudsat at g(a) 0) også kontinuerte i a. Sætning 2. Hvis f er kontinuert i a og g er kontinuert i f(a), så er g f også kontinuert i a. Sætning 3. En C 1 funktion defineret på et åbent interval A i R n er kontinuert på A. Sætning 4 (Ekstremalværdisætningen). Lad A R n være en afsluttet begrænset mængde, og antag at f : A R. Da har f et maksimum og et minimum. Det skal bemærkes, at ekstremalværdisætningen ikke udelukker, at f kan have flere max- og min-steder. Definition 3 (Retningsafledet). Antag at funktionen f : A R er defineret på en delmængde A af R n og at a er et indre punkt i A. Lad endvidere r være en vektor. Da er den retningsafledede i punktet a i retningen r defineret ved: f (a; r) = lim h 0 f(a + hr) f(a) h (5) 2

3 Eksempel 5 (Retningsafledet). I dette eksempel vil vi finde den retningsafledede for funktionen, f(x, y) = x 2 + xy, i retningen r = (2, 1) i punktet a = (1, 0). Først ses, at Heraf følger for f(a + hr): a + hr = (1, 0) + h (2, 1) = (1 + 2h, h) (6) f(a + hr) = (1 + 2h) 2 + (1 + 2h)h = 6h 2 + 5h + 1. (7) I øvrigt har vi, at f(a) = 1. Dette giver for den retningsafledede: f (6h 2 + 5h + 1) 1 (a; r) = lim = lim 6h + 5 = 5. (8) h 0 h h 0 Den retningsafledede er således 5 for den givne retningsvektor. Definition 4 (Partielt afledet). Lad f : A R være en funktion af n variable og lad a være et indre punkt i A. Den i e partielt afledte - f x i (a) - er da den retningsafledte af f i retning af den i e enhedsvektor. Dvs., Det er her forudsat, at denne eksisterer. f x i (a) = f (a; e i ). (9) Definition 5 (C 1 -funktion). En funktion er C 1, hvis de partielt afledede eksisterer og er kontinuerte. Sætning 5. En C 1 -funktion defineret på en åben mængde A i R n er kontinuert på A. Definition 6. Gradienten til en funktion f af n variable i et indre punkt a i definitionsmængden er vektoren: ( f f(a) = (a),..., f ) (a) (10) x 1 x n Sætning 6 (Sammenhæng mellem gradient og retningsafledet). Hvis f er C 1, eksisterer den retningsafledede og er givet ved f (a; r) = f(a) r Sætning 7 (Geometrisk tolkning af gradienten). Hvis f er C 1 og a er et indre punkt i definitionsmængden peger gradienten f(a) i den retning, hvor f vokser hurtigst væk fra a Bevis. Lad u være en enhedsvektor og indse, at f vokser hurtigst i den retning u, hvor f (a; u) er størst. Ved anvendelse af sætning 6 fås, at f (a; u) = f(a) u = f(a) u cos θ, (11) hvor θ er vinklen mellem de to vektorer. Når de to vektorer peger i samme retning er cos θ = 1, og det er hermed bevist, at den retningsaflede er størst, når gradienten og enhedsvektoren peger i samme retning. 3

4 Tangentplaner og differentiabilitet En affin funktion er pr. definition givet ved, h(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n + d. Hvis d = 0 kaldes det desuden en lineær funktion. Definition 7. Antag at f er en funktion defineret på A R n og h : R n R er en affin funktion. Vi siger, at h tangerer f i a A hvis f(x) h(x) lim = 0. (12) x a x a Sætning 8. Antag at f er C 1 og a er et indre punkt i D f. Da er tangenthyperplanen til f i a entydig og er givet ved grafen til funktionen, h(x) = f(a) + f(a) (x a). (13) Definition 8 (Definition af differentiabilitet). En funktion f er differentiabel i a, hvis der findes en entydig tangenthyperplan h til f i a. Ved at kombinere denne definition med sætning 8 fås, at alle C 1 -funktioner er differentiable. Kædereglen Sætning 9 (Kædereglen). Lad f(u 1,..., u m ) være en C 1 -funktion af m variable defineret på et åbent interval og lad g 1 (x 1,..., x n ),..., g m (x 1,..., x n ) være m C 1 -funktioner af n variable med åbne definitionsmængder. Da er den sammensatte funktion, h(x 1,..., x n ) = f(g 1 (x 1,..., x n ),..., g m (x 1,..., x n )), (14) en C 1 -funktion. Hvis h er defineret i a og b = (g 1 (a),..., g m (a)) så er h (a) = f (b) g 1 (a) + f (b) g 2 (a) f (b) g m (a). x i u 1 x i u 2 x i u m x i Eksempel 6. Lad f(u, v, w) være C 1 og lad g(x, y), h(x, y) og k(x, y) være C 1. Hvis vi sætter, φ(x, y) = f(g(x, y), h(x, y), k(x, y)), (15) så er φ y = f g u y + f h v y + f k w y. (16) 4

5 Eksempel 7. Betragt funktionerne f(u, v) = uv 2, g(x, y, z) = x + z + 2yz, h(x, y, z) = x 2 yz. (17) For den sammensatte funktion, k(x, y, z) = f(g(x, y, z), h(x, y, z)) gælder: k x = f g u x + f h v x (18) = v uv 2xyz (19) = v 2 + 4uvxyz (20) = (x 2 yz) 2 + 4(x + z + 2yz)(x 2 yz)xyz (21) = x 4 y 2 z 2 + 4(x 3 yz + x 2 z 2 y + 2x 2 y 2 z 2 )xyz (22) = x 4 y 2 z 2 + 4(x 4 y 2 z 2 + x 3 z 3 y 2 + 2x 3 y 3 z 3 ) (23) = x 4 y 2 z 2 + 4x 4 y 2 z 2 + 4x 3 z 3 y 2 + 8x 3 y 3 z 3 (24) = 5x 4 y 2 z 2 + 4x 3 z 3 y 2 + 8x 3 y 3 z 3 (25) Niveauflader, gradient og tangentplan En niveaukurve til en funktion f(x, y) er løsningsmængden til, f(x, y) = c, (26) hvor c er en konstant. Hvis vi har et punkt (a, b), hvor f(a, b) = c, er (a, b) indeholdt i niveaukurven, (26). Det kan vises, at tangentlinjen til niveaukurven i (a, b) er givet ved f(a, b) ((x, y) (a, b)) = 0. (27) Det er således en linje gennem (a, b) med normalvektor f(a, b). På figur 1 ses et eksempel på en funktion, f : R 2 R, hvor tangentplanen til grafen er fundet i et punkt (x, y, f(x, y)). På grafen ses sammenhængen mellem niveaukurve, graf, grafens tangentplan og niveaukurvens tangentlinje. På figur 2 ses, et plot af nogle niveaukurver for den samme funktion, som var på figur 1. På niveaukurverne er gradienten desuden indtegnet i nogle punkter. På figuren ses det således, at gradienten har den vigtige egenskab, at den står vinkelret på tangentlinjen til et punkt på niveaukurven. At dette er tilfældet følger direkte af, at gradienten er normalvektor til tangentlinjen. På figur 3 ses en niveauflade for en funktion f : R 3 R. På niveaufladen er gradienten indtegnet i et punkt. Hvis man havde indtegnet en tangentplan til det givne punkt på niveaufladen, ville man se, at gradientvektoren var normalvektor til denne tangentplan. 5

6 y x 2 Figur 1: Denne figur viser grafen for en funktion f : R 2 R, hvor tangentplanen i et punkt er indtegnet. Desuden er der også indtegnet en niveauflade og tangenten til nivaeufladen y 2.4 x Figur 2: Denne figur viser niveaukurver for den samme funktion, som ses på figur 1. I nogle punkter er der desuden indtegnet gradienter. 6

7 z x 2 3 y Figur 3: Denne figur viser en niveauflade for en funktion f : R 3 R. Desuden er gradienten også indtegnet i et punkt. 7

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Løsning af præmie- og ekstraopgave

Løsning af præmie- og ekstraopgave 52 Læserbidrag Løsning af præmie- og ekstraopgave 23. årgang, nr. 1 Martin Wedel Jacobsen Både præmieopgaven og ekstraopgaven er specialtilfælde af en mere generel opgave: Hvor mange stykker kan en n-dimensionel

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Figur y. Nøgleord og begreber Tangentlinje for graf Tangentplan for graf

Figur y. Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Oversigt [S] 2.7, 2.9, 11. Tangentlinje [S] 2.7 Derivatives Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Figur y y = f(a) + f (a)( a) Test tangentplan Lineær approimation i en og flere

Læs mere

Oversigt [S] 2.7, 2.9, 11.4

Oversigt [S] 2.7, 2.9, 11.4 Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable

Læs mere

Funktioner af to variable

Funktioner af to variable enote 15 1 enote 15 Funktioner af to variable I denne og i de efterfølgende enoter vil vi udvide funktionsbegrebet til at omfatte reelle funktioner af flere variable; vi starter udvidelsen med 2 variable,

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

Løsningsforslag 7. januar 2011

Løsningsforslag 7. januar 2011 Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Største- og mindsteværdi Uge 11

Største- og mindsteværdi Uge 11 Uge 11 : Definitioner Efterår 2009 : Definitioner Lad A R n og f : A R en reel funktion af n. : Definitioner : Definitioner Lad A R n og f : A R en reel funktion af n. Punktet a = (a 1, a 2,..., a n )

Læs mere

Oversigt Matematik Alfa 1, Januar 2003

Oversigt Matematik Alfa 1, Januar 2003 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1 Analyse 1, Prøve 4 25. juni 29 Alle henvisninger til CB er henvisninger til Metriske Rum (1997, Christian Berg), alle henvisninger til TL er til Kalkulus (26, Tom Lindstrøm), og alle henvisninger til Opgaver

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleord og begreber Differentiabel funktion i en variabel Partielle afledede i flere variable Notation og regneregler for partielle afledede Test partielle afledede Grafisk

Læs mere

Kurver i planen og rummet

Kurver i planen og rummet Kurver i planen og rummet John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Kurver i planen og rummet. Noterne er beregnet til at blive brugt sammen med foredraget. Afsnit 2 er

Læs mere

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50.

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

MATINTRO FUNKTIONER AF FLERE VARIABLE

MATINTRO FUNKTIONER AF FLERE VARIABLE MATINTRO FUNKTIONER AF FLERE VARIABLE Tore August Kro Matematisk Institutt Universitetet i Oslo Forår 3 På dansk ved Jacob Stevne Jørgensen, sommer Forord til den danske udgave Kros noter, som introducerer

Læs mere

(Prøve)Eksamen i Calculus

(Prøve)Eksamen i Calculus (Prøve)Eksamen i Calculus Sæt 1, april 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende (prøve)eksamenssæt består af 7 nummererede sider

Læs mere

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier: Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

Lektion 6 Logaritmefunktioner

Lektion 6 Logaritmefunktioner Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Oversigt [S] 2.7, 2.9, 11.4

Oversigt [S] 2.7, 2.9, 11.4 Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

CALCULUS "SLIDES" TIL CALCULUS 1 + 2

CALCULUS SLIDES TIL CALCULUS 1 + 2 CALCULUS "SLIDES" TIL CALCULUS + INSTITUT FOR MATEMATISKE FAG AARHUS UNIVERSITET 4 Indhold Forord 5 I. Differentiation 7. Kontinuitet 7. Partielle afledede 7 3. Tangentplan 5 4. Kædereglen 34 5. Gradient

Læs mere

2. Funktioner af to variable

2. Funktioner af to variable . Funktioner af to variable Opgave 1 Grafisk udformning af de to funktioner,, Opgave f (, y) = z = 5 y N(0) = z = 0 0 = 5 y + y = 5 C = ( ; y) = (0;0) r = 5 Dette medfører som vist en cirkel, med centrum

Læs mere

MATINTRO FUNKTIONER AF FLERE VARIABLE

MATINTRO FUNKTIONER AF FLERE VARIABLE MATINTRO FUNKTIONER AF FLERE VARIABLE Tore August Kro Matematisk Institutt Universitetet i Oslo 5.kapitel skrevet af: Jan Philip Solovej Institut for de Matematiske Fag Københavns Universitet Forår 3 På

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv A som en tællelig forening af afsluttede mængder.

Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv A som en tællelig forening af afsluttede mængder. Analyse Øvelser Rasmus Sylvester Bryder 10. og 13. september 013 Supplerende opgave 4 Betragt mængden A = {(x, y) R x + y 1, x < y}. Er A åben? Er A afsluttet? Er A en Borel-mængde? [Vink: Prøv at skriv

Læs mere

Optimering i Moderne Portefølje Teori

Optimering i Moderne Portefølje Teori Aalborg universitet P3-3. semestersprojekt Optimering i Moderne Portefølje Teori 15. december 2011 AAUINSTITUT FOR MATEMATISKE FAG TITEL: Optimering - Lineær programmering - Moderne Portefølje Teori PROJEKT

Læs mere

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0.

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Sølvkorn 11 Eksponentialfunktioner og logaritmer

Sølvkorn 11 Eksponentialfunktioner og logaritmer Eksponentialfunktioner og logaritmer Rasmus Sylvester Bryder Findes der for b, y > 0 et x R, så b x = y? Svaret er ja undtagen for b = 1, y 1), og det er alment kendt, at logaritmefunktionen gør et godt

Læs mere

Formelsamling til MatIntro kurset på Københavns Universitet

Formelsamling til MatIntro kurset på Københavns Universitet Formelsamling til MatIntro kurset på Københavns Universitet af Michael Flemming Hansen Version 1.0 1. februar 2012 Indhold 1 Funktioner af en variabel 4 1.1 Komplekse tal........................... 4 1.1.1

Læs mere

Statistikkompendium. Statistik

Statistikkompendium. Statistik Statistik INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over

Læs mere

1 Plan og rumintegraler

1 Plan og rumintegraler 1 PLAN OG RUMINTEGRALER 1 1 Pln og rumintegrler Ligesom for funktioner f en vribel kn mn for kontinuerte funktioner f flere vrible definere deres integrle. Vi vil her kun beskæftige os med funktioner f

Læs mere

Supplement til Matematik 1GB. Jan Philip Solovej

Supplement til Matematik 1GB. Jan Philip Solovej Supplement til Matematik 1GB Jan Philip Solovej ii c 2001 Jan Philip Solovej, Institut for Matematiske Fag, Københavns Universitet. Alle har tilladelse til at reproducere hele eller dele af dette materiale

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Oversigt [S] 9.6, 11.1, 11.2, App. H.1

Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Her skal du lære om 1. Funktioner i flere variable 2. Grafen og niveaukurver 3. Grænseovergange og grænseværdier 4. Kontinuitet i flere variable 5. Polære koordinater

Læs mere

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver Optimeringsteori Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver 20/12/2012 Institut for Matematiske Fag Matematik-Økonomi Fredrik Bajers Vej

Læs mere

Matematikprojekt. Differentialregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 4 Oktober 2010

Matematikprojekt. Differentialregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 4 Oktober 2010 Matematikprojekt om Differentialregning Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen 4 Oktober 2010 Indhold I Del 1................................ 3 I Differentialregningens

Læs mere

Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7

Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7 Oversigt [S] 11.8 Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7 Calculus 2-2006 Uge 47.2-1 Skitse [S] 11.8 Niveaukurver y f(x,y)=1

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Transformation af kontinuerte fordelinger på R, flerdimensionale kontinuerte fordelinger, mere om normalfordelingen Helle Sørensen Uge 7, onsdag SaSt2 (Uge 7, onsdag)

Læs mere

Inverse funktioner. John V Petersen

Inverse funktioner. John V Petersen Inverse funktioner John V Petersen Indhold Indledning: Indledende eksempel. Grafen for en funktion. Og grafen for den inverse funktion.... 3 Afbildning, funktion og inverse funktion: forklaringer og definitioner...

Læs mere

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor Rumfang af en cylinder På illustrationen til øjre er indtegnet en lineær funktion indenfor et afgrænset interval, vor 0;. Funktionen () kan skrives på formen: = (vor a er en konstant) Det markerede grå

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers matrix Matrix potens Lineære ligningssystemer Løsningsmængdens

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

1 Kapitel 5: Forbrugervalg

1 Kapitel 5: Forbrugervalg 1 Kapitel 5: Forbrugervalg Vi har set på: 1. budgetbegrænsninger 2. præferencer og nyttefunktioner. Nu stykker vi det hele sammen og studerer forbrugerens optimale valg. 2 Optimalt forbrug - grafisk fremstilling

Læs mere

Kapitel 2. Differentialregning A

Kapitel 2. Differentialregning A Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Reeksamen i Calculus Torsdag den 16. august 2012

Reeksamen i Calculus Torsdag den 16. august 2012 Reeksamen i Calculus Torsdag den 16. august 2012 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning 2015 John V Petersen art-science-soul Indhold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i 1 af 41 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1 Voksende Voksende Konstant Aftagende ØVELSE 2 f aftagende i f aftagende i f aftagende i f aftagende i ØVELSE 3 Hældningen

Læs mere

Forslag til løsning af Opgaver til ligningsløsning (side172)

Forslag til løsning af Opgaver til ligningsløsning (side172) Forslag til løsning af Opgaver til ligningsløsning (side17) Opgave 1 Hvis sønnens alder er x år, så er faderens alder x år. Der går x år, før sønnen når op på x år. Om x år har faderen en alder på: x x

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Matematik A Vejledende opgaver 5 timers prøven

Matematik A Vejledende opgaver 5 timers prøven Højere Teknisk Eksamen 007 Matematik A Vejledende opgaver 5 timers prøven Undervisningsministeriet Prøvens varighed er 5 timer. Opgavebesvarelsen skal dokumenteres/begrundes. Opgavebesvarelsen skal udformes

Læs mere

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav.

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav. 1 Læsevejledning Secret Sharing Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav September 2006 Nærværende note er tænkt som et oplæg

Læs mere

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R =

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R = Plnintegrlet Preben Alsholm 5. mj 8 Plnintegrlet. Integrlet f en funktion f én vribel et bestemte integrl efinition Ld f være en funktion defineret på intervllet [ b]. Ld = x x... x n = b være en inddeling

Læs mere

Kursusgang 5 Afledte funktioner og differentialer Repetition

Kursusgang 5 Afledte funktioner og differentialer Repetition Kursusgang 5 Repetition - froberg@math.aau.k http://people.math.aau.k/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 30. september 2008 1/15 Differenskvotient og Differentialkvotient

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Om hvordan Google ordner websider

Om hvordan Google ordner websider Om hvordan Google ordner websider Hans Anton Salomonsen March 14, 2008 Man oplever ofte at man efter at have givet Google et par søgeord lynhurtigt får oplysning om at der er fundet et stort antal - måske

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs102-matn/a-12082010 Torsdag den 12. august 2010 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve

Læs mere

7 Funktioner. Hayati Balo, AAMS. Følgende fremstilling er baseret hovedsageligt på følgende bøger

7 Funktioner. Hayati Balo, AAMS. Følgende fremstilling er baseret hovedsageligt på følgende bøger 7 Funktioner Hayati Balo, AAMS Følgende fremstilling er baseret hovedsageligt på følgende bøger 1. Nils Victor-Jensen, Matematik for adgangskursus B-niveau 1 og 2 2. Hans Sloth, Trip s matematiske bog

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

DesignMat Egenværdier og Egenvektorer

DesignMat Egenværdier og Egenvektorer DesignMat Egenværdier og Egenvektorer Preben Alsholm September 008 1 Egenværdier og Egenvektorer 1.1 Definition og Eksempel 1 Definition og Eksempel 1 Lad V være et vektorrum over L (enten R eller C).

Læs mere

AALBORG UNIVERSITET DET INGENIØR-, NATUR- OG SUNDHEDSVIDENSKABELIGE BASISÅR SE - KURSUS MATEMATIK

AALBORG UNIVERSITET DET INGENIØR-, NATUR- OG SUNDHEDSVIDENSKABELIGE BASISÅR SE - KURSUS MATEMATIK AALBORG UNIVERSITET DET INGENIØR-, NATUR- OG SUNDHEDSVIDENSKABELIGE BASISÅR SE - KURSUS MATEMATIK A. SEMESTER NANOTEKNOLOGI EFTERÅR 7 Indholdsfortegnelse Matematik A, Lek. 7 Opgave regning A.7 - A.8 7

Læs mere

Den svingende streng

Den svingende streng Den svingende streng Stig Andur Pedersen October 2, 2009 Ufuldstændigt udkast. Abstract 1 I det 18. århundrede blev differential- og integralregningen, som var introduceret af Newton, Leibniz og mange

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

Ekstrema, Teori og Praksis

Ekstrema, Teori og Praksis Kasper H. Christensen Andreas D. Christoffersen Christoffer Gøthgen Stine M. Jensen Kenneth V. L. Offersen Vini M. Olsen Ekstrema, Teori og Praksis - Ikke-lineæar optimeringsproblemer Vejleder: Martin

Læs mere

Inverse funktioner og Sektioner

Inverse funktioner og Sektioner Inverse funktioner og Sektioner Frank Nasser 15. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Differentiation. Frank Nasser. 11. juli 2011

Differentiation. Frank Nasser. 11. juli 2011 Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen

Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen 36 Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen En artikel om induktion, hvordan er det overhovedet muligt? Det er jo trivielt! Bevis ved induktion er en af de ældste matematiske

Læs mere