Bevægelse i to dimensioner

Størrelse: px
Starte visningen fra side:

Download "Bevægelse i to dimensioner"

Transkript

1 Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette behandler man bevægelsen langs hver af akserne for sig. Hvis man for eksempel betragter en partikel der bevæger sig, vil dens position være givet ved følgende to funktioner: x (t) y (t) som til et givet tidspunkt beskriver partiklens position med en x- og en y-koordinat. Opløsningen af en bevægelse i de to retninger langs koordinatakserne er entydig. Generelt kalder man de grafiske billeder, der fremkommer, for t tilhørende en given punktmængde (fx t R), for en parameterkurve, hvor t er parameteren. Funktionerne x (t) og y (t) kaldes for parameterfremstillingen. Hastighed, v er givet ved (gennemsnitshastigheden) v = s t For små t har vi dermed at denne brøk nærmer sig differentialkvotienten ds dt er hastigheden (den såkaldte momentanhastighed) givet ved og dermed v = ds dt y Hastigheden splittes også op i hastigheden langs x-aksen og hastigheden langs y-aksen (se figuren). Ved et givet tidspunkt er hastigheden bestemt ved v y v v x (t) = x (t) v y (t) = y (t) θ v x x Nogle gange viser det sig dog nyttigt at benytte andre parametre til beskrivelsen: v x (t) = v cos (θ) () v y (t) = v sin (θ) () Her er θ vinklen fra x-aksen til partiklens bevægelsesretning og v er farten, der kan bestemmes ud fra pythagoras sætning (se figur) v = v x + v y. Acceleration er defineret som hastighedsændring, så på tilsvarende måde beskrives partiklens acceleration i de to retninger ved at differentiere hastighedsfunktionerne a x (t) = v x (t) = x (t) a y (t) = v y (t) = y (t) Med parameterkurver kan man lave nogle grafiske billeder, som man typisk ikke kan lave med funktionsforskrifter. Nedenfor ses nogle eksempler.

2 Side af 7 x (t) = sin ( t) x (t) = t t x (t) = sin ( t) cos (t) x (t) = cos (t) y (t) = sin (t) y (t) = sin ( t) y (t) = t y (t) = sin ( t) sin (t) Her ser vi, at der flere steder er flere funktionsværdier for en given x-værdi, hvilket gør, at man ikke kan skrive en funktion op for dem. Når man skal tegne grafen for en parameterkurve, skal man for hver t-værdi udregne de tilhørende x- og y-værdier, hvilket giver det tilhørende punkt. Således løber man (i princippet) alle t-værdierne igennem. Det kan dog nemt gøres på grafregneren ved at ændre Graph-indstillingen i mode til PARAMETRIC. Så taster man blot x (t) og y (t) ind i Y=. Det skrå kast Det skrå kast er karakteriseret ved at noget kastes, stødes eller skydes skråt op i luften - i en givet vinkel fra jorden - med en eller anden begyndelseshastighed. Under bevægelsen er genstanden kun påvirket af tyngdekraften der i løbet af noget tid vil være skyld i, at genstanden har fundet tilbage til jorden. Uden at gå i dybden her, så tager formen af parameterkurven i det skrå kast udgangspunkt i følg. x (t) = () y (t) = g () da genstanden kun er påvirket af tyngdekraften, der påvirker i lodret retning og nedad (dermed minus). g kaldes tyngdeaccelerationen og er givet ved g = 9, 8 N. Ud fra disse kg accelerationsfunktioner kan man finde hastighedsfunktionerne x (t) = v,x () y (t) = v,y g t (6) hvor v,x er begyndelseshastigheden i x-retningen og v,y er begyndelseshastigheden i y- retningen med relationen v = v,x + v,y. Ud fra hastighedsfunktionerne findes stedfunktionerne x (t) = x + v,x t (7) y (t) = y + v,y t gt (8) med (x, y ) som startpositionen til tiden t =. Metoden til at komme frem til hastighedsfunktionerne og stedfunktionerne er det omvendte af differentialregning - integralregning, men man kan tjekke det ved at differentiere og se om det passer.

3 Side af 7 Oftest udtrykker man bevægelsen i det skrå kast ud fra startvinklen, θ, der dannes med vandret og størrelsen af starthastigheden, v. Dvs. at udrykkene i () og () for v bruges. Endvidere vælger man oftest (dog ikke altid) at indlægge et koordinatsystem således, at x =. Derved får vi x (t) = v cos (θ) t (9) y (t) = y + v sin (θ) t gt () Ved at isolere t i den første ligning kan man omskrive det som en funktion y (x) dvs. højde som funktion af længde: y (x) = y + sin (θ) cos (θ) x g v cos (θ) x () Her ser man, at det er en parabelbane med koefficienterne a = g sin(θ) v cos(θ), b = cos(θ) og c = y. Man kan gå videre ind i skråt kast her. Man kan fx regne på flyvetider og opstille hastighedsfunktionerne på samme måde som (9) og (). Desuden kan man beregne maksimal kastelængde, kastehøjde og optimal kastevinkel. Læg mærke til, at vi har etableret forbindelsen til parablerne, så det handler også her om at trække på den viden. Nogle af de ovenfor beskrevne ting er iøvrigt behandlet i andet udleveret matriale, der leverer en grundig gennemgang af det skrå kast. Kast i basketball Til højre er der en figur over en basketballspiller og to kast med forskellig kastehøjde. På figuren ses basketballen for hver af de to kast ca. 7 gange i sekundet. Hvis vi skal udtrykke forskellen i de to kast ud fra parametrene beskrevet i forrige afsnit, så vil vi nok sige, at de har forskellige værdier af kastevinklen θ og starthastigheden v. De to kast rammer dog begge tilsyneladende op i kurven. Det ses umiddelbart af figuren, at de to kast har parabellignende bevægelser, hvilket selvfølgelig også stemmer fint overens med forrige afsnit. På næste side er samme figur, hvor der indlagt et koordinatsystem således at x = og y =, da vi her antager at bolden slippes i en højde på meter. Kastevinklen θ indtegnet og starthastigheden v indtegnet som vektorpil. Desuden er de to parameterkurver, som bolden følger i de to tilfælde trukket op med kurver (to parabler). De formler, der beskriver bevægelserne i de to tilfælde, er givet i (9), () og () med y = (se figur).

4 Side af 7 Værdier af konstanter for de to kast: Enheder medtages ikke, men alt er i SI-enheder (dvs. m, s, N, osv.) Begge kast: Tyngdeacceleration: g = 9, 8 Startpostion (vandret): x = Kastehøjde: y = Afstand fra kaster til kurv: l = 6 Højt kast: Kastevinkel: θ = 7 Begyndelseshastighed: v =, Højt kast: Kastevinkel: θ = 6 Begyndelseshastighed: v = 8, θ 6 7 Ud fra de konstanter, der er beskrevet kan vi opstille stedfunktionerne (9) og () for det høje kast x (t) =, 9 t y (t) =, +, 8 t, 9t og hastighedsfunktionerne opnås ved differentiering v x (t) = x (t) =, 9 v y (t) = y (t) =, 8 9, 8t Funktionen y (x) som givet i () er givet ved y (x) =, +, 7x, 8x Tilsvarende kan (9), () og () skrives for det lave kast (hastighedsfunktionerne overlades til læseren): x (t) =, 7 t y (t) =, + 7, 78 t, 9t y (x) =, +, 7x, 6x Hvis vi kigger på det høje kast og vil regne på hvor højt bolden kommer op, så kender vi jo toppunktsformlen fra vores viden om parabler T (x top, y top ) = ( b, ) d a a, med d som den sædvanlige diskriminant d = b ac: x top =, 7 =, 9 (, 8) y top = (, 7 (, 8) ) (, 8) = 7, 96 Man kan dog også beregne det ved at se på hvornår y-hastigheden er nul v y =, hvilket netop er på toppunktet. Derudfra kan man beregne t-værdien og indsætte den i x (t) og

5 Side af 7 y (t). Husk på at stedfunktionernes ekstremumssteder jo netop er hastighedsfuntionernes nulpunktioner. Sådan hænger det sammen, når hastighedsfunktionen er den afledede funktion af stedfunktionen. Herved har vi at (vi regner stadig på det høje kast) v y = t =,8 =, 8 og dermed er x (, ) =, 9, 8 =, 9 og 9,8 y (, 8) = +, 8, 8, 9, 8 = 7, 96. Dette er selvfølgelig i overensstemmelse med resultatet fra toppunksformlen. Læg iøvrigt mærke til at toppunktets placering ikke er halvejs mellem kaster og kurv, hvilket jo blot afspejler den asymmetri, der er mellem kastehøjden og kurvens placering. Der er mange flere ting end banens toppunkt, der kan undersøges og der bliver senere remset nogle forslag op. Analyse af målinger fra videooptagelse På næste side er der en tabel med tider samt de tilhørende x- og y-koordinater for et kast optaget på videokamera (optaget d. 6/-). Punkterne er fremkommet ved at indlægge et koordinatsystem i billedet, hvor x = og x-aksen er langs gulvet. Derefter har jeg gennemgået basketballkastet en frame af gangen og udplukket nogle af dem. Dvs. bestemt værdierne af t, x og y. På næste side ses desuden tre grafer: en (t, x)-graf, en (t, y)-graf og en (x, y)-graf. Disse grafer kan man selv finde ved at indtaste punkterne i excel eller grafregneren. På graferne har jeg lavet en regression (indført en tendenslinje), hvilket også kan gøres i excel eller på grafregneren. Hvis I vil lave andengradspolynomiumstilpasning på grafregneren skal I bruge QuadReg, når I regression i Stat/List-editoren. Den første graf (øverst til højre) viser y (x) som et andengradspolynomium, hvilket passer med teorien. Det vi ser på grafen er boldens fysiske bevægelse - altså de steder den har været. Punkterne ligger pænt omkring det indtegnede polynomium, hvilket også underbygges af en korrelationskoefficient (eller forklaringsgrad) på r =, 998. Når punkterne ikke passer helt hænger det sammen med at bolden, i det program, jeg brugte til at prikke de enkelte værdier ud i, til tider kunne være ret uklar og udtværet. Dette bringer selvfølgelig en vis usikkerhed med sig. Dvs. at den afvigelse/usikkerhed, der er, den skyldes behandlingen af videoen og ikke uoverensstemmelse mellem teori og virkelighed. På de to næste grafer (dem under) ser vi hhv. x (t) og y (t). x (t) er boldens x-position til tiden t, hvor t = er ved kastets start (x () = x = ). Punkterne ligger på en ret linje, hvilket igen er helt i overensstemmelse med teorien (9). Vi kan aflæse af regressionsligningen af v cos (θ) =, 88. Den sidste graf afbilder y (t) hvilket også passer godt med teorien (). Det er et andengradspolynomium, og vi lægger mærke til, at koefficienten foran t er,, der passer nogenlunde (dog kun nogenlunde - den har lidt større nummerisk værdi) med den i teorien angivne på, 9. Af koefficenten foran t har vi at v sin (θ) = 6, 68. Ud fra de to ligninger kan man få, at tan (θ) =, 7 som også er i overensstemmelse med y (x) (husk at tan (θ) = sin(θ) og cos(θ) v = 6, 68 +, 88. Dette giver følgende værdier af kastevinkel og begyndelseshastighed: θ = 9, 8 og v = 7, 66. For det pågældende kast kan man beregne toppunkt for parabel, men det har vi gjort i forrige afsnit og princippet er præcis det samme. Derudover kan man se på, hvad der sker, hvis vinklen ændres, hvis begyndelseshastigheden ændres, hvis kastehøjden ændres og meget mere. I næste afsnit er der nogle forslag til, hvad man kan give sig i kast med i en nærmere analyse at et basketball kast.

6 Side 6 af 7 t x y y x Regression: x (t) =, 88 t r =, t Regression: y (x) =, x +, 697 x+, 7 r =, 998 y x Regression: y (t) =, t +6, 86 t+, 9 r =, t Hvad kan man undersøge ved det skrå kast i basketball? I dette afsnit er der nogle eksempler på ting, der kan analyseres nærmere i forbindelse med skrå kast i basketball. Der er selvfølgelig mange andre ting, der kan undersøges end disse eksempler. Se på et skudeksempel. Det kan være et af dem I har talmateriale på. Bestem kastevinklen. En basketballkurvs diameter er cm. Hvor meget kunne kastevinklen være ændret uden at bolden ville ramme forbi? Se på et eksempel, hvor en forsvarsspiller forsøger at blokere boldens bane. Vælg nogle passende værdier for blokkerens højde og afstand til kasterne. Hvilke krav stiller det til kastevinkel og begyndelseshastighed for at bolden skal kunne ramme mål?

7 Side 7 af 7 Pga. fysikken (tyngdekraften) behøver man kun to punkter for at bestemme bevægelsen af bolden. Det kan fx være - forudsat at bolden rammer kurven - kastehøjden y, højden af kurven, afstanden (den vandrette) til kurven og den tid, hvor bolden er i luften (flyvetiden). Prøv at opstille bevægelsesligningerne ud fra to punkter. De kan fx tage (, ) til t = og (, ) til t =,. Kastet svarer iøvrigt godt til et af dem som ikke er leveret som talmateriale til opgaven. Undersøg effekten af et jumpshot. Tag f.eks. udgangspunkt i et eksempel, hvor der hoppes for at skyde over en blokker. Hvor lille er den mindste kastevinkel ved en given afstand, hvormed man stadig kan lave mål i basketball. Hertil skal du bruge dimensionerne på kurven og bolden. Ved det skrå kast hvor y = kan man vise at den maksimale kastelængde er givet ved x max = v sin(θ) og den vinkel, der giver den x g max er θ = (kan du gøre det?). I basketball forholder det sig ikke helt så nemt. Bolden slippes jo i ca. m s højde og rammer kurven i m s højde. Kan du opstille en formel for xmax og den optimale kastevinkel i basketball - fx når y = m? Kan du generelt? Hvor meget skal vinklen for et bestemt skud ændres for at bolden rammer pladen og stadig går i kurven? kan du opstille en funktion for størrelsen af hastigheden som funktion af tiden? Sandsynligheden for at få et rent mål, dvs. et mål, der ikke rammer kanten, er højst ved høje skud, da nedfaldsvinklen φ er større. Man kan fx se på forholdet mellem kurvens areal projiceret ind på den vinkelrette retning, når den rammer kurven og boldens tværsnitsareal A kurv sin(φ) A bold. Her kan man se på, hvordan det forhold ændrer sig med nedfaldsvinklen. Man kan også opstille en formel, hvori det er kastevinklen, der indgår. Hvis vi ser på et kast, hvor bolden rammer pladen over kurven, så følger den en parabel før den rammer pladen. Der gør den også efter. Kan du bestemme forskriften for den parabel ud fra v og θ (x =,y = )? Her ses bort fra skru i bolden (som ellers sagtens kan have betydning) og energitab ved stødet med pladen.

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Lavet af Ellen, Sophie, Laura Anna, Mads, Kristian og Mathias Fysikrapport blide forsøg Rapport 6, skråt kast med blide Formål Formålet med f

Lavet af Ellen, Sophie, Laura Anna, Mads, Kristian og Mathias Fysikrapport blide forsøg Rapport 6, skråt kast med blide Formål Formålet med f Rapport 6, skråt kast med blide Formål Formålet med forsøget er at undersøge det skrå kast, bl.a. med fokus på starthastighed, elevation og kastevidde. Teori Her følger der teori over det skrå kast Bevægelse

Læs mere

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

Det skrå kast uden luftmodstand

Det skrå kast uden luftmodstand Det skrå kast uden luftmodstand I dette lille tillæg skal i smart benytte ektorer til at udlede udtryk for stedfunktionen og hastigheden i det skrå kast uden luftmodstand. Vi il gøre brug af de fundamentale

Læs mere

Vektorfunktioner Parameterfremstillinger Parameterkurver x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner Parameterfremstillinger Parameterkurver x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner Parameterfremstillinger Parameterkurver x-klasserne Gammel Hellerup Gymnasium April 019 ; Michael Szymanski ; mz@ghg.dk Indholdsfortegnelse VEKTORFUNKTIONER... 1. Skæringer med koordinatakserne...

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse Det skrå kåst Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse 19/12-2012 Matematik Opstil stedfunktionen s x (t) og s y (t) for den lodrette og den vandrette bevægelse, som funktion af

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Funktioner. 3. del Karsten Juul

Funktioner. 3. del Karsten Juul Funktioner 3. del 019 Karsten Juul Funktioner 3. del, 019 Karsten Juul 1/9-019 Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes i undervisningen hvis læreren

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Løsninger til eksamensopgaver på A-niveau 2017

Løsninger til eksamensopgaver på A-niveau 2017 Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Newtons love - bevægelsesligninger - øvelser. John V Petersen

Newtons love - bevægelsesligninger - øvelser. John V Petersen Newtons love - bevægelsesligninger - øvelser John V Petersen Newtons love 2016 John V Petersen art-science-soul Indhold 1. Indledning og Newtons love... 4 2. Integration af Newtons 2. lov og bevægelsesligningerne...

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold.

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Formål Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Teori Et batteri opfører sig som en model bestående af en ideel spændingskilde og en indre

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Rapport uge 48: Skråplan

Rapport uge 48: Skråplan Rapport uge 48: Skråplan Morten A. Medici, Jonatan Selsing og Filip Bojanowski 2. december 2008 Indhold 1 Formål 2 2 Teori 2 2.1 Rullebetingelsen.......................... 2 2.2 Konstant kraftmoment......................

Læs mere

1. Bevægelse med luftmodstand

1. Bevægelse med luftmodstand Programmering i TI nspire. Michael A. D. Møller. Marts 2018. side 1/7 1. Bevægelse med luftmodstand Formål a) At lære at programmere i Basic. b) At bestemme stedbevægelsen for et legeme, der bevæger sig

Læs mere

Bedste rette linje ved mindste kvadraters metode

Bedste rette linje ved mindste kvadraters metode 1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem

Læs mere

Michael Jokil 11-05-2012

Michael Jokil 11-05-2012 HTX, RTG Det skrå kast Informationsteknologi B Michael Jokil 11-05-2012 Indholdsfortegnelse Indledning... 3 Teori... 3 Kravspecifikationer... 4 Design... 4 Funktionalitet... 4 Brugerflade... 4 Implementering...

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

Stx matematik B maj 2009

Stx matematik B maj 2009 Ib Michelsen Svar stxb maj 2009 1 Stx matematik B maj 2009 Opgave 1 Bestem f ' ( x), idet f (x )=2 x 3 +4 x 2 f ' ( x)=(2 x 3 +4 x 2 )'=(2 x 3 )'+(4 x 2 )'=2 ( x 3 )' +4 ( x 2 )'=2 3 x 3 1 +4 2 x 2 1 =6

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Lommeregnerkursus 2008

Lommeregnerkursus 2008 Mikkel Stouby Petersen Lommeregnerkursus 008 Med gennemregnede eksempler og øvelser Materialet er udarbejdet til et kursus i brug af TI-89 Titanium afholdt på Odder Gymnasium. april 008 1. Ligningsløsning

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Løsninger til eksamensopgaver på B-niveau 2017

Løsninger til eksamensopgaver på B-niveau 2017 Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver

Læs mere

gudmandsen.net 1 Parablen C-niveau y = ax 2 bx c eksempelvis: y = 2x 2 2x 4

gudmandsen.net 1 Parablen C-niveau y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Parameterkurver. Et eksempel på en rapport

Parameterkurver. Et eksempel på en rapport x Parameterkurver Et eksempel på en rapport Parameterkurver 0x MA side af 7 Hypocykloiden A B Idet vi anvender startværdierne for A og B som angivet, er en generel parameterfremstilling for hypocykloiden

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Erik Vestergaard 1. Opgaver. i Lineære. funktioner. og modeller

Erik Vestergaard   1. Opgaver. i Lineære. funktioner. og modeller Erik Vestergaard www.matematikfsik.dk Opgaver i Lineære funktioner og modeller Erik Vestergaard www.matematikfsik.dk Erik Vestergaard, Haderslev. www.matematikfsik.dk Teknik. Aflæse forskrift fra graf...

Læs mere

Differentialregning. Et oplæg Karsten Juul L P

Differentialregning. Et oplæg Karsten Juul L P Differentialregning Et oplæg L P A 2009 Karsten Juul Til eleven Dette hæfte kan I bruge inden I starter på differentialregningen i lærebogen Det meste af hæftet er små spørgsmål med korte svar Spørgsmålene

Læs mere

GUX. Matematik. A-Niveau. August 2015. Kl. 9.00-14.00. Prøveform a GUX152 - MAA

GUX. Matematik. A-Niveau. August 2015. Kl. 9.00-14.00. Prøveform a GUX152 - MAA GUX Matematik A-Niveau August 05 Kl. 9.00-4.00 Prøveform a GUX5 - MAA Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne til 0 med i alt 5 spørgsmål. De 5 spørgsmål indgår med lige vægt

Læs mere

Andengradsfunktionen

Andengradsfunktionen Andengradsfunktionen 1. Find først diskriminanten og efterfølgende også toppunktet for følgende andengradsfunktioner. A y = 2 x 2 + 4 x + 3 B y = 1 x 2 + 6 x + 2 C y = 1 / 2 x 2 + 2 x 2 D y = 1 x 2 + 6

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Materiale sammenskrevet af:

Materiale sammenskrevet af: Det skrå kast med 1.b 006 Bjørn Felsager & Brian Olesen Haslev Gymnasium og HF Materiale sammenskrevet af: Brian M.V. Olesen Haslev Gymnasium og HF Juli 009 05-07-009 18:4 Indholdsfortegnelse Introduktion...

Læs mere

Løsninger til eksamensopgaver på A-niveau 2016

Løsninger til eksamensopgaver på A-niveau 2016 Løsninger til eksamensopgaver på A-niveau 2016 24. maj 2016: Delprøven UDEN hjælpemidler Opgave 1: Da trekanterne er ensvinklede, er forholdene mellem korresponderende linjestykker i de to trekanter det

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Andengradspolynomier - Gymnasienoter

Andengradspolynomier - Gymnasienoter - Gymnasienoter http://findinge.com/ Tag forbehold for eventuelle fejl/typos. Indhold Forord 3 Toppunktsformlen - Bevismetode 1 4 Toppunktsformlen - Bevismetode 6 Andengradspolynomiets symmetri 7 Rodfaktorisering

Læs mere

20 = 2x + 2y. V (x, y) = 5xy. V (x) = 50x 5x 2.

20 = 2x + 2y. V (x, y) = 5xy. V (x) = 50x 5x 2. 17 Optimering 17.1 Da omkræsen skal være 0cm har vi at 0 = x + y. Rumfanget V for kassen er en funktion der afhænger af både x og y givet ved V (x, y) = 5xy. Isolerer vi y i formlen for omkredsen og indsætter

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

D = 0. Hvis rører parablen x- aksen i et enkelt punkt, dvs. den tilhørende andengradsligning

D = 0. Hvis rører parablen x- aksen i et enkelt punkt, dvs. den tilhørende andengradsligning Projekt 55 Andengradspolynomier af to variable Kvadratiske funktioner i to variable - de tre typer paraboloider f() = A + B + C, hvor A 0 Et andengradspolynomium i en variabel har en forskrift på formen

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Bevægelse med luftmodstand

Bevægelse med luftmodstand SRP 4. Bevægelse med luftmodstand. Bevægelse med luftmodstand Banekurve beskrevet af Albert af Sachsen. Kilde: Fysikhistorie.dk. SRP 4. Bevægelse med luftmodstand. side 2/8 Problemformulering At bestemme

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Funktioner. 1. del Karsten Juul

Funktioner. 1. del Karsten Juul Funktioner 1. del 0,6 5, 9 2018 Karsten Juul 1. Koordinater 1.1 Koordinatsystem... 1 1.2 Kvadranter... 1 1.3 Koordinater... 2 1.4 Aflæs x-koordinat... 2 1.5 Aflæs y-koordinat... 2 1.6 Koordinatsæt... 2

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

GUX. Matematik. A-Niveau. Torsdag den 31. maj Kl Prøveform a GUX181 - MAA

GUX. Matematik. A-Niveau. Torsdag den 31. maj Kl Prøveform a GUX181 - MAA GUX Matematik A-Niveau Torsdag den 31. maj 018 Kl. 09.00-14.00 Prøveform a GUX181 - MAA 1 Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne 1 til 11 med i alt 5 spørgsmål. De 5 spørgsmål

Læs mere

Vektorfunktioner vha. CAS

Vektorfunktioner vha. CAS Vektorfunktioner vha. CAS 1 Forord Vi skal i de kommende uger arbejde med emnet Vektorfunktioner ved: 1) at I selv arbejder med siderne 3 10 som en opstart. Siderne baserer sig på CAS-programmet TI-Nspire.

Læs mere

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Figur 1. fs10 Matematik - Tennisklubben

Figur 1. fs10 Matematik - Tennisklubben Figur 1 fs10 Matematik - Tennisklubben 1 Hammel Tennisklub Hammel tennisklub har eksisteret siden år 1904 1.1 Hvor lang tid har klubben eksisteret? Der spilles fra april, til oktober starter. 1.2 Hvor

Læs mere

FORSØGSVEJLEDNING. Kasteparablen

FORSØGSVEJLEDNING. Kasteparablen Fysik i idræt - Idræt i fysik 006 FORSØGSVEJLEDNING Kasteparablen Formål: At bestemme kastelængden (x-positionen) for kast ed forskellige afleeringsinkler: o Ca. 30 o. o Ca. 45 o. o Ca. 60 o. og ed brug

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

Projekt 2.5 Brændpunkt og ledelinje

Projekt 2.5 Brændpunkt og ledelinje Projekter. Kapitel. Projekt.5 Brændpunkt og ledelinje Projekt.5 Brændpunkt og ledelinje En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Delprøven uden hlælpemidler

Delprøven uden hlælpemidler Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.

Læs mere

Potensfunktioner og dobbeltlogaritmisk papir

Potensfunktioner og dobbeltlogaritmisk papir 1 Potensfunktioner og dobbeltlogaritmisk papir OBS: til skriftlig eksamen skal du kun kunne aflæse på en graf, der allerede er indtegnet på dobbeltlogaritmisk papir. Du kan ikke komme ud for at skulle

Læs mere