Kontinuitet og Konvergens. Matematik: Videnskaben om det uendelige 5

Relaterede dokumenter
Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Analyse 1, Prøve maj 2009

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Supplerende noter II til MM04

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) :

cos(t), v(t) = , w(t) = e t, z(t) = e t.

Baggrundsnote til sandsynlighedsregning

Mikkel - lige og ulige

Elementær Matematik. Polynomier

since a p 1 1 (mod p). x = 0 1 ( 1) p 1 (p 1)! (mod p) (p 1)! 1 (mod p) for p odd and for p = 2, (2 1)! = 1! = 1 1 (mod 2).

Sandsynlighedsteori 1.2 og 2 Uge 5.

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}

Renteformlen. Erik Vestergaard

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Noter om Kombinatorik 2, Kirsten Rosenkilde, februar

Den hurtige Fouriertransformation

Bjørn Grøn. Analysens grundlag

Vejledende besvarelser til opgaver i kapitel 15

Kompendie Komplekse tal

Talfølger og -rækker

Differentiation af potensfunktioner

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet

antal gange krone sker i første n kast = n

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Projekt 9.10 Differentiation af potensfunktioner ved hjælp af binomialformlen

og Fermats lille sætning

Asymptotisk optimalitet af MLE

Vina Nguyen HSSP July 13, 2008

Integration CHAPTER 5 EXERCISE SET Endpoints 0, 1 n, 2 n,..., n 1, 1; using right endpoints, 2 n A n =

Udtrykkelige mængder og Cantorrækker

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

Hovedpointer fra SaSt

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Foldningsintegraler og Doobs martingale ulighed

Kvadratisk 0-1 programmering. David Pisinger

Kernel regression with Weibull-type tails supporting information

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2

DesignMat Den komplekse eksponentialfunktion og polynomier

2. Fourierrækker i en variabel

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Sandsynlighedsteori 1.2

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

DATV: Introduktion til optimering og operationsanalyse, Bin Packing Problemet

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning

Introduktion til uligheder

Basic statistics for experimental medical researchers

Kvantitative metoder 2

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

RESEARCH PAPER. Nr. 2, En model for lagerstørrelsen som determinant for købs- og brugsadfærden for et kortvarigt forbrugsgode.

Introduktion til uligheder

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

MM501 forelæsningsslides

Taylors Formel og Rækkeudviklinger

Den flerdimensionale normalfordeling

UGESEDDEL 7 LØSNINGER. Opgave 7.2.1

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

Multivariate Extremes and Dependence in Elliptical Distributions

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968)

M Å L T E O R I S A N D S Y N L I G H E D S T E O R I 1. 1 F O R E L Æ S N I N G S N O T E R S V E N D E R I K G R A V E R S E N O G

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

UGESEDDEL 7 LØSNINGER. ) og ɛ > 0 N N : (1 + konvergerer ikke, thi følgen x 1 + = ( 1)k

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Projekt 0.7. Vinklens tredeling og konstruerbare tal

6 Populære fordelinger

a b cos. n=1 er positiv på N. Vi kan nu benytte sammenligningskriteriet (sætning ) og sammenligne 2a sin ( )

Finitisme og Konstruktivisme. 22. November 2010

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

what is this all about? Introduction three-phase diode bridge rectifier input voltages input voltages, waveforms normalization of voltages voltages?

Den hurtige Fouriertransformation. Jean Baptiste Joseph Fourier ( )

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave december 2007

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal

Oversigt [S] 9.6, 11.1, 11.2, App. H.1

TEKST NR TEKSTER fra IMFUFA

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

MOGENS ODDERSHEDE LARSEN. Komplekse tal

Bølgefunktioner Alle partikler, som har en hvilemasse, er kendetegnet ved en kompleks bølgefunktion

Løsninger til kapitel 7

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Estimation ved momentmetoden. Estimation af middelværdiparameter

Wigner s semi-cirkel lov

Motivation. En tegning

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Besvarelser til Calculus Ordinær Eksamen Juni 2018

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

IBM Network Station Manager. esuite 1.5 / NSM Integration. IBM Network Computer Division. tdc - 02/08/99 lotusnsm.prz Page 1

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Kommunikation over støjfyldte kanaler

Projekt 3.7. En algebraisk tilgang til udvidelsen af potensbegrebet

Uge 40 I Teoretisk Statistik, 30. september 2003

Projekt 3.7. En algebraisk tilgang til udvidelsen af potensbegrebet

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

Transkript:

Kotiuitet og Koverges Matemati: Videsabe om det uedelige 5

2 Newtos Fluet og Fluio E variabel størrelse, z, aldes e fluet, og des ædrigstilstad (rate of chage) aldes des fluio, og beteges ż. De fluet, som z er fluio af, beteges ź, dvs. ź er itegralet af z. Alle variable størrelser varierer med tide. ż er således dz/dt, og ź er stamfutioe til z, dvs. Med o beteges et uedeligt lille tidsiterval. żo bliver således e uedelig lille tilvæst i z, dvs. imodere otatio żo = dz = z dt. Newto fider f.es. Differetialvotiete til y= på følgede måde: z = z(t)dt y o y o o yo o yo y o yo y 0 0 ) ( ) ( ) ( ) ( = = = = = + = = = = + + = +

Matematie i 700 tallet The coquest of ew domais of mathematics proceeds somewhat as do military coquests. Bold dashes ito eemy territory capture strogholds. These icursios must tha be followed up ad supported by broader, more thorough ad more cautious operatios to secure what has bee oly tetatively ad isecurely grasped. (Morris Klie: Mathematical Thought. From Aciet to Moder Times. Oford Uiversity Press 972, p. 400) Videreudvilig og avedelse af ifiitesimalregige ide for fysie Algebraiserig af matematie, heruder opfattelse af aalyse som e udvidelse af algebrae Differetialligigsteorie Uedelige ræer 3

Leohard Euler (707-783) Itroductio i Aalysi Ifiitorum (748) Istitutioes Calculi Differetialis (755) Istitutioes Calculi Itegralis (768-70) Portrait by Emauel Hadma 756(?) O September 7, 783, after havig discussed the topics of the day, the Motgolfiers, ad the discovery of Uraus, accordig to the oft-cited words of J.A.N.C. de Codorcet, He ceased to calculate ad to live. Klie: Mathematical Thought from Aciet to Moder Times. Oford Uiversity Press 97, p. 403 4

Eulers opfattelse af differetialvotieter Differetialvotiete dy/d er fatis idetis med 0/0. Me 0/0 a atage e bestemt edelig størrelse. Begrudelse: For vilårligt gælder 0 = 0, derfor a vi hævde = 0/0 Eulers bestemmelse af differetialvotiete af y= 2 : Giv tilvæste ω. Det giver for tilvæste af y: altså μ = (+ ω) 2 2 = 2 +2 ω + ω 2 2 = 2 ω + ω 2 μ/ω = 2 + ω me ω og μ er i virelighede 0, derfor dy/d = μ/ω = 0/0 = 2 5

Logaritmer til Negative Tal Leibiz argumeterede mod esistese af logaritmer til egative tal, hvorimod Joh Beroulli argumeterede for, at log( )=0: d(log ) = d/ d( )/( ) = d/ d(log ) = d( )/( ) d(log ) = d(log ) log( ) = log, da log() = 0 bliver log( ) = 0 Euler: d(log ) = d(log ) medfører ie, at og har samme logaritme, me at deres logaritmer afviger med e ostat, emlig log( ). Eulers formel: e i e e iπ iπ = cos + isi = cosπ + i siπ = 6

Euler og Logaritmefutioe = e y = + y i i Modere e = lim + /i =+ y i y = log = i ( /i ) Modere log = lim / ( ) /i i Da = er de i te rod, hvor i er uedelig stor, må der være uedelig mage rødder. Altsåmåy = log have uedelig mage værdier. Euler sriver omplese tal på forme = a + ib = r(cosθ + isiθ) = e a e i(θ ±2 pπ ) a +i(θ ±2 pπ ) = e det giver for logaritme y = log = a + i( θ ± 2 pπ ) 7

Uedelige ræer Oresme 360: De harmoise ræe divergerer +/2+/3+/4+/5+ /2+/2+(/4+/4)+(/8+/8+/8+/8)+(/6+... Vieta,593, agav formle for summe af e uedelig geometris ræe: a +a 2 + +a +, hvor a i =a q i s = a +a 2 + +a I Eulids Elemeter vises forholdet s s a a = a a2 Vieta siger, hvis a /a 2 >, så bliver a =0, år bliver uedelig, og derfor får vi s = a 2 a a 2 8

Ræer for log og ep log(2) log appro 0,693478 0,8333 3 0,667 6 0,7456 9 log( + ) = 2 2 + 3 3 4 4 + 5 5 0,6532 2 0,6727 24 0,6828 48 ep(2) ep appro 7,389056099 5 3 ep( ) = + + 2 2! + 3 3! + 4 4! + 7,266667 6 7,387302 9 7,389046 2 9

Drilse ræer Hvad er summe af ræe S = + + +? S = ( )+( )+ = 0 S = ( ) ( ) = S, altså S = ½ S = ( ) ( ) = ( ) = ++ 2 + 3 + for =2 =+2+4+8+6+ (a) (+) 2 = 2+3 2 4 3+ for = = +2+3+4+5+ (b) Højreside i (a) er større ed højreside i (b), altså < Euler: Det uedelige er e slags græse mellem det positive og det egative og liger dermed 0. 0

Taylor ræer Taylors formel f (a + h) = f (a) + f '(a)h + 2! f ''(a)h 2 + 3! f '''(a)h 3 +L +! f () (a)h + R R = + f ( +) (a + θh)h + Taylor ræe 2 3 f ( a + h) = f ( a) + f '( a) h + f ''( a) h + f '''( a) h + 2! 3! ( ) f ( a + h) = f ( a)! = 0 MacLauri ræe 2 f ( ) = f (0) + f '(0) + f ''(0) + f '''(0) 2! 3! Kovergesiterval: < r 3 +

Svigede streg Leohard Paul Euler (707 783) Jea le Rod d'alembert (77 783) Joseph Louis Lagrage 736 83 2

Jea d Alemberts Udledig Ige samlet raft i ases retig: Newtos 2. lov på udsittet : 3

Jea d Alemberts Udledig 2 Divider med T på begge sider: Det giver for ligige og ved divisio med idet Vetorere T og T 2 er tageter til Kurve y = y(,t). Derfor Dette giver for ifiitesimal 4

Jea d Alemberts Udledig 3 Bølgeligige Variabelsifte hvor fører til ligige Udregig 5

Løsig af bølgeligige De geerelle løsig bliver D Alembert ræver, at f og g sal være to gage differetiable I begge variable og t, hvilet ie er tilfredsstillede fra et fysis sysput. 6

Løsig af bølgeligige 2 Bølgeligige sal opfylde følgede radbetigelse, da strege ligger fast i begge eder: y(0,t) = y(l,t) = 0 for alle t. Edvidere sal der gælde begydelsesbetigelsere: y(0,) = F() y (0,) = G() Radbetigelsere giver, at y(,t) = f(+at)+f( at), hvor f er e ulige, periodis futio med periode 2L. Samlet fås løsige y(,t) = 2 F( + at) + F( at) + a +at at G(u)du 7

Svigede streg efter Lagrage 8

Svigede streg efter Lagrage 2 9

Euler i Stil med Lagrage Vi sriver ligige på forme y = A 2 (y + 2y + y ) y 0 = y + = 0 Euler søgte e løsig af forme y = a cosωt Idsættes dette I ligige fås (2A 2 ω 2 )a = A 2 (a + + a ) Som Euler fider har løsige, givet a 0 = 0 a = si ϕ og ω = 2Asi ϕ 2 Betigelse a + = 0 giver De samlede løsig: = c r r = ϕ = rπ + ω r = 2Asi r =, 2,L, rπ 2( + ) si rπ + cosω t r c r = 2 + s= X s si srπ + samt ortogoalitetsbetigelse si rπ si sπ + + = + 2 δ rs 20

Lagrages Geerelle løsig Lagrage fider e løsig i stil med Eulers y = 2 + r = s= Y s si rsπ rπ si + + cosω t r Med begydelsesværdier Y y for y og og begydelseshastighed 0 Lagrage lader u gå mod uedelig. I græse går L/(+) mod abscisse og L/(+) mod tilvæste d. Ha atager yderlig, at ω r = 2Asi rπ 2( + ) ω r = rπ L c c= T / μ og får løsige y(,t) = 2 L L r = 0 Y (u) si rπu L si rπ L cos rπct L du 2

Fourierræer Lad f være e futio med periode 2π. f s Fourierræe er f () : c 0 + c 0 = 2π a = π b = π π π π π π π = (a cos + b si ) f ()d f ()cos d f ()si d Klasse af futioer, som a fremstilles på dee form er ret omfattede. 22

Esempel f () = for π 2 < < π 2 0 for π < < π 2 π < < π 2 f () : 2 + 2si( π π = 2 ) cos 23

Esempel 2 f () = 2 for [ π,π ] f () : π 2 3 + ( ) 2 = cos 24

Reelle tal futioer og otiuitet 25

Cauchys defiitio af uedelig små størrelser I speaig about the cotiuity of fuctios, I have ot bee able to avoid presetig the pricipal properties of ifiitely small quatities, properties which serve as a basis for the ifiitesimal calculus Whe the successive umerical values of the same variable decrease idefiitely, i such a way as to fall below ay give umber, this variable becomes what oe calls a ifiitely small (u ifiimet petit) or a ifiitely small quatity. A variable of this id has zero for limit. Oe says that a variable quatity becomes ifiitely small, whe its umerical value decreases idefiitely i such a way as to coverge toward the limit zero" (Citeret fra Gordo M. Fisher: Cauchy ad the Ifiitely Small, Historia Mathematica 5 (978)) 26

Cauchys Defiitio af Kotiuitet Let f() be a fuctio of the variable, ad suppose that for each value of betwee two give limits, this fuctio always has a uique ad fiite value. If, startig with a value of betwee these limits, oe assigs to the variable a ifiitely small icrease α, the fuctio itself will icrease by the differece f( + α) - f(), which will deped at the same time o the ew variable α ad o the value of. This assumed, the fuctio f() will be a cotiuous fuctio of this variable betwee the two limits assiged to the variable if, for each value of betwee these limits, the umerical value of the differece f( + α) - f() decreases idefiitely with that of α. I other words, the fuctio f() will remai cotiuous with respect to betwee the give limits if betwee these limits a ifiitely small icrease of the variable always produces a ifiitely small icrease of the fuctio itself. [Cauchy 82, 34-5] 27

28 Abels ræe + f 3 si si 2 si ) ( 3 2 π π π π ) (2 0 ) ( [ ),(2 ) ](2 ) 2 ( ) ( 2 + = == + = for f f

Kotiuitet f : er otiuert i, hvis og u hvis, der for vilårligt ε > 0 fides et δ > 0 så f( ) f( ) < ε 0 for alle, hvor < δ. 0 0 0 0 f : er ligelig otiuert i itervallet I, hvis, og u hvis, der for vilårligt ε>0 fides et δ>o, så der for vilårligt I gælder f( ) f( ) < ε for alle I, hvor < δ. o

Koverges af tal og futiosfølger E talfølge (a ) overgerer mod a, hvis og u hvis, der for vilårligt ε >0 fides et aturligt tal N>0, så a a <ε for alle >N. Futiosfølge (f ( )) overgerer mod f(), hvis, og u hvis, der for fides et aturligt tal N, så f ( ) f( ) < ε for alle >N. alle og alle ε >0 Futiosfølge (f ( )) overgerer ligeligt mod f(), hvis, og u hvis, der for alle ε >0 fides et aturligt tal N, så f ( ) f( ) < ε for alle og for all >N.

Koverges af uedelige ræer De udelige futiosræe i= f ( ) i overgerer (ligeligt), såfremt futiosfølge (s ( )), defieret ved s( ) = f ( ) i= overgerer (ligeligt). i Futiosræe i= f ( ) i overgerer absolut, såfremt ræe i= i= f ( ) i overgerer. De overgerer betiget, hvis de overgerer, me de absolutte ræe f ( ) i ie overgerer.

Koverges af Potesræer Potesræe a ( ) er absolut overget, hvis < r, og diverget, hvis 0 i= 0 i 0 0 > r. r aldes ræes overgesradius og defieres som r = lim sup a i