Fraktaler. Vejledning. Et snefnug
|
|
|
- Charlotte Olsen
- 10 år siden
- Visninger:
Transkript
1
2 Fraktaler Vejledning Denne note kan benyttes i gymnasieundervisningen i matematik i 1g, eventuelt efter gennemgangen af emnet logaritmer. Min hensigt har været at give en lille introduktion til en anderledes slags geometri end den sædvanlige, som et eksempel på en eksotisk gren af matematikken. Noten er udformet. så man undervejs skal løse en række øvelser for at nå frem til pointen. Et snefnug Betragt et linjestykke med længden 1. Figur 1 Erik Vestergaard, Haderslev. Inddel linjestykket i tre lige store dele og fjern den midterste tredjedel. Det fjernede stykke erstattes af to nye linjestykker BC og CD af samme længde, som vist på figuren nedenfor. BCD er således hjørnerne i en ligesidet trekant. Figur 2 C A B D E 2
3 Øvelse 1 Hvad er længden af kurven i figur 2? Fortsæt nu med at inddele hver af de fire linjestykker AB, BC, CD og DE i tre lige store dele. Fjern det midterste stykke og erstat det med en spids, således at spisen og den fjernede midterste tredjedel som før udgør en ligesidet trekant. Herved fås følgende billede: Figur 3 Øvelse 2 Hvad er længden af kurven på figur 3? Fortsæt med at sætte en spids på hvert af linjestykkerne i figur 3. Herved fås følgende figur: Figur 4 Øvelse 3 Find længden af kurven og forsøg om du kan finde et system i, hvor meget længere kurven bliver, hver gang man sætter flere spidser på. 3
4 Vi kunne nu i princippet fortsætte denne proces lige så mange gange, vi måtte ønske det. I matematikkens verden kan man endda forestille sig processen fortsat uendeligt mange gange. Herved opnås en højst besynderlig kurve, som ser ud som noget i retningen af kurven på nedenstående figur. Figur 5 Kurven betegnes snefnugget eller Koch s kurve til ære for den svenske matematiker Helge von Koch, som i 1904 studerede denne mærkelige kurve. Øvelse 4 Brug resultaterne fra forrige øvelse til at finde længden af snefnugget. Det specielle ved en kurve såsom snefnugget er blandt andet, at hvis man går tættere på den i et mikroskop, så vil man se et billede, som fuldstændigt ligner figuren i fuld størrelse. Kurven siges at være selvsimilær eller selvligedannet. Det er en helt ny egenskab i forhold til de gamle, traditionelle geometriske figurer, studeret lige siden oldtiden, for eksempel cirkler og polygoner. Nedenfor zoomer vi ind på en cirkel. Figur 6 (a) (b) (c) 4
5 I delfigur 6(a) angiver rektanglet den del af cirklen, vi gerne vil se en forstørrelse af. Forstørrelsen ses herefter i delfigur 6(b). Vi ønsker at zoome yderligere ind til området markeret med det lille stiplede rektangel. Resultatet ses i delfigur 6(c). Vi ser, at jo mere vi zoomer ind på en cirkel, jo mere vil kurven komme til at ligne en ret linje. Med fraktaler er det anderledes. De vil fortsætte med at have en righoldig struktur, ligegyldigt hvor meget man zoomer ind på dem. En anden ting er, at nogle fraktale kurver, som for eksempel snefnugget, snor sig så ubehersket, så de faktisk har en uendelig længde. Betegnelsen fraktal blev først anvendt af den franske matematiker Benoit Mandelbrot, og udtrykket stammer fra det latinske ord fractus, som betyder irregulær. I det følgende skal vi se, hvordan vi kan tillægge en fraktal en ikke-heltallig dimension. Hvad er dimension? De fleste har hørt dette begreb brugt i dagligdagen. Hvad er dimensionerne af bordet? (Der hentydes til længde, højde og bredde) eller udtrykket film i tre dimensioner (3D). I sidstnævnte tilfælde er der tale om, at man udover bare at se et plant billede også fornemmer dybden i billedet. Man taler om, at en linje har dimension 1 (der er kun en længde), en udfyldt firkant har dimension 2 (der er en længde og en bredde) og en massiv kasse har dimension 3 (der er en længde, en bredde og en højde). Figur 7 (a) (b) (c) En cirkelperiferi har i øvrigt også dimension 1. Vi må udvide vores dimensionsbegreb hvis vi ønsker at tillægge fraktaler en dimension. De selvsimilære fraktaler har som nævnt den egenskab, at de består af mindre dele, som hver især er formindskede kopier af fraktalen selv. Snefnugget er et eksempel herpå, som figur 8 på næste side antyder. 5
6 Figur 8 Lad n være antallet af disse formindskede kopier og lad s være det tal, som man skal gange den formindskede kopi op med for at få hele fraktalen. Angående s så hentydes til den lineære forstørrelse: Altså s er forholdet mellem længden af hele fraktalen og længden af den formindskede kopi. s kaldes skaleringsfaktoren. Definition af dimension Dimensionen for en selvsimilær fraktal er det tal d, som opfylder antallet af formindskede kopier og s er skaleringsfaktoren. d n= s, hvor n er For snefnugget er n = 4 ifølge figur 8. Figuren viser desuden, at s = 3, idet længden af hele fraktalen er 3 gange så lang som længden af en af de formindskede kopier. Altså skal vi bestemme d, så 4 = 3 d. Øvelse 5 Bestem d. Hjælp: Hvis du kender til logaritmer kan du bruge dem til at løse opgaven. Ellers kan du prøve dig frem på lommeregneren. Vi skal se på et par andre eksempler på selvsimilære fraktaler, nemlig den såkaldte Sierpinsky-trekant og Sierpinsky-svampen. Førstnævnte fremkommer ved en proces, som er beskrevet på figur 9 på næste side. Sidstnævnte kan du finde afbildet på figur 10 på næste side. Overvej ved hvilken proces den er fremkommet! Øvelse 6 Bestem dimensionen af både Sierpinsky-trekanten og Sierpinsky-svampen. 6
7 Figur 9 Figur 10 7
8 Afsluttende kommentarer Vores nye definition af dimension på side 6 dækker altså alle selvsimilære figurer. Det er imidlertid vigtigt at kontrollere, at denne nye definition stemmer overens med vores gamle opfattelse af begrebet dimension, altså i de tilfælde, hvor begge definitioner kan anvendes. Tag for eksempel det udfyldte kvadrat fra figur 7(b). Der er tale om en selvsimilær geometrisk figur, idet kvadratet kan opfattes som bestående af fire formindskede kopier af kvadratet selv, som vist på figur 11. Figur 11 Ifølge vores gamle dimensionsbegreb skal dimensionen være 2. Lad os se, om dimensionen også bliver 2, hvis vi bruger den nye definition. n = 4, da der er fire små kvadrater og skaleringsfaktoren er klart 2, da hele kvadratet er dobbelt så langt d som hver af kopierne. Altså skal d tilfredsstille 4 = s. Det passer med, at d = 2! Efter vores gamle dimensionsbegreb skal for eksempel en cirkelperiferi have dimension 1, ligesom den rette linje har. Det nye dimensionsbegreb kan dog ikke anvendes i dette tilfælde, idet cirkelperiferien ikke er selvsimilær. Med den nye definition kan vi altså finde dimensionen af nogle nye figurer, såsom snefnugget, men den kan ikke klare alle de gamle figurer. Det var ønskeligt, om der fandtes et dimensionsbegreb, der kunne bruges i alle de tilfælde, vi har overvejet her i noten. Et dimensionsbegreb, som tillige kunne angive dimensionen for fraktaler, som ikke er selvsimilære. Det viser sig, at et sådant dimensionsbegreb eksisterer, og betegnes Hausdorff-dimensionen, og i de tilfælde, hvor tidligere metoder virker, giver Hausdorff-dimensionen det samme tal som tidligere metoder. Hausdorff-dimensionsbergrebet er dog for kompliceret til at blive gennemgået her. Et eksempel på en ikke-selvsimilær fraktal er Mandelbrot-mængden, opkaldt efter den tidligere omtalte franskmand, Benoit Mandelbrot. Det er imidlertid en helt anden historie, som vi ikke vil berøre her. 8
9 Løsninger til opgaver Øvelse 1: Længden er Øvelse 2: Længden er = Øvelse 3: Længden er =. Hver gang der sættes et nyt sæt spidser på forøges længden med en faktor 4 3. Øvelse 4: Man må sige, at længden af snefnugget er uendeligt langt, eftersom 4 ( ) n for n. 3 Øvelse 5: Det eksakte tal er log(4) 1, log(3) = Øvelse 6: Den eksakte dimension af Sierpinsky-trekanten er log(3) 1, log(2) = mens den for Sierpinsky-svampen er log(20) 2, log(3) = 9
Fra tilfældighed over fraktaler til uendelighed
Fra tilfældighed over fraktaler til uendelighed Tilfældighed Hvor tilfældige kan vi være? I skemaet ved siden af skal du sætte 0 er og 1-taller, ét tal i hvert felt. Der er 50 felter. Du skal prøve at
Bjørn Grøn. Euklids konstruktion af femkanten
Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen
Projekt 5.9. Geometriske fraktaler og fraktale dimensioner
Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Indhold 1. Fraktaler og vækstmodeller... 2 2. Kløverøen... 2 3. Fraktal dimension... 4 3.1 Skridtlængdemetoden... 4 3.2 Netmaskemetoden... 7 3.3
Fraktaler INTRO. FRAKTALER M l 57
Fraktaler De fleste figurer, I arbejder med i matematiktimerne, har rette linjer eller glatte kurver fx rektangler og cirkler Disse figurer kan ofte bruges til at beskrive menneskeskabte ting som fx bygninger
Geometri i plan og rum
INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af
bruge en formel-samling
Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber
Fra tilfældighed over fraktaler til uendelighed
Fra tilfældighed over fraktaler til uendelighed Dette undervisningsforløb har jeg lavet til et forløb på UCC Nordsjælland for særligt interesserede elever i 8. klasse. Alt, der står med rødt, er henvendt
Mattip om. Geometri former og figurer. Du skal lære: Kan ikke Kan næsten Kan. At finde og tegne former og figurer
Mattip om Geometri former og figurer Du skal lære: At finde og tegne former og figurer Kan ikke Kan næsten Kan At beregne omkreds og areal af figurer Om forskellige typer trekanter At finde højde og grundlinje
Opgaver hørende til undervisningsmateriale om Herons formel
Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og
På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot
Jørgen Erichsen På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Hvad er en fraktal? Noget forenklet kan man sige, at en fraktal er en geometrisk figur, der udmærker sig ved
Opgaver om koordinater
Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater
Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul
Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse
for matematik på C-niveau i stx og hf
VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):
1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.
Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt
Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:
INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler
GEOMETRI I PLAN OG RUM
LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige
Analytisk Geometri. Frank Nasser. 12. april 2011
Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Eksamensspørgsmål: Trekantberegning
Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8
i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0
BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den
Vejledning til at lave almindelige bordkort i Draw Side 1
Side 1 Når du åbner skabelonen til alm. bordkort ser du en side med 10 bordkort. For at få de stiplede linjer frem skal du evt. lige klikke i linealen foroven eller i siden. De stiplede linjer er for at
Tegn med GPS 1 - Vejledning
Tegn med GPS 1 - Vejledning Lærerforberedelse: Det er altid en god ide at afprøve opgaven selv, inden eleverne sættes i gang. Inden forløbet skal læreren have materialerne til posten klar og klargøre GPS
2.1 Euklidisk konstruktion af nogle regulære polygoner
Geometri og bilhjul Miroslava Sovičová, Štefan Havrlent, Ľubomír Rybanský Constantine the Philosopher University Nitra, Slovakia 1 Introduktion En matematiklærer der vil præsentere eleverne for noget nyt
Facitliste til MAT X Grundbog
Facitliste til MAT X Grundbog Foreløbig udgave Det er tanken der tæller A Formlen bliver l + b, når l og b er i uforkortet stand. B Ingen løsningsforslag. C Ved addition fås det samme facit. Ved multiplikation
Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.
6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle
Fraktaler en helt ny form for matematik
Manus: Math 4 / Fraktal Manusark nr. 1 Fraktaler en helt ny form for matematik 5 10 15 20 25 30 35 Det var en sensation, da den polskfødte matematiker og filosof Benoit Mandelbrot i 1975 præsenterede sine
REELLE TAL. Tilknytning til Kolorit 9 matematik grundbog. Vejledende sværhedsgrad. Indhold og kommentarer
LÆRERVEJLEDNING REELLE TAL Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Danskerne og ketchup Medieforbrug Decimaltal, brøker og procent og 2 Procentregning
Nordisk Matematikkonkurrence. samt Danmarks Matematiklærerforening. Skoleåret 2008 2009 Opgaver ved semifinalen
Opgave 1 Opdeling af figur I har fået udleveret et ark med syv regulære sekskanter. Inddel dem i 6 6 på syv forskellige måder. Det er kun tilladt at bruge rette linjer. Nedenfor kan I se en af måderne
Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling
Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg
Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter
Arealmomenter af. og. orden side Institut for Matematik, DTU: Gymnasieopgave Arealmomenter Teori: Se lærebøgerne i faget Statiske konstruktionsmodeller og EDB. Se også H&OL bind,., samt bind appendix.3,
Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul
Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi
Matematik interne delprøve 09 Tesselering
Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der
International matematikkonkurrence
Facit til demoopgaver for 6. og 7. klassetrin Navn og klasse 3 point pr. opgave Facit 1 Hvilken figur har netop halvdelen farvet? A B C D E 2 På min paraply fra Australien står der KANGAROO: Hvilket af
Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO
Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede
Insekter og planter Elev ark - Opgaver
INSEKTER Insekter og lugte Nu skal I tage det rødvin, som jeres lærer har taget med. I skal bruge 1 deciliter rødvin og 1 deciliter sukker. I blander det indtil alt sukkeret er opløst i rødvinen I skal
Trekanter. Frank Villa. 8. november 2012
Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1
F I N N H. K R I S T I A N S E N DET GYLDNE SNIT TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING
F I N N H. K R I S T I A N S E N 6 DET GYLDNE SNIT 4 TES REGNING MED REGNEARK KUGLE G Y L D E N D A L SIMULATIONER 5 LANDMÅLING Faglige mål: Demonstrere viden om matematikanvendelse samt eksempler på matematikkens
Differentialregning Infinitesimalregning
Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel
************************************************************************
Projektet er todelt: Første del har fokus på Euklids system og består af introduktionen, samt I og II. Anden del har fokus på Hilberts system fra omkring år 1900 og består af III sammen med bilagene. Man
Lille Georgs julekalender 2010. 1. december
1. december I hver af de øverste bokse skal der skrives et af tallene 1, 2, 3,..., 9. Alle tre tal skal være forskellige. I de næste bokse skrives de tal der fremkommer ved at man lægger sammen som vist.
Tip til 1. runde af Georg Mohr-Konkurrencen. Geometri. Georg Mohr-Konkurrencen
Tip til. runde af Georg Mohr-Konkurrencen Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en teoretisk indføring, men der i stedet fokus på
Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal
Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Link Mål Kompetence mål: Modellering Færdighedsmål Eleven kan vurdere egne og andres modelleringsprocesser Videns mål Eleven har viden om
MATEMATIK I HASLEBAKKER 14 OPGAVER
MATEMATIK I HASLEBAKKER 14 OPGAVER Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse,
På opdagelse i GeoGebra
På opdagelse i GeoGebra Trekanter: 1. Start med at åbne programmet på din computer. Du skal sørge for at gitteret i koordinatsystem er sat til. Dette gør vi ved at trykke på Vis oppe i venstre hjørne og
komposition GRATIS GUIDE På under 15 minutter L æ r m e r e o m
L æ r m e r e o m komposition GRATIS GUIDE På under 15 minutter Introduktion 2 Altid et hovedmotiv 3 Ti tredjedele (two thirds) 4 Det gyldne snit 5 Forgrund, mellemstykke og baggrund 6 Diagonaler 7 Sidekomposition
Brøker kan repræsentere dele af et hele som et område (fx ½ sandwich, ½ pizza, ½ æble, ½ ton grus).
Elevmateriale Undervisningsforløb Undervisningsforløbet er tiltænkt elever på 5. klassetrin. Der arbejdes en uge med hver af de tre hovedpointer, i fjerde uge arbejdes der med refleksionsaktiviteter, og
Geometri Følgende forkortelser anvendes:
Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien
Paradokser og Opgaver
Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail ([email protected]) eller per almindelig post (se adresse på
Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU)
Kaos og fraktaler i dynamiske systemer Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) UNF Matematik Camp 2010 Oversigt tre simple eksempler på klassiske fraktaler deterministiske
Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant
Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1
Problembehandling. Progression
Problembehandling Progression Problemløsning Problemløsning forudsætter at man står overfor et problem som man ikke har en færdig opskrift til at løse. Algoritme Når man har fundet frem til en metode eller
Det gyldne snit, forløb i 1. g
Det gyldne snit, forløb i 1. g Mål - Træne at skrive elementære matematiske tekster på computer inkl. billeder, formler og tabeller - Bruge geometriprogram - Læse en elementær tekst selv om et fagligt
Matematik med LEGO WeDo 4.-6. klasse. Lærervejledning Symmetri og drejning. Formål: Aktivitet
Lærervejledning Symmetri og drejning Eleverne skal bygge karusseller efter et billede. De skal sammenligne en symmetrisk og en asymmetrisk karrusel opfører sig nå der drejer rundt. De skal afgøre om nogle
Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)
Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog
Vi skal lave en sparegris, men inden vi går i gang, skal vi lige snakke om et par billeder
Vi skal lave en sparegris, men inden vi går i gang, skal vi lige snakke om et par billeder 2 3 1. Hvad kommer du til at tænke på, når du ser bygningerne? 2. Er det bygninger, som du har lyst til at komme
Fraktaler Mandelbrots Mængde
Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................
Om ensvinklede og ligedannede trekanter
Om ensvinklede og ligedannede trekanter Vi vil her give et bevis for sætningen, der siger at for trekanter er begreberne ensvinklet og ligedannet det samme. Sætningen er langt fra trivial trekanter er
Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -
2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...
Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)
Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...
Geometri med Geometer I
f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller
Ligedannede trekanter
Ib Michelsen: Matematik C, Geometri, 1. kapitel 2011 Version 7.1 22-08-11 Rettet: tempel.png inkorporeret / minioverskrift rettet D:\Appserv260\www\2011\ligedannedeTrekanter2.odt Arven fra Grækenland Arven
Andre måder at lære matematik på!
24-10-2011 side 1 Andre måder at lære matematik på! Mette Hjelmborg CFU Hjørring 15-11-2011 24-10-2011 side 2 Andre måder at lære matematik på! Kurset henvender sig til lærere, der gerne vil have inspiration
Matematisk argumentation
Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.
Rettevejledning, FP9, Prøven med hjælpemidler, endelig version
Rettevejledning, FP9, Prøven med hjælpemidler, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. Den udvidede rettevejledning
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler
Matematisk jul - Naturligvis!
Matematisk jul - Naturligvis! for mellemtrin Opgaverne henter inspiration i materialet Matematik Naturligvis, som kobler matematik til aktiv læring. Sådan bruger du julekalenderen Materialet indeholder
Geogebra Begynder Ku rsus
Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant
Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru.
1.1 Introduktion: Euklids algoritme er berømt af mange årsager: Det er en af de første effektive algoritmer man kender i matematikhistorien og den er uløseligt forbundet med problemerne omkring de inkommensurable
Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri
Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når
Matematiske færdigheder opgavesæt
Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas
Variabel- sammenhænge
Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende
Forslag til løsning af Opgaver om areal (side296)
Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens
Sådan gør I: Forberedelse og introduktion
Sådan gør I: Forberedelse og introduktion Inddrag samarbejdsudvalget (SU) tidligt i processen og drøft følgende: Hvem skal være med til processen med de trin? er det SU, et underudvalg eller andre? Aftal
Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger
Fysikøvelse Erik Vestergaard www.matematikfysik.dk Musik og bølger Formål Hovedformålet med denne øvelse er at studere det fysiske begreb stående bølger, som er vigtigt for at forstå forskellige musikinstrumenters
Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet
Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord
Kommentarer til matematik B-projektet 2015
Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver
Allan C. Malmberg. Terningkast
Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig
Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM)
Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM) Institut for Fysik og Astronomi Aarhus Universitet, Sep 2006. Lars Petersen og Erik Lægsgaard Indledning Denne note skal tjene som en kort introduktion
Det Platon mener, er... Essay om matematikken bag Epinomis 990 c 5 ff
Det Platon mener, er... Essay om matematikken bag Epinomis 990 c 5 ff af Christian Marinus Taisbak Illustrationer: Claus Glunk Platons tekst i Erik Ostenfelds oversættelse Motto (Ian Mueller in memoriam):
Gaudí og den hexagonale form - et oplæg
Når man bevæger sig op ad Passeig de Gracia fra Plaça Catalunya, så møder blikket som noget af det første den helt unikke fliselægning af hexagoner. Fliselægningen på Passeig de Gracia stammer idémæssigt
Matematik Naturligvis. Matematikundervisning der udfordrer alle.
Matematikundervisning der udfordrer alle. Læring i bevægelse Matematikkompetencerne i spil Læringsstile Dialog og samarbejde i uderummet Matematik Naturligvis Hvorfor lære matematik i det fri? Ved at arbejde
Usædvanlige opgaver Lærervejledning
Mette Hjelmborg Usædvanlige opgaver Lærervejledning Gyldendal Usædvanlige opgaver, lærervejledning af Mette Hjelmborg 008 Gyldendalske boghandel, Nordisk Forlag A/S, København Forlagsredaktion: Stine Kock,
Årsplan for matematik i 1. klasse 2010-11
Årsplan for matematik i 1. klasse 2010-11 Vanløse den 6. juli 2010 af Musa Kronholt Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden
Uendelige rækker og Taylor-rækker
Uendelige rækker og Taylor-rækker Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 200 Thomas Bolander, FUKBH 0 s. /24 Forhold mellem endelighed
TIPS TIL SAMARBEJDET OM SAMTALEGUIDEN
Samtaleguiden 36 Samtaleguiden er lavet primært til unge, der ryger hash. Som vejleder, mentor m.fl. kan du bruge Samtaleguiden som et fælles udgangspunkt i samtalen med den unge. Du kan dog også blot
Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema
Webinar - Matematik 1. Fælles Mål 2014 2. Relationsmodellen og et forløbsplanlægningsskema 3. Et eksempel på et forløb om areal og omkreds på mellemtrinnet 4. Relationsmodellen som refleksionsmodel Alle
Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8
Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt
Matematik på Åbent VUC
Lektion 8 Geometri Når du bruger denne facitliste skal du være opmærksom på, at: - der kan være enkelte fejl. - nogle af facitterne er udeladt - bl.a. der hvor facitterne er tegninger. - decimaltal kan
4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x))
A.0 A Algebradans x + y + k (x + y + k) (y + x) + (xy + k) (y + x) (k + (y + x)) k + k + k + (y +xy + k) (y + x) + k x + x + x + x + x + k (xy + (y + x) xy + xy + k (k + y + k) (xy + x) + y 6(x + xy) k
Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium
Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,
Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015
Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5
Tegning. Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn arbejdstegninger
Tegning Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning Målestoksforhold bruges når man skal vise noget større eller mindre end det er i virkeligheden.
Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm
Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm KOM-rapporten Prøvevejledning Fælles Mål http://pub.uvm.dk/2002/kom/hel.pdf http://qa.uvm.dk/uddannelser-og-dagtilbud/folkeskolen/afsluttendeproever/om-afsluttende-proever/proevevejledninger
GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2
GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve
Trigonometri. for 8. klasse. Geert Cederkvist
Trigonometri Ved konstruktion af bygningsærker, hor der kræes stor nøjagtighed, er der ofte brug for, at man kan beregne sider og inkler i geometriske figurer. Alle polygoner kan deles op i trekanter,
Forberedelse - Husk inden:
Kære Underviser Nærværende undervisningsmateriale kan bruges som efterbearbejdelse af alle Superreals forestillinger. Det overordnede formål er at guide eleverne til at åbne op for selve teateroplevelsen
Geometri med Geometer II
hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne
Løsningsforslag til Geometri 4.-10. klasse
Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem
