LINALG JULENØD 2013 SUNE PRECHT REEH

Størrelse: px
Starte visningen fra side:

Download "LINALG JULENØD 2013 SUNE PRECHT REEH"

Transkript

1 LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som a opfylder a = I Z slår dette derimod fejl: Eksempelvis for heltallet 2 Z findes der a ikke noget heltal x Z med 2x = (brøken er ikke et heltal) Dette viser sig at sætte 2 kraftige begrænsninger på hvilke operationer der er tilladte for matricer af heltal hvis altså resultatet igen skal være en heltalsmatrix Lad i det følgende M m,n (Z) betegne mængden af (m n)-matricer hvor alle matrixindgange er hele tal Matricerne A M m,n (Z) svarer til lineær afbildninger f : Z n Z m på vektorer af hele tal En matrix A M m,n (Z) er regulær/invertibel hvis A findes og også er en heltalsmatrix Bemærk at A M m,n (Z) godt kan være regulær i M m,n (R) samtidig med at A ikke er invertibel som heltalsmatrix En heltalsmatrix A er invertibel præcist når den tilhørende afbildning f : Z n Z m er bijektiv I afleveringsopgave 32(i)(c) skulle det vises at hvis en heltalsmatrix A er invertibel, så er det(a) = det(a ) = ± Hvis du i stedet løste 32(ii) eller 32(iii) i afleveringen, så overvej som opvarmning hvorfor 32(i)(c) er sand Opgave (a) Vis det omvendte af 32(i)(c): Vis at hvis en heltalsmatrix A har determinant ±, så er A invertibel som heltalsmatrix (dvs A findes og består af heltal) Hint: Se på komplementmatricen K(A) Løsning Først genkalder vi os lige løsningen til 32(i)(c): Hvis A er en invertibel heltalsmatrix, så gælder det A det A = det E = Den eneste måde hvorpå kan skrives som et produkt af heltal er hvis faktorerne er ±, så hvis A er invertibel, er det A = ± Lad os nu omvendt antage at det A = ±, så er A i det mindste regulær som reel matrix Ifølge [, Sætning 364] er den reelle invers givet ved A = det A K(A)t Indgang (i, j) i komplementmatricen K(A) er tallet A ij der er determinanten af A hvor i te række og j te søjle er fjernet Determinanten af en heltalsmatrix fremkommer ved summer og produkter af heltal og er derfor også et heltal, tallene A ij er altså heltal Matricen K(A), og dermed K(A) t, er således heltallig Til sidst ganger vi med / det A = /(±) = ± og ser at den inverse matrix A faktisk er heltallig! Hvis vi ganger en række i en heltallig matrix med 2 indeholder den stadig heltal Den omvendte operation, at gange med 2, er dog ikke tilladt, for der bliver resultatet ikke altid en heltalsmatrix Opgave (b) (og opgave (b )) Hvilke rækkeoperationer M i (c), B ij, S ij (c) kan vi udføre på heltalsmatricer hvis resultatet altid skal være en heltalsmatrix? Hvad hvis vi kræver at den omvendte rækkeoperation også skal være heltallig? Hvilke operationer er så tilladt?

2 LINALG JULENØD Det svarer til at spørge: Hvilke operationsmatricer for heltal er invertible (og altså har determinant ±)? Løsning Type M: Hvis vi ganger en række med et tal c og vil være sikre på at resultatet alttid bliver heltallig, så skal c Z Hvis den omvendte operation, at gange med /c, også altid skal give heltal, så skal /c Z Det eneste tidpunkt hvor både c og /c er heltal er hvis c = ± For operationsmatricer ved vi at det M i (c) = c Ifølge opgave (a) er M i (c) en invertibel heltalsmatrix netop når determinanten er ±, dvs når c = ± Samlet: De eneste operationer af type M der er tilladt, er M i (±) Type B: Hvis vi bytter om på to rækker i en matrix af heltal, så har vi stadig kun heltalsindgange Den omvendte operation, at foretage samme byt en gang til, er også okay Operationmatricerne B ij er heltalsmatricer og har altid determinant, så de er invertible (vi har endda B ij = B ij ) Samlet: Bytteoperationerne B ij er alle tilladt Type S: Hvis vi tager række j og lægger c kopier til række i, så skal c Z for at vi altid for heltal Den omvendte operation, at lægge c kopier af række j til række i, er okay hvis vi allerede har c Z Operationmatricerne S ij (c) er heltalsmatricer hvis c Z og har altid determinant, så de er invertible ifølge (a) Samlet: Sumoperationerne S ij (c) er tilladt for alle c Z Rækkeoperationerne ovenfor er de eneste rækkeoperationer vi tillader på heltalsmatricer: Operationen skal være heltallig, og den inverse operation skal også være heltallig sådan at vi altid kan komme tilbage til udgangspunktet 2 Opgave (c) Betragt matricen M := M (Z) Redegør for at M ikke kan omdannes til en diagonalmatrix med rækkeoperationer så længe vi kun bruger (tilladte) heltallige operationer Hint: Ethvert produkt af (række)operationsmatricer er en matrix med determinant ± Vis dernæst at hvis vi blander række- og søjleoperationer, så kan M godt omdannes til en diagonalmatrix Er M invertibel? Nedenfor følger en løsning indsendt af Mads Munch Hansen Den overordnede strategi er at hvis vi udfører rækkeoperationer på M, så svarer det til at gange et produkt af operationsmatricer P på M fra venstre Løsning (af Mads Munch Hansen) I det følgende vil det blive undersøgt hvilke egenskaber en heltalsmatrix P skal have for at produktet P M er lig en diagonalmatrix D M 2 (Z), hvor M er defineret som i opgaveformuleringen, og deraf udlede en modtrid Antag for modstrid at P = P k P hvor P,, P k er tilladte heltallige operationsmatricer og D = P M er en diagonalmatrix Det gælder så at det(p ) = det(p k ) det(p ) = ± Vi har at det(m) = 4, og så må vi have at det(d) = det(p M) = det(p ) det(m) = ±4

3 Lad så følger det at LINALG JULENØD a b P =, c d D = P M a b 2 = c d 0 2 2a a + 2b = 2c c + 2d Siden D er en diagonalmatrix, må c = 0 og 2b = a, så fås 4b 0 D = 0 2d Siden det(d) = 8bd = ±4, men indebærer det at bd = ± 2 hvilket er umuligt siden P er et produkt af de tilladte heltalsmatricer og derfor ikke kan have indgange i de ikke-hele tal Da fører antagelserne om, at P = P k P og P M = D til en modsigelse Det er således umuligt at et produkt af de tilladte rækkeoperationer omdanner M til en diagonalmatrix For at vise at M godt kan transformeres til en diagonalmatrix, ved at blande (heltallige) række- og søjleoperationer, har vi at ( M = ) ( ) so ønsket Siden det(m) = 4 ±, er M ikke heltalligt invertibel (jævnfør (a)) Opgave (d) Vis at enhver heltalsmatrix A kan omdannes med (heltallige) rækkeoperationer til en trappematrix Hint: Se på første søjle Skift fortegn indtil alle søjlens tal er 0 Bliv ved med at trække det mindste (positive) tal i søjlen fra de øvrige så de bliver mindre Til sidst bliver der dannet en masse nuller og et enkelt positivt tal det første trappetrin Følgende løsning er indsendt af Debbie Falden I løsningen benyttes positiv i betydningen svagt positiv, dvs 0 er tilladt Løsning (af Debbie Falden) Man betragter en vilkårlig heltalsmatrix, hvor man først kun koncentrerer sig om første søjle Alle indgangene i første søjle laves til positive heltal større end eller lig nul ved at benytte den tilladte operation M i (c), for c = ± Da gælder om heltal, at man altid vil kunne trække et lavere positivt heltal, fra et højere positivt heltal og danne et positivt heltal Hvis det laveste positive heltal er lig nul, vil man få det højeste positive heltal, mens man vil få et nyt positivt heltal lavere end det højeste, hvis tallene er forskellige fra nul Man er interesseret i at første søjle består at et heltal, og nul i de resterende indgange, for at danne første trin i en trappematrix Det svarer til at summen af indgangene i første søjle, er lig det største positive heltal i søjlen efter rækkeoperationer Er summen ikke lig dette, består søljen derfor af mindst to heltal forskellige fra nul Man vil da kunne trække rækken med det laveste positive heltal forskellig fra nul, fra rækken med det højeste, og danne et nyt positivt heltal i rækken med det højeste, samt mindske summen Det vil sige

4 LINALG JULENØD man benytter operationen S ij ( ) hvor j er indgangen med det laveste tal forskellig fra nul, og i er indgangen med det højeste tal forskellig fra nul Hvis summen af indgangene er højere end det nye højeste positive heltal, da vil der være mindst to indgange forskellig fra nul Denne fremgangsmåde fortsættes til summen ikke kan gøres mindre Da vil summen være lig det største positive heltal, og man vil have en søjle med kun ét positivt heltal Dette tal rykkes til første række, ved hjælp af ombytning Man koncentrerer sig nu om den næste søjle hvor ikke alle indgange på nær første række er lig nul For andet trin i en trappematrix er det ikke relevant om der står et tal over indgangen i anden række Da man desuden vil beholde nul i alle indgange på nær den første i første søjle, vil man ikke foretage nogen rækkeoperationer der involverer første række Ser man derfor bort fra første række, benyttes samme fremgangsmåde som for første søjle, hvor man trækker det laveste positive heltal forskellig fra nul fra det højeste indtil summen ikke kan gøres lavere Da vil der højst være et tal forskellig fra nul, og dette tal rykkes ved ombytning til andet trin i trappematricen Dette mønster fortsættes til man har dannet de mulige trin i trappematricen, og det ses derfor at ved at benytte operationerne M i (±), S ij ( ) og B ij kan man omdanne enhver heltalsmatrix til en trappematrix Opgave (e) Vis at hvis A er en kvadratisk heltalsmatrix med det A = ±, så kan A omdannes til enhedsmatricen udelukkende ved brug af rækkeoperationer Løsning Først anvender vi (d) til at omdanne A til en trappematrix T Da A og T er kvadratiske, står der altså kun 0 under diagonalen i T, så T er en øvre trekantsmatrix Idet alle de tilladte rækkeoperationsmatricer har determinant ±, jævnfør (b), gælder det T = ± det A = ± Determinanten af trekantsmatricen T er produktet af diagonalindgangene ± = det T = t t 22 t nn, og da alle indgange i T er heltal, må der gælde t = ±, t nn = ± Ved at gange nogle af rækkerne med kan vi opnå at alle tal i diagonalen af T er Vi trækker nu sidste række af T fra de andre for at lave nuller i sidste søjle: Hvis t in 0 for i < n, lægger vi t in (række n) til række i, hvilket er tilladt idet t in er et heltal Vi fortsætter med at lave nuller over diagonalen i næstsidste søjle osv Til sidst har vi så nuller over hele diagonalen, og vi har opnået enhedsmatricen Samler vi alle overvejelserne fra opgaverne får vi følgende sætning om heltalsmatricer: Sætning (Julenød) For enhver kvadratisk heltalsmatrix A er følgende udsagn ækvivalente: A er invertibel, dvs A findes og er heltallig det A = ± A kan omdannes til E ved (tilladte) rækkeoperationer A kan skrives som et produkt af (tilladte) operationsmatricer For ikke-invertible heltalsmatricer kan vi altid lave dem om til en trappematrix med rækkeoperationer, jævnfør (d), men som (c) viser, kan vi ikke altid opnå nuller over trinene, og da slet ikke en reduceret trappematrix

5 LINALG JULENØD Hvis man blander række- og søjleoperationer, kan man komme længere med reduktion af en heltalsmatricer og nå den såkaldte Smith normal form : a a a 3 hvor heltallet a går op i a 2 som går op i a 3 som går op i a 4 osv Litteratur [] N V Pedersen, Lineær Algebra, 2nd ed, Københavns Universitet, 2009

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Opgaven består af et antal delopgaver Disse er af varierende omfang Der er også en

Læs mere

Ligningssystemer - nogle konklusioner efter miniprojektet

Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax

Læs mere

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Matematik H1. Lineær Algebra

Matematik H1. Lineær Algebra Matematik H Forelæsningsnoter til Lineær lgebra Niels Vigand Pedersen Udgivet af smus L Schmidt Københavns Universitet Matematisk fdeling ugust ii oplag, juli 4 Forord Gennem en særlig aftale varetages

Læs mere

Indhold. 5. Vektorrum og matricer Koordinattransformationer

Indhold. 5. Vektorrum og matricer Koordinattransformationer Indhold Lineære afbildninger og matricer Talrummene R n, C n Matricer 8 3 Lineære afbildninger 4 Matrix algebra 8 5 Invers matrix 6 6 Transponeret og adjungeret matrix 9 Række- og søjleoperationer Lineære

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

To ligninger i to ubekendte

To ligninger i to ubekendte Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers matrix Matrix potens Lineære ligningssystemer Løsningsmængdens

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer

Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 12 Matrixmultiplikation Am n = [aij ], Bn

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab)

Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab) Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab) Nikolai Plambech Nielsen, LPK331 Version 10 2 februar 2016 Indhold 1 Introduktion, lineære afbildninger og matricer 3 11 Talrum (R & C) 3 12

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Undervisningsnotat. Matricer

Undervisningsnotat. Matricer Undervisningsnotat. Matricer januar, C Definition En matrix er en ordnet mængde tal opstillet i m rækker og n søjler. Matricen A kunne være defineret som vist nedenfor. Hvert element i matricen er forsynet

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Symmetriske og ortogonale matricer Uge 7

Symmetriske og ortogonale matricer Uge 7 Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017 Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Oversigt [LA] 10, 11; [S] 9.3

Oversigt [LA] 10, 11; [S] 9.3 Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus

Læs mere

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:

Læs mere

Note om endelige legemer

Note om endelige legemer Note om endelige legemer Leif K. Jørgensen 1 Legemer af primtalsorden Vi har i Lauritzen afsnit 2.1.1 set følgende: Proposition 1 Lad n være et positivt helt tal. Vi kan da definere en komposition + på

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl 2. udgave, oktober 207 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

Besvarelser til Lineær Algebra Reeksamen August 2016

Besvarelser til Lineær Algebra Reeksamen August 2016 Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Exponentielle familer, ark 2

Exponentielle familer, ark 2 1 Exponentielle familer, ark 2 Eksponentielle familier OPGAVE 21 Beksriv den eksponentielle familie på (R, B) givet ved følgende data: V er R med det sædvanlige indre produkt, den kanoniske stikprøvefunktion

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 6 1 enote 6 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Lineær algebra: Egenværdier, egenvektorer, diagonalisering

Lineær algebra: Egenværdier, egenvektorer, diagonalisering Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix

Læs mere

Diagonalisering. Definition (diagonaliserbar)

Diagonalisering. Definition (diagonaliserbar) 1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og

Læs mere

DesignMat Uge 1 Repetition af forårets stof

DesignMat Uge 1 Repetition af forårets stof DesignMat Uge 1 Repetition af forårets stof Preben Alsholm Efterår 008 01 Lineært ligningssystem Lineært ligningssystem Et lineært ligningssystem: a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + +

Læs mere

Ekstremum for funktion af flere variable

Ekstremum for funktion af flere variable Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable

Læs mere

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Eksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 4. januar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum)

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum) Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Forelæsningsnote 8 NB: Noten er ikke en del af pensum Eksempel på brug af egenværdier og egenvektorer Måske er det stadig

Læs mere

Matematik Camp Noter og Opgaver

Matematik Camp Noter og Opgaver Matematik Camp 2018 Noter og Opgaver Freja Elbro Simon Skjernaa Erfurth Jonas Rysgaard Jensen Benjamin Muntz Anders Jess Pedersen Eigil Fjeldgren Rischel Nikolaj Jensen Ulrik Indhold Indhold i 1 Introduktion

Læs mere

Selvstudium 1, Diskret matematik

Selvstudium 1, Diskret matematik Selvstudium 1, Diskret matematik Matematik på første studieår for de tekniske og naturvidenskabelige uddannelser Aalborg Universitet I dette selfstudium interesserer vi os alene for tidskompleksitet. Kompleksitet

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer 1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag

Læs mere

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe. Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

DesignMat Lineære ligningssystemer og Gauss-elimination

DesignMat Lineære ligningssystemer og Gauss-elimination DesignMat Lineære ligningssystemer og Gauss-elimination Preben Alsholm Uge Forår 010 1 Lineære ligningssystemer og Gauss-elimination 11 Om talrummet R n Om talsæt bestående af n tal R n er blot mængden

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

Lokalt ekstremum DiploMat 01905

Lokalt ekstremum DiploMat 01905 Lokalt ekstremum DiploMat 0905 Preben Alsholm Institut for Matematik, DTU 6. oktober 00 De nition Et stationært punkt for en funktion af ere variable f vil i disse noter blive kaldt et egentligt saddelpunkt,

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r))

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r)) GEOMETRI-TØ, UGE 12 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1, [P] 632 Vis at Ennepers flade σ(u, v) = ( u u 3 /3

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 7, 2009 Produceret af Hans J Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 Definition kritisk punkt: funktion f(x, y) er et kritisk punkt

Læs mere

4.1 Lineære Transformationer

4.1 Lineære Transformationer SEKTION 41 LINEÆRE TRANSFORMATIONER 41 Lineære Transformationer Definition 411 ([L], s 175) Lad V, W være F-vektorrum En lineær transformation L : V W er en afbildning, som respekterer lineær struktur,

Læs mere

Carl Friedrich Gauß ( ), malet af Christian Albrecht Jensen. Lineær algebra. Ib Michelsen

Carl Friedrich Gauß ( ), malet af Christian Albrecht Jensen. Lineær algebra. Ib Michelsen Carl Friedrich Gauß 777 8, malet af Christian Albrecht Jensen Lineær algebra Ikast Ikast Version Hæftet her skal ses som et supplement til Klaus Thomsens forelæsninger på Aarhus Universitet og låner flittigt

Læs mere

Anvendt Lineær Algebra

Anvendt Lineær Algebra Anvendt Lineær Algebra Kursusgang 4 Anita Abildgaard Sillasen Institut for Matematiske Fag AAS (I17) Anvendt Lineær Algebra 1 / 32 Vægtet mindste kvadraters metode For et lineært ligningssystem (af m ligninger

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Matricer og Matrixalgebra

Matricer og Matrixalgebra enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10 Oversigt [LA] 9 Nem vej til rel Nøgleord og begreber Helt simple determinnter Determinnt defineret Effektive regneregler Genkend determinnt nul determinnt nul Produktreglen Inversreglen inversregel og

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2018 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2018 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Skjernvej

Læs mere