Bevægelse i to dimensioner

Størrelse: px
Starte visningen fra side:

Download "Bevægelse i to dimensioner"

Transkript

1 Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette behandler man bevægelsen langs hver af akserne for sig. Hvis man for eksempel betragter en partikel der bevæger sig, vil dens position være givet ved følgende to funktioner: x (t) y (t) som til et givet tidspunkt beskriver partiklens position med en x- og en y-koordinat. Opløsningen af en bevægelse i de to retninger langs koordinatakserne er entydig. Generelt kalder man de grafiske billeder, der fremkommer, for t tilhørende en given punktmængde (fx t R), for en parameterkurve, hvor t er parameteren. Funktionerne x (t) og y (t) kaldes for parameterfremstillingen. Hastighed, v er givet ved (gennemsnitshastigheden) v = s t For små t har vi dermed at denne brøk nærmer sig differentialkvotienten ds dt er hastigheden (den såkaldte momentanhastighed) givet ved og dermed v = ds dt y Hastigheden splittes også op i hastigheden langs x-aksen og hastigheden langs y-aksen (se figuren). Ved et givet tidspunkt er hastigheden bestemt ved v y v v x (t) = x (t) v y (t) = y (t) θ v x x Nogle gange viser det sig dog nyttigt at benytte andre parametre til beskrivelsen: v x (t) = v cos (θ) () v y (t) = v sin (θ) () Her er θ vinklen fra x-aksen til partiklens bevægelsesretning og v er farten, der kan bestemmes ud fra pythagoras sætning (se figur) v = v x + v y. Acceleration er defineret som hastighedsændring, så på tilsvarende måde beskrives partiklens acceleration i de to retninger ved at differentiere hastighedsfunktionerne a x (t) = v x (t) = x (t) a y (t) = v y (t) = y (t) Med parameterkurver kan man lave nogle grafiske billeder, som man typisk ikke kan lave med funktionsforskrifter. Nedenfor ses nogle eksempler.

2 Side af 7 x (t) = sin ( t) x (t) = t t x (t) = sin ( t) cos (t) x (t) = cos (t) y (t) = sin (t) y (t) = sin ( t) y (t) = t y (t) = sin ( t) sin (t) Her ser vi, at der flere steder er flere funktionsværdier for en given x-værdi, hvilket gør, at man ikke kan skrive en funktion op for dem. Når man skal tegne grafen for en parameterkurve, skal man for hver t-værdi udregne de tilhørende x- og y-værdier, hvilket giver det tilhørende punkt. Således løber man (i princippet) alle t-værdierne igennem. Det kan dog nemt gøres på grafregneren ved at ændre Graph-indstillingen i mode til PARAMETRIC. Så taster man blot x (t) og y (t) ind i Y=. Det skrå kast Det skrå kast er karakteriseret ved at noget kastes, stødes eller skydes skråt op i luften - i en givet vinkel fra jorden - med en eller anden begyndelseshastighed. Under bevægelsen er genstanden kun påvirket af tyngdekraften der i løbet af noget tid vil være skyld i, at genstanden har fundet tilbage til jorden. Uden at gå i dybden her, så tager formen af parameterkurven i det skrå kast udgangspunkt i følg. x (t) = () y (t) = g () da genstanden kun er påvirket af tyngdekraften, der påvirker i lodret retning og nedad (dermed minus). g kaldes tyngdeaccelerationen og er givet ved g = 9, 8 N. Ud fra disse kg accelerationsfunktioner kan man finde hastighedsfunktionerne x (t) = v,x () y (t) = v,y g t (6) hvor v,x er begyndelseshastigheden i x-retningen og v,y er begyndelseshastigheden i y- retningen med relationen v = v,x + v,y. Ud fra hastighedsfunktionerne findes stedfunktionerne x (t) = x + v,x t (7) y (t) = y + v,y t gt (8) med (x, y ) som startpositionen til tiden t =. Metoden til at komme frem til hastighedsfunktionerne og stedfunktionerne er det omvendte af differentialregning - integralregning, men man kan tjekke det ved at differentiere og se om det passer.

3 Side af 7 Oftest udtrykker man bevægelsen i det skrå kast ud fra startvinklen, θ, der dannes med vandret og størrelsen af starthastigheden, v. Dvs. at udrykkene i () og () for v bruges. Endvidere vælger man oftest (dog ikke altid) at indlægge et koordinatsystem således, at x =. Derved får vi x (t) = v cos (θ) t (9) y (t) = y + v sin (θ) t gt () Ved at isolere t i den første ligning kan man omskrive det som en funktion y (x) dvs. højde som funktion af længde: y (x) = y + sin (θ) cos (θ) x g v cos (θ) x () Her ser man, at det er en parabelbane med koefficienterne a = g sin(θ) v cos(θ), b = cos(θ) og c = y. Man kan gå videre ind i skråt kast her. Man kan fx regne på flyvetider og opstille hastighedsfunktionerne på samme måde som (9) og (). Desuden kan man beregne maksimal kastelængde, kastehøjde og optimal kastevinkel. Læg mærke til, at vi har etableret forbindelsen til parablerne, så det handler også her om at trække på den viden. Nogle af de ovenfor beskrevne ting er iøvrigt behandlet i andet udleveret matriale, der leverer en grundig gennemgang af det skrå kast. Kast i basketball Til højre er der en figur over en basketballspiller og to kast med forskellig kastehøjde. På figuren ses basketballen for hver af de to kast ca. 7 gange i sekundet. Hvis vi skal udtrykke forskellen i de to kast ud fra parametrene beskrevet i forrige afsnit, så vil vi nok sige, at de har forskellige værdier af kastevinklen θ og starthastigheden v. De to kast rammer dog begge tilsyneladende op i kurven. Det ses umiddelbart af figuren, at de to kast har parabellignende bevægelser, hvilket selvfølgelig også stemmer fint overens med forrige afsnit. På næste side er samme figur, hvor der indlagt et koordinatsystem således at x = og y =, da vi her antager at bolden slippes i en højde på meter. Kastevinklen θ indtegnet og starthastigheden v indtegnet som vektorpil. Desuden er de to parameterkurver, som bolden følger i de to tilfælde trukket op med kurver (to parabler). De formler, der beskriver bevægelserne i de to tilfælde, er givet i (9), () og () med y = (se figur).

4 Side af 7 Værdier af konstanter for de to kast: Enheder medtages ikke, men alt er i SI-enheder (dvs. m, s, N, osv.) Begge kast: Tyngdeacceleration: g = 9, 8 Startpostion (vandret): x = Kastehøjde: y = Afstand fra kaster til kurv: l = 6 Højt kast: Kastevinkel: θ = 7 Begyndelseshastighed: v =, Højt kast: Kastevinkel: θ = 6 Begyndelseshastighed: v = 8, θ 6 7 Ud fra de konstanter, der er beskrevet kan vi opstille stedfunktionerne (9) og () for det høje kast x (t) =, 9 t y (t) =, +, 8 t, 9t og hastighedsfunktionerne opnås ved differentiering v x (t) = x (t) =, 9 v y (t) = y (t) =, 8 9, 8t Funktionen y (x) som givet i () er givet ved y (x) =, +, 7x, 8x Tilsvarende kan (9), () og () skrives for det lave kast (hastighedsfunktionerne overlades til læseren): x (t) =, 7 t y (t) =, + 7, 78 t, 9t y (x) =, +, 7x, 6x Hvis vi kigger på det høje kast og vil regne på hvor højt bolden kommer op, så kender vi jo toppunktsformlen fra vores viden om parabler T (x top, y top ) = ( b, ) d a a, med d som den sædvanlige diskriminant d = b ac: x top =, 7 =, 9 (, 8) y top = (, 7 (, 8) ) (, 8) = 7, 96 Man kan dog også beregne det ved at se på hvornår y-hastigheden er nul v y =, hvilket netop er på toppunktet. Derudfra kan man beregne t-værdien og indsætte den i x (t) og

5 Side af 7 y (t). Husk på at stedfunktionernes ekstremumssteder jo netop er hastighedsfuntionernes nulpunktioner. Sådan hænger det sammen, når hastighedsfunktionen er den afledede funktion af stedfunktionen. Herved har vi at (vi regner stadig på det høje kast) v y = t =,8 =, 8 og dermed er x (, ) =, 9, 8 =, 9 og 9,8 y (, 8) = +, 8, 8, 9, 8 = 7, 96. Dette er selvfølgelig i overensstemmelse med resultatet fra toppunksformlen. Læg iøvrigt mærke til at toppunktets placering ikke er halvejs mellem kaster og kurv, hvilket jo blot afspejler den asymmetri, der er mellem kastehøjden og kurvens placering. Der er mange flere ting end banens toppunkt, der kan undersøges og der bliver senere remset nogle forslag op. Analyse af målinger fra videooptagelse På næste side er der en tabel med tider samt de tilhørende x- og y-koordinater for et kast optaget på videokamera (optaget d. 6/-). Punkterne er fremkommet ved at indlægge et koordinatsystem i billedet, hvor x = og x-aksen er langs gulvet. Derefter har jeg gennemgået basketballkastet en frame af gangen og udplukket nogle af dem. Dvs. bestemt værdierne af t, x og y. På næste side ses desuden tre grafer: en (t, x)-graf, en (t, y)-graf og en (x, y)-graf. Disse grafer kan man selv finde ved at indtaste punkterne i excel eller grafregneren. På graferne har jeg lavet en regression (indført en tendenslinje), hvilket også kan gøres i excel eller på grafregneren. Hvis I vil lave andengradspolynomiumstilpasning på grafregneren skal I bruge QuadReg, når I regression i Stat/List-editoren. Den første graf (øverst til højre) viser y (x) som et andengradspolynomium, hvilket passer med teorien. Det vi ser på grafen er boldens fysiske bevægelse - altså de steder den har været. Punkterne ligger pænt omkring det indtegnede polynomium, hvilket også underbygges af en korrelationskoefficient (eller forklaringsgrad) på r =, 998. Når punkterne ikke passer helt hænger det sammen med at bolden, i det program, jeg brugte til at prikke de enkelte værdier ud i, til tider kunne være ret uklar og udtværet. Dette bringer selvfølgelig en vis usikkerhed med sig. Dvs. at den afvigelse/usikkerhed, der er, den skyldes behandlingen af videoen og ikke uoverensstemmelse mellem teori og virkelighed. På de to næste grafer (dem under) ser vi hhv. x (t) og y (t). x (t) er boldens x-position til tiden t, hvor t = er ved kastets start (x () = x = ). Punkterne ligger på en ret linje, hvilket igen er helt i overensstemmelse med teorien (9). Vi kan aflæse af regressionsligningen af v cos (θ) =, 88. Den sidste graf afbilder y (t) hvilket også passer godt med teorien (). Det er et andengradspolynomium, og vi lægger mærke til, at koefficienten foran t er,, der passer nogenlunde (dog kun nogenlunde - den har lidt større nummerisk værdi) med den i teorien angivne på, 9. Af koefficenten foran t har vi at v sin (θ) = 6, 68. Ud fra de to ligninger kan man få, at tan (θ) =, 7 som også er i overensstemmelse med y (x) (husk at tan (θ) = sin(θ) og cos(θ) v = 6, 68 +, 88. Dette giver følgende værdier af kastevinkel og begyndelseshastighed: θ = 9, 8 og v = 7, 66. For det pågældende kast kan man beregne toppunkt for parabel, men det har vi gjort i forrige afsnit og princippet er præcis det samme. Derudover kan man se på, hvad der sker, hvis vinklen ændres, hvis begyndelseshastigheden ændres, hvis kastehøjden ændres og meget mere. I næste afsnit er der nogle forslag til, hvad man kan give sig i kast med i en nærmere analyse at et basketball kast.

6 Side 6 af 7 t x y y x Regression: x (t) =, 88 t r =, t Regression: y (x) =, x +, 697 x+, 7 r =, 998 y x Regression: y (t) =, t +6, 86 t+, 9 r =, t Hvad kan man undersøge ved det skrå kast i basketball? I dette afsnit er der nogle eksempler på ting, der kan analyseres nærmere i forbindelse med skrå kast i basketball. Der er selvfølgelig mange andre ting, der kan undersøges end disse eksempler. Se på et skudeksempel. Det kan være et af dem I har talmateriale på. Bestem kastevinklen. En basketballkurvs diameter er cm. Hvor meget kunne kastevinklen være ændret uden at bolden ville ramme forbi? Se på et eksempel, hvor en forsvarsspiller forsøger at blokere boldens bane. Vælg nogle passende værdier for blokkerens højde og afstand til kasterne. Hvilke krav stiller det til kastevinkel og begyndelseshastighed for at bolden skal kunne ramme mål?

7 Side 7 af 7 Pga. fysikken (tyngdekraften) behøver man kun to punkter for at bestemme bevægelsen af bolden. Det kan fx være - forudsat at bolden rammer kurven - kastehøjden y, højden af kurven, afstanden (den vandrette) til kurven og den tid, hvor bolden er i luften (flyvetiden). Prøv at opstille bevægelsesligningerne ud fra to punkter. De kan fx tage (, ) til t = og (, ) til t =,. Kastet svarer iøvrigt godt til et af dem som ikke er leveret som talmateriale til opgaven. Undersøg effekten af et jumpshot. Tag f.eks. udgangspunkt i et eksempel, hvor der hoppes for at skyde over en blokker. Hvor lille er den mindste kastevinkel ved en given afstand, hvormed man stadig kan lave mål i basketball. Hertil skal du bruge dimensionerne på kurven og bolden. Ved det skrå kast hvor y = kan man vise at den maksimale kastelængde er givet ved x max = v sin(θ) og den vinkel, der giver den x g max er θ = (kan du gøre det?). I basketball forholder det sig ikke helt så nemt. Bolden slippes jo i ca. m s højde og rammer kurven i m s højde. Kan du opstille en formel for xmax og den optimale kastevinkel i basketball - fx når y = m? Kan du generelt? Hvor meget skal vinklen for et bestemt skud ændres for at bolden rammer pladen og stadig går i kurven? kan du opstille en funktion for størrelsen af hastigheden som funktion af tiden? Sandsynligheden for at få et rent mål, dvs. et mål, der ikke rammer kanten, er højst ved høje skud, da nedfaldsvinklen φ er større. Man kan fx se på forholdet mellem kurvens areal projiceret ind på den vinkelrette retning, når den rammer kurven og boldens tværsnitsareal A kurv sin(φ) A bold. Her kan man se på, hvordan det forhold ændrer sig med nedfaldsvinklen. Man kan også opstille en formel, hvori det er kastevinklen, der indgår. Hvis vi ser på et kast, hvor bolden rammer pladen over kurven, så følger den en parabel før den rammer pladen. Der gør den også efter. Kan du bestemme forskriften for den parabel ud fra v og θ (x =,y = )? Her ses bort fra skru i bolden (som ellers sagtens kan have betydning) og energitab ved stødet med pladen.

Det skrå kast uden luftmodstand

Det skrå kast uden luftmodstand Det skrå kast uden luftmodstand I dette lille tillæg skal i smart benytte ektorer til at udlede udtryk for stedfunktionen og hastigheden i det skrå kast uden luftmodstand. Vi il gøre brug af de fundamentale

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Andengradsfunktionen

Andengradsfunktionen Andengradsfunktionen 1. Find først diskriminanten og efterfølgende også toppunktet for følgende andengradsfunktioner. A y = 2 x 2 + 4 x + 3 B y = 1 x 2 + 6 x + 2 C y = 1 / 2 x 2 + 2 x 2 D y = 1 x 2 + 6

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014 Brobygningsopgaver Den foreliggende opgavesamling består af opgaver fra folkeskolens afgangsprøver samt opgaver på gymnasieniveau baseret på de samme afgangsprøveopgaver. Det er hensigten med opgavesamlingen,

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Kinematik. Lad os betragte en cyklist der kører hen ad en cykelsti. Vi kan beskrive cyklistens køretur ved hjælp af en (t,s)-tabel, som her:

Kinematik. Lad os betragte en cyklist der kører hen ad en cykelsti. Vi kan beskrive cyklistens køretur ved hjælp af en (t,s)-tabel, som her: K Kinematik Den del af fysikken, der handler om at beskrive bevægelser hedder kinematik. Vi kan se på tid, position, hastighed og acceleration, men disse ting må altid angives i forhold til noget. Fysikere

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3 eks. Intro til differentialregning side 1 Opvarmningsopgaver 10. november 2012 12:58 Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3 Gang parentesen ud: Forkort brøken (x

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Brugervejledning til Graph (1g, del 1)

Brugervejledning til Graph (1g, del 1) Graph (brugervejledning 1g, del 1) side 1/8 Steen Toft Jørgensen Brugervejledning til Graph (1g, del 1) Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15 Numeriske metoder Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn Side 1 af 15 Indholdsfortegnelse Matematik forklaring... 3 Lineær regression... 3 Numerisk differentiation...

Læs mere

1. Bevægelse... 3 2. Det frie fald... 6 3. Kræfter... 8 4. Newtons love... 9 5. Gnidningskræfter... 12 6. Arbejde... 13 7. Mekanisk energi...

1. Bevægelse... 3 2. Det frie fald... 6 3. Kræfter... 8 4. Newtons love... 9 5. Gnidningskræfter... 12 6. Arbejde... 13 7. Mekanisk energi... Indholdsfortegnelse 1. Bevægelse... 3. Det frie fald... 6 3. Kræfter... 8 4. Newtons love... 9 5. Gnidningskræfter... 1 6. Arbejde... 13 7. Mekanisk energi... 19 Opgaver... 5 1. Bevægelse En vigtig del

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1

Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1 Kinematik Kinematik Indhold. Retlinet beægelse.... Jæn retlinet beægelse...3 3. Ujæn beægelse...4 4. Konstant accelereret beægelse...5 5. Tilbagelagt ej ed en konstant accelereret beægelse...8 6. Frit

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Excel - begynderkursus

Excel - begynderkursus Excel - begynderkursus 1. Skriv dit navn som undertekst på et Excel-ark Det er vigtigt når man arbejder med PC er på skolen at man kan få skrevet sit navn på hver eneste side som undertekst.gå ind under

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner FUNKTIONER del Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner -klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse FUNKTIONSBEGREBET... 3 Funktioner beskrevet ved mængder...

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

1gma_tændstikopgave.docx

1gma_tændstikopgave.docx ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når

Læs mere

Berlin eksempel på opgavebesvarelse i Word m/mathematics

Berlin eksempel på opgavebesvarelse i Word m/mathematics Berlin eksempel på opgavebesvarelse i Word m/mathematics 1.1 Gennemsnitsfarten findes ved at dividere den kørte strækning med den forbrugte tid i decimaltal. I regnearket bliver formlen =A24/D24. Resultatet

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner, G ISBN: 978-87-9288-11-4 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Årsprøve i matematik 1y juni 2007

Årsprøve i matematik 1y juni 2007 Opgave 1 Årsprøve i matematik 1y juni 2007 Figuren viser to ensvinklede trekanter PQR og P 1 Q 1 R 1 a) Bestem længden af siden P 1 Q 1 Skalafaktoren beregnes : k = 30/24 P 1 Q 1 = 20 30/24 P 1 Q 1 = 25

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

2. En knallert må i Danmark køre 30 km/t. Hvordan er Dæmonens hastighed i toppen af loopet, i forhold til en knallert, der kører 30 km/t.?

2. En knallert må i Danmark køre 30 km/t. Hvordan er Dæmonens hastighed i toppen af loopet, i forhold til en knallert, der kører 30 km/t.? Inspirationsark 1. I Tivoli kan du lave et forsøg, hvor du får lov til at tage et plastikglas med lidt vand med op i Det gyldne Tårn. Hvad tror du der sker med vandet, når du bliver trukket ned mod jorden?

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Løsninger til eksamensopgaver på B-niveau 2013

Løsninger til eksamensopgaver på B-niveau 2013 Løsninger til eksamensopgaver på B-niveau 013 Opgave 1: y a x b x 6 y 5 9 4. maj 013: Delprøven UDEN hjælpemidler Metode 1: Man kan bestemme a ved at indsætte de sammenhørende værdier i ligningsudtrykket,

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2...

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... Introduktion til kvantemekanik Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... 6 Hvordan må bølgefunktionen se ud...

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0. Opgave 6 Vi sætter P = 1000 og isolerer x i ligningen Se Bilag 2! P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.6 ( 10 y 0.4 )1 /0.6 = x 10 1 /0.6 y 0.4 /0.6 = x x = 10 5 /3

Læs mere

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller 1 Ligninger a. Fortæl om algebraisk og grafisk løsning af ligninger ud fra ét eller flere eksempler. b. Gør rede for algebraisk løsning af andengradsligningen ax 2 + bx + c = 0. 2 Ligninger a. Fortæl om

Læs mere

Arbejde med 3D track motion

Arbejde med 3D track motion Arbejde med 3D track motion Gary Rebholz I sidste måneds Tech Tip artikel gennemgik jeg det grundlæggende i track motion. Selv om vi ikke gennemgår alle værktøjer i Track Motion dialog box vil du alligevel

Læs mere

Disposition for kursus i Excel2007

Disposition for kursus i Excel2007 Disposition for kursus i Excel2007 Analyse af data (1) Demo Øvelser Målsøgning o evt. opgave 11 Scenariestyring o evt. opgave 12 Datatabel o evt. opgave 13 Evt. Graf og tendens o evt. opgave 10 Subtotaler

Læs mere

Kapitel 1. Planintegraler

Kapitel 1. Planintegraler Kapitel Planintegraler Denne tekst er en omarbejdet version af kapitel 7 i Gunnar Mohrs noter til faget DiploMat 2, og opgaverne er et lille udpluk af opgaver fra Mogens Oddershede Larsens bog Matematik

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I skal nu lave beregninger over jeres testresultater. I skal bruge jeres testark og ternet papir. Mine resultater Du skal beregne gennemsnittet af dine egne tider. Hvilket

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

Løsninger til eksamensopgaver på B-niveau 2011-2012

Løsninger til eksamensopgaver på B-niveau 2011-2012 Løsninger til eksamensopgaver på B-niveau 011-01 18. maj 011: Delprøven UDEN hjælpemidler Opgave 1: 5x 11 19x 17 1117 19x 5x 8 14x x Opgave : T K T K KT T K T K KT KT T Parentesen er udregnet ved hjælp

Læs mere

Den harmoniske svingning

Den harmoniske svingning Den harmoniske svingning Teori og en anvendelse Preben Møller Henriksen Version. Noterne forudsætter kendskab til sinus og cosinus som funktioner af alle reelle tal, dvs. radiantal. I figuren nedenunder

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Bedømmelseskriterier for skriftlig matematik stx A-niveau

Bedømmelseskriterier for skriftlig matematik stx A-niveau Bedømmelseskriterier for skriftlig matematik stx A-niveau Sådan bedømmes opgaverne ved skriftlig studentereksamen i matematik En vejledning for elever Skriftlighedsgruppe 01.04.09 Dette dokument henvender

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter

Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter Oktober 2012 Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter Da læreplanen for fysik på A-niveau i stx blev revideret i 2010, blev kernestoffet udvidet med emnet Elektriske

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER I oldtiden regnede man med 7 underværker, hvilket var seværdigheder, som man fremhævede på grund af deres størrelse, skønhed og udseende. Kun et enkelt af disse

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 5. Differentialregning

Matematikkens mysterier - på et obligatorisk niveau. 5. Differentialregning Matematikkens mysterier - på et obligatorisk niveau af Kennet Hansen 5. Differentialregning Hvornår skærer graferne for funktionerne ln og inanden? 5. Differentialregning 5. Differentialregning 5. Funktioner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

5. KLASSE UNDERVISNINGSPLAN MATEMATIK

5. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: SS Forord til faget i klassen Vi vil i matematik arbejde differentieret i hovedemnerne geometri, statistik og sandsynlighed samt tal og algebra. Vi vil i 5. kl. dagligt arbejde med matematisk kommunikation

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere