Rektangulær potentialbarriere

Størrelse: px
Starte visningen fra side:

Download "Rektangulær potentialbarriere"

Transkript

1 Kvantemekanik 5 Side 1 af 8 ektangulær potentialbarriere Med udgangspunkt i det KM begrebsapparat udviklet i KM1-4 beskrives i denne lektion flg. to systemer, idet system gennemgås, og system behandles i opg. F:. ektangulær potentialbarriere i 1D. Denne situation er en simpel model for et område i rummet, som en V( ) / ev kvantepartikel vil skulle overvinde et frastødende potential for at bevæge V sig ind i. 1 Dette område kunne f.eks. være området mellem en ledende overflade og en SM-nål.. ektangulær kvantebrønd i 1D. Denne situation kunne f.eks. være en simpel model for det tiltrækkende potential, som en elektron oplever i et atom, eller som en kernepartikel oplever i en atomkerne. V( ) / V ev 1 n klassisk analogi kunne være en forhøjning i tyngdefeltet, som en bold vil skulle overvinde en frastødende kraft = dv d for at overvinde. Den for kvantepartiklen viste potentialbarriere er stiliseret med stykvis konstante potentialer, idet dette gør beregningerne ulig meget simplere. F homas B. ynge, nstitut for Fysik og Nanoteknologi, U 7/3/7

2 Kvantemekanik 5 Side af 8 Situation er kendetegnet ved flg. tidsuafhængige potential: for < V ( ) = V for. for > (5.1) n klassisk partikel med energien barrieren have kinetisk energi kin = vil i forbindelse med mødet med mek mek = givet ved pot for < kin = V for, for > svarende til at partiklen vil blive reflekteret for V og transmitteret for > V. Beskrivelsen af en kvantepartikels møde med potentialbarrieren er baseret på en løsning af Schrödingerligningen fra udtryk (.13): ( t, ) ψ ( t, ) ψ i = + V ( ) ψ (, t). (5.) t m følge KM4 kan enhver løsning til udtryk (5.) skrives som en overlejring af ˆ m egentilstande for H = + V ( ) hvor c ( ), + d., jf. udtryk (4.14): (, ) ( ) ( ) i t ψ t = c e d, (5.3) d ifølge KM4 s. 9 er sandsynligheden for at måle en energi Dette svarer til, at bolden fra fodnote 1 ikke har tilstrækkelig fart til at rulle op ad barrieren. homas B. ynge, nstitut for Fysik og Nanoteknologi, U 7/3/7

3 Kvantemekanik 5 Side 3 af 8 det flg. findes de stationære tilstande som den generelle tilstand (, t) i t (, ) ( ), ˆ ψ t = e H =, (5.4) ψ således er opbygget af, idet det antages 3, at. (5.5) For < svarer egenværdiligningen i udtryk (5.4) til d m d = : hvortil ( ) K d d m = = k = e er en løsning. k, =, k, m (5.6) Ved indsættelse findes løsning er K = k svarende til K = ± ik, sådan at den fuldstændige ik ik ( ) e e, = + <, (5.7) og ved indsættelse i udtryk (5.4) fås (, ) ik t ik t + ψ t = e + e, <. (5.8) Første led i udtryk (5.8) repræsenterer bevægelse fra venstre mod højre ind mod potentialbarrieren, svarende til en indkommende kvantepartikel, og andet led repræsenterer bevægelse mod venstre væk fra potentialbarrieren, svarende til en reflekteret kvantepartikel, og egentilstanden (, t ) heraf med vægte og. ψ er således en superposition 3 llers ville det ikke kun være området, der udgjorde en barriere. homas B. ynge, nstitut for Fysik og Nanoteknologi, U 7/3/7

4 Kvantemekanik 5 Side 4 af 8 For : For V er problemstillingen den samme som i det ovenfor nævnte tilfælde: hvor barrieren 4. ( ) ik H V B B = e + e, k, = B + V, m ik (5.9) H og V er vægtene for bevægelse mod hhv. højre og venstre inde i For < V svarer egenværdiligningen i udtryk (5.4) til d + V = m d : hvortil ( ) K d m = V d = κ = e er en løsning. ( ) κ, = + V, κ, m (5.1) For Ved indsættelse findes K = κ svarende til K = ± κ, sådan at den fuldstændige løsning er κ κ ( ) ', Ce C e = +. (5.11) > svarer problemstillingen til < : ik ik ( ), = e + e >. (5.1) Det sidste led i udtryk (5.1) repræsenterer bevægelse fra højre mod venstre ind mod barrieren, så hvis det antages, at kvantepartiklen nærmer sig barrieren fra venstre, er = : ik ( ), idet er vægten for transmission gennem barrieren. = e >, (5.13) 4 Der er således også mulighed for refleksion fra bagsiden af barrieren. homas B. ynge, nstitut for Fysik og Nanoteknologi, U 7/3/7

5 Kvantemekanik 5 Side 5 af 8 Ved at sammenfatte udtryk (5.7), (5.11) og (5.13) fås således for < V : 5 ik ik e + e for < κ κ = Ce + C ' e for. ik e for > ( ) (5.14) Som løsning til en differentialligning er kontinuert 6, så fra kontinuitetsbetingelsen i = og = fås Med tilsvarende argument er + = C+ C', (5.15) Ce κ + C ' e κ = e ik. (5.16) d d også kontinuert: ik ik = κc κc ', (5.17) Ce κ κ ik κ κc ' e = ik e. (5.18) Udtryk (5.15)-(5.18) udgør således 4 ligninger i de 5 ubekendte,, C, C ' og, idet den sidste ligning til fastlæggelse af de ubekendte er normeringsbetingelsen. opg. G vises, at udtryk (5.15)-(5.18) under antagelsen 7 fører til e κ 1 (5.19) κ 4ikκe ik e ( κ ik ). (5.) 5 Bemærk, hvordan bølgefunktionen består af planbølgeformede e ± ik -bidrag i områder, hvor energien er større end det stykvist konstante potential, og af eksponentielt voksende og aftagende e ± κ -bidrag i området, hvor energien er mindre end potentialet. 6 n løsning til egenværdiligningen i udtryk (5.4) er nødvendigvis differentiabel, og en funktion er kun differentiabel, hvis den er kontinuert. 7 følge udtryk (5.1) svarer dette til, at ikke må være for tæt på, og/eller at barrierens bredde ikke må være for lille. V homas B. ynge, nstitut for Fysik og Nanoteknologi, U 7/3/7

6 Kvantemekanik 5 Side 6 af 8 efleksions- og transmissionskoefficienter e ik t + repræsenterer som nævnt den del af egentilstanden, som bliver reflekteret fra barrieren, og da absolutkvadratet på en bølgefunktion er et udtryk for opholdssandsynlighed, repræsenterer e ik + t = sandsynligheden for, at en kvantepartikel i den pågældende egentilstand bliver reflekteret. Selve de normerede sandsynligheder for hhv. refleksion og transmission er således givet ved hhv. refleksions- og transmissionskoefficienten : =, (5.1) =, (5.) som således opfylder normeringsbetingelsen + = 1. (5.3) Fra udtryk (5.) haves 16k κ e κ ( κ + k ), (5.4) m m og da k = og κ = ( V ), fås slutteligt for < V : 16V ( ) κ κ = e, e 1. (5.5) V homas B. ynge, nstitut for Fysik og Nanoteknologi, U 7/3/7

7 Kvantemekanik 5 Side 7 af 8 Den kvantemekaniske tunneleffekt (SM) Udtryk (5.5) viser således, at der er en endelig sandsynlighed for, at en kvantepartikel kan forcere en potentialbarriere, selvom den i klassisk forstand ikke har tilstrækkelig stor energi til det. V( ) Dette svarer billedligt talt til, at kvantepartiklen tunnelerer gennem barrieren, og fænomenet kaldes derfor den kvantemekaniske tunneleffekt 8. V SM Jf. M-kurset er et atoms potentielle energi lavere, jo tættere elektronerne er på atomkernen, hvilket i hovedtræk forklarer, hvorfor en elektron skal overvinde en potentialbarriere for at blive løsrevet fra et materiale. For et metal, hvori de mest energirige V( ) (løsest bundne) elektroner har energien, kan situationen modelleres ved den V W = V viste potentialbarriere, hvor er løsrivelsesarbejdet. W = V Metal Vakuum Dette svarer til en potentialbarriere med og dermed, svarende til at en elektron kun kan undslippe overfladen, hvis den tilføres energi 9. 8 Som i bund og grund skyldes partikel-bølge-dualiteten, idet kvantepartiklers bølgeegenskaber, og de deraf følgende delokaliserede bølgefunktioner, fører til haler af sandsynligheder, der kan strække sig om på den anden side af en potentialbarriere. Makroskopiske partikler har jf. KM1 note 11 ikke bølgeegenskaber og dermed heller ikke tunneleringsegenskaber. 9 F.eks. i form af lys som i forbindelse med den fotoelektriske effekt. homas B. ynge, nstitut for Fysik og Nanoteknologi, U 7/3/7

8 Kvantemekanik 5 Side 8 af 8 Men hvis der anbringes et andet metal tæt op ad det første, fås en potentialbarriere som den ovenfor behandlede. V V( ) Metal Vakuum Metal Som det fremgår af udtryk (5.5), aftager tunneleringssandsynligheden for små meget hurtigt med. Dette udnyttes i et SM, som i en grov model kan beskrives som en potentialbarriere mellem en ledende overflade og en metalnål, idet potentialet dog er asymmetrisk, sådan at der løber en tunnelstrøm 1. V( ) Metalnål Vakuum Metaloverflade Denne tunnelstrøm er jf. udtryk (5.5) endog meget fintfølende over for variationer i afstanden mellem overfladen og nålen, som dermed kan bestemmes meget præcist. t SM er således et eksempel på et praktisk laboratorieværktøj, som helt og holdent er baseret på det rent KM fænomen tunneleffekten. 1 Hvis potentialet er symmetrisk, vil der tunnelere lige mange elektroner fra metalnålen til metaloverfladen som den modsatte vej svarende til en nettostrøm på nul. homas B. ynge, nstitut for Fysik og Nanoteknologi, U 7/3/7

Den klassiske oscillatormodel

Den klassiske oscillatormodel Kvantemekanik 6 Side af 8 n meget central model inden for KM er den såkaldte harmoniske oscillatormodel, som historisk set spillede en afgørende rolle i de banebrydende beskrivelser af bla. sortlegemestråling

Læs mere

Kvantemekanik 8 Side 2 af 10 Observable og operatorer. Grundlæggende egenskaber ved operatorrepræsentanter ( ) O= O. (8.4)

Kvantemekanik 8 Side 2 af 10 Observable og operatorer. Grundlæggende egenskaber ved operatorrepræsentanter ( ) O= O. (8.4) Kvantemekanik 8 Side 1 af 10 Opsummering Egenskaber ved operatorrepræsentanter Det blev i KM3-4 vist, at enhver målbar bevægelsesegenskab (observabel) er repræsenteret ved en operator, som for position,

Læs mere

Youngs dobbeltspalteforsøg 1

Youngs dobbeltspalteforsøg 1 Kvantemekanik Side af Youngs dobbeltspalteforsøg Klassisk beskrivelse Inden for den klassiske fysik kan man forklare forekomsten af et interferensmønster ud fra flg. bølgemodel. x Før spalterne beskrives

Læs mere

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2...

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... Introduktion til kvantemekanik Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... 6 Hvordan må bølgefunktionen se ud...

Læs mere

Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5.

Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5. Statistisk mekanik 5 Side 1 af 10 ilstandssummen Ifølge udtryk (4.28) kan M-fordelingen skrives og da er μ N e e k = N g ε k, (5.1) N = N, (5.2) μ k N Ne g = e ε k. (5.3) Indføres tilstandssummen 1 Z g

Læs mere

Heisenbergs Usikkerhedsrelationer Jacob Nielsen 1

Heisenbergs Usikkerhedsrelationer Jacob Nielsen 1 Heisenbergs Usikkerhedsrelationer Jacob Nielsen 1 Werner Heisenberg (1901-76) viste i 1927, at partiklers bølgenatur har den vidtrækkende konsekvens, at det ikke på samme tid lader sig gøre, at fastlægge

Læs mere

July 23, 2012. FysikA Kvantefysik.notebook

July 23, 2012. FysikA Kvantefysik.notebook Klassisk fysik I slutningen af 1800 tallet blev den klassiske fysik (mekanik og elektromagnetisme) betragtet som en model til udtømmende beskrivelse af den fysiske verden. Den klassiske fysik siges at

Læs mere

Øvelse i kvantemekanik Kvantiseret konduktivitet

Øvelse i kvantemekanik Kvantiseret konduktivitet 29 Øvelse i kvantemekanik Kvantiseret konduktivitet 5.1 Indledning Denne øvelse omhandler et fænomen som blandt andet optræder i en ganske dagligdags situation hvor et mekanisk relæ afbrydes. Overraskende

Læs mere

Moderne Fysik 7 Side 1 af 10 Lys

Moderne Fysik 7 Side 1 af 10 Lys Moderne Fysik 7 Side 1 af 10 Dagens lektion handler om lys, der på den ene side er en helt central del af vores dagligdag, men hvis natur på den anden side er temmelig fremmed for de fleste af os. Det

Læs mere

Statistisk mekanik 5 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas

Statistisk mekanik 5 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas Statistisk ekanik 5 Side 1 af 11 Enatoig ideal gas etragt en enatoig ideal gas bestående af N uskelnelige olekyler ed asse, der befinder sig i en beholder ed rufang V. For at kunne bestee tilstandssuen

Læs mere

Elektromagnetisme 13 Side 1 af 8 Maxwells ligninger. Forskydningsstrømme I S 1

Elektromagnetisme 13 Side 1 af 8 Maxwells ligninger. Forskydningsstrømme I S 1 Elektromagnetisme 13 Side 1 af 8 Betragt Amperes lov fra udtryk (1.1) anvendt på en kapacitor der er ved at blive ladet op. For de to flader og S der begge S1 afgrænses af C fås H dl = J ˆ C S n da = I

Læs mere

Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen

Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen Elektromagnetisme 14 Side 1 af 1 Bølgeligningen Maxwells ligninger udtrykker den indbyrdes sammenhæng mellem de elektromagnetiske felter samt sammenhængen mellem disse felter og de feltskabende ladninger

Læs mere

Statistisk mekanik 6 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas

Statistisk mekanik 6 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas Statistisk ekanik 6 Side 1 af 11 Enatoig ideal gas etragt en enatoig ideal gas bestående af N uskelnelige olekyler ed asse, der befinder sig i en beholder ed rufang V. For at kunne bestee tilstandssuen

Læs mere

Newtons love - bevægelsesligninger - øvelser. John V Petersen

Newtons love - bevægelsesligninger - øvelser. John V Petersen Newtons love - bevægelsesligninger - øvelser John V Petersen Newtons love 2016 John V Petersen art-science-soul Indhold 1. Indledning og Newtons love... 4 2. Integration af Newtons 2. lov og bevægelsesligningerne...

Læs mere

Noget om: Kvalitativ beskrivelse af molekylære bindinger. Hans Jørgen Aagaard Jensen Kemisk Institut, Syddansk Universitet

Noget om: Kvalitativ beskrivelse af molekylære bindinger. Hans Jørgen Aagaard Jensen Kemisk Institut, Syddansk Universitet Noget om: Kvalitativ beskrivelse af molekylære bindinger Hans Jørgen Aagaard Jensen Kemisk Institut, Syddansk Universitet E-mail: hjj@chem.sdu.dk 8. februar 2000 Orbitaler Kvalitativ beskrivelse af molekylære

Læs mere

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,

Læs mere

Kernefysik og dannelse af grundstoffer. Fysik A - Note. Kerneprocesser. Gunnar Gunnarsson, april 2012 Side 1 af 14

Kernefysik og dannelse af grundstoffer. Fysik A - Note. Kerneprocesser. Gunnar Gunnarsson, april 2012 Side 1 af 14 Kerneprocesser Side 1 af 14 1. Kerneprocesser Radioaktivitet Fission Kerneproces Fusion Kollisioner Radioaktivitet: Spontant henfald ( af en ustabil kerne. Fission: Sønderdeling af en meget tung kerne.

Læs mere

Teknikken er egentlig meget simpel og ganske godt illustreret på animationen shell 4-5.

Teknikken er egentlig meget simpel og ganske godt illustreret på animationen shell 4-5. Fysikken bag Massespektrometri (Time Of Flight) Denne note belyser kort fysikken bag Time Of Flight-massespektrometeret, og desorptionsmetoden til frembringelsen af ioner fra vævsprøver som er indlejret

Læs mere

Skriftlig Eksamen i Moderne Fysik

Skriftlig Eksamen i Moderne Fysik Moderne Fysik 10 Side 1 af 7 Navn: Storgruppe: i Moderne Fysik Spørgsmål 1 Er følgende udsagn sandt eller falsk? Ifølge Einsteins specielle relativitetsteori er energi og masse udtryk for det samme grundlæggende

Læs mere

Lys på (kvante-)spring: fra paradox til præcision

Lys på (kvante-)spring: fra paradox til præcision Lys på (kvante-)spring: fra paradox til præcision Metrologidag, 18. maj, 2015, Industriens Hus Lys og Bohrs atomteori, 1913 Kvantemekanikken, 1925-26 Tilfældigheder, usikkerhedsprincippet Kampen mellem

Læs mere

Naturvidenskab. Undersøgelse af mulighederne for kommunikation med superluminale hastigheder ved brug af en FTIRopstilling. Forskerspirer 2011

Naturvidenskab. Undersøgelse af mulighederne for kommunikation med superluminale hastigheder ved brug af en FTIRopstilling. Forskerspirer 2011 Naturvidenskab Undersøgelse af mulighederne for kommunikation med superluminale hastigheder ved brug af en FTIRopstilling Forskerspirer 2011 Superluminal udbredelse af lys? Lys, der udbreder sig re end

Læs mere

Stoffers opbygning og egenskaber 2 Side 1 af 16 Elementarpartikler og partikel-bølge-dualiteten

Stoffers opbygning og egenskaber 2 Side 1 af 16 Elementarpartikler og partikel-bølge-dualiteten Stoffers opbygning og egenskaber 2 Side 1 af 16 Sidste gang: Den specielle relativitetsteori. I dag: Atommodeller, partikelfamilier samt partikel-bølge-dualiteten og det heraf følgende kvantemekaniske

Læs mere

Atomer og kvantefysik

Atomer og kvantefysik PB/2x Febr. 2005 Atomer og kvantefysik af Per Brønserud Indhold: Kvantemekanik og atommodeller side 1 Elektronens bindingsenergier... 9 Appendiks I: Bølgefunktioner 12 Appendiks II: Prikdiagrammer af orbitaler

Læs mere

Atomers elektronstruktur I

Atomers elektronstruktur I Noget om: Kvalitativ beskrivelse af molekylære bindinger Hans Jørgen Aagaard Jensen Kemisk Institut, Syddansk Universitet E-mail: hjj@chem.sdu.dk 8. februar 2000 Orbitaler Kvalitativ beskrivelse af molekylære

Læs mere

Bohr vs. Einstein: Fortolkning af kvantemekanikken

Bohr vs. Einstein: Fortolkning af kvantemekanikken Bohr vs. Einstein: Fortolkning af kvantemekanikken Af Christian Kraglund Andersen og Andrew C.J. Wade, Institut for Fysik og Astronomi, Aarhus Universitet Siden 1913, da Bohr fremlagde sin kvantemekaniske

Læs mere

Enkelt og dobbeltspalte

Enkelt og dobbeltspalte Enkelt og dobbeltsalte Jan Scholtyßek 4.09.008 Indhold 1 Indledning 1 Formål 3 Teori 3.1 Enkeltsalte.................................. 3. Dobbeltsalte................................. 3 4 Fremgangsmåde

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM)

Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM) Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM) Institut for Fysik og Astronomi Aarhus Universitet, Sep 2006. Lars Petersen og Erik Lægsgaard Indledning Denne note skal tjene som en kort introduktion

Læs mere

Kræfter og Arbejde. Frank Nasser. 21. april 2011

Kræfter og Arbejde. Frank Nasser. 21. april 2011 Kræfter og Arbejde Frank Nasser 21. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Teoretiske Øvelser Mandag den 13. september 2010

Teoretiske Øvelser Mandag den 13. september 2010 Hans Kjeldsen hans@phys.au.dk 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion

Læs mere

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold Bernoulli s lov Med eksempler fra Indhold 1. Indledning...1 2. Strømning i væsker...1 3. Bernoulli s lov...2 4. Tømning af en beholder via en hane i bunden...4 Ole Witt-Hansen Køge Gymnasium 2008 Bernoulli

Læs mere

Undervisningsbeskrivelse for fysik B 2. B 2011/2012

Undervisningsbeskrivelse for fysik B 2. B 2011/2012 Undervisningsbeskrivelse for fysik B 2. B 2011/2012 Termin Undervisningen afsluttes den 16. maj 2012 Skoleåret hvor undervisningen har foregået: 2011-2012 Institution Skive Teknisk Gymnasium Uddannelse

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I

Læs mere

A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi

A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi ATTENUATION AF RØNTGENSTRÅLING Erik Andersen, ansvarlig fysiker CIMT Medico, Herlev, Gentofte, Glostrup Hospital Attenuation af røntgenstråling

Læs mere

Moderne Fysik 1 Side 1 af 7 Speciel Relativitetsteori

Moderne Fysik 1 Side 1 af 7 Speciel Relativitetsteori Moderne Fysik 1 Side 1 af 7 Hvad sker der, hvis man kører i en Mazda med nærlysfart og tænder forlygterne?! Kan man se lyset snegle sig afsted foran sig...? Klassisk Relativitet Betragt to observatører

Læs mere

Kvantefysik. Objektivitetens sammenbrud efter 1900

Kvantefysik. Objektivitetens sammenbrud efter 1900 Kvantefysik Objektivitetens sammenbrud efter 1900 Indhold 1. Formål med foredraget 2. Den klassiske fysik og determinismen 3. Hvad er lys? 4. Resultater fra atomfysikken 5. Kvantefysikken og dens konsekvenser

Læs mere

A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi DANNELSE AF RØNTGENSTRÅLING

A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi DANNELSE AF RØNTGENSTRÅLING A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi DANNELSE AF RØNTGENSTRÅLING Erik Andersen, ansvarlig fysiker CIMT Medico Herlev, Gentofte, Glostrup Hospital Røntgenstråling : Røntgenstråling

Læs mere

Stern og Gerlachs Eksperiment

Stern og Gerlachs Eksperiment Stern og Gerlachs Eksperiment Spin, rumkvantisering og Københavnerfortolkning Jacob Nielsen 1 Eksperimentelle resultater, der viser energiens kvantisering forelå, da Bohr opstillede sin Planetmodel. Her

Læs mere

Hvorfor guld er det ædleste metal et studie med tæthedsfunktionalteori

Hvorfor guld er det ædleste metal et studie med tæthedsfunktionalteori Hvorfor guld er det ædleste metal et studie med tæthedsfunktionalteori Af Lasse B. Vilhelmsen og Anton M.H. Rasmussen, Institut for Fysik og Astronomi, Aarhus Universitet De fleste er klar over, at guld

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

Atomer, molekyler og tilstande 1 Side 1 af 7 Naturens byggesten

Atomer, molekyler og tilstande 1 Side 1 af 7 Naturens byggesten Atomer, molekyler og tilstande 1 Side 1 af 7 I dag: Hvad er det for byggesten, som alt stof i naturen er opbygget af? [Elektrondiffraktion] Atomet O. 400 fvt. (Demokrit): Hvis stof sønderdeles i mindre

Læs mere

Anmeldelse. Jens Hebor, The Standard Conception as Genuine Quantum Realism. Odense: University Press of Southern Denmark 2005, 231 s.

Anmeldelse. Jens Hebor, The Standard Conception as Genuine Quantum Realism. Odense: University Press of Southern Denmark 2005, 231 s. Anmeldelse Jens Hebor, The Standard Conception as Genuine Quantum Realism. Odense: University Press of Southern Denmark 2005, 231 s. Lige siden udformningen af kvantemekanikken i 1920'erne har der været

Læs mere

Atomare elektroners kvantetilstande

Atomare elektroners kvantetilstande Stoffers opbygning og egenskaber 4 Side 1 af 12 Sidste gang: Naturens byggesten, elementarpartikler. Elektroner bevæger sig ikke i fastlagte baner, men er i stedet kendetegnet ved opholdssandsynligheder/

Læs mere

Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter.

Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter. Atomer, molekyler og tilstande 3 Side 1 af 7 Sidste gang: Elektronkonfiguration og båndstruktur. I dag: Bindinger mellem atomer og molekyler, idet vi starter med at se på de fire naturkræfter, som ligger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Dec 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg gsk Fysik/B

Læs mere

Diodespektra og bestemmelse af Plancks konstant

Diodespektra og bestemmelse af Plancks konstant Diodespektra og bestemmelse af Plancks konstant Fysik 5 - kvantemekanik 1 Joachim Mortensen, Rune Helligsø Gjermundbo, Jeanette Frieda Jensen, Edin Ikanović 12. oktober 28 1 Indledning Formålet med denne

Læs mere

Om sandhed, tro og viden

Om sandhed, tro og viden Om sandhed, tro og viden Flemming Topsøe Institut for Matematiske Fag Københavns Universitet http://www.math.ku.dk/ topsoe med mange manuskripter se specielt http://www.math.ku.dk/ topsoe/sandhednatfest09.pdf

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Kvanteteleportering og kvanteinformation. Anders S. Sørensen Quantop, center for kvanteopik Niels Bohr Institutet, Københavns Universitet

Kvanteteleportering og kvanteinformation. Anders S. Sørensen Quantop, center for kvanteopik Niels Bohr Institutet, Københavns Universitet Kvanteteleportering og kvanteinformation Anders S. Sørensen Quantop, center for kvanteopik Niels Bohr Institutet, Københavns Universitet Teleportering Flyt kaptajn Kirk ved at sende information om ham

Læs mere

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber 1 Basisbegreber ellæren er de mest grundlæggende størrelser strøm, spænding og resistans Strøm er ladningsbevægelse, og som det fremgår af bogen, er strømmens retning modsat de bevægende elektroners retning

Læs mere

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning 49 6 Plasmadiagnostik Plasmadiagnostik er en fællesbetegnelse for de forskellige typer måleudstyr, der benyttes til måling af plasmaers parametre og egenskaber. I fusionseksperimenter er der behov for

Læs mere

Kvant 2. Notesamling....Of doom!

Kvant 2. Notesamling....Of doom! Kvant 2 Notesamling...Of doom! Indhold 1 To-partikelsystemer 1 2 Brint 1 3 Perturbation 2 3.1 Udartet perturbationsteori...................... 3 3.2 Zeeman-effekt............................. 4 3.3 Tidsafhængig

Læs mere

Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015. Teoretisk prøve. Prøvetid: 3 timer

Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015. Teoretisk prøve. Prøvetid: 3 timer Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015 Teoretisk prøve Prøvetid: 3 timer Opgavesættet består af 15 spørgsmål fordelt på 5 opgaver. Bemærk, at de enkelte spørgsmål ikke tæller

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

Forløbet består af 7 fagtekster, 12 opgaver, tip en 12 er, 5 praktiske aktiviteter, flere kemi-sudokuer og en mindre skriftlig elevopgave.

Forløbet består af 7 fagtekster, 12 opgaver, tip en 12 er, 5 praktiske aktiviteter, flere kemi-sudokuer og en mindre skriftlig elevopgave. Atomer og molekyler Niveau: 7. klasse Varighed: 7 lektioner Præsentation: I forløbet Atomer og molekyler arbejdes der med helt grundlæggende kemiske begreber omkring stofopbygning, derfor bør temaet placeres

Læs mere

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning.

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning. E2 Elektrodynamik 1. Strømstyrke Det meste af vores moderne teknologi bygger på virkningerne af elektriske ladninger, som bevæger sig. Elektriske ladninger i bevægelse kalder vi elektrisk strøm. Når enderne

Læs mere

Tillæg til partikelfysik (foreløbig)

Tillæg til partikelfysik (foreløbig) Tillæg til partikelfysik (foreløbig) Vekselvirkninger Hvordan afgør man, hvilken vekselvirkning, som gør sig gældende i en given reaktion? Gravitationsvekselvirkningen ser vi bort fra. Reaktionen Der skabes

Læs mere

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2016 561247 - VUC Vest, Esbjerg Stx Fysik B Mette Lillistone 15FY61E15

Læs mere

Moderne Fysik 3 Side 1 af 7 Kvantemekanikken

Moderne Fysik 3 Side 1 af 7 Kvantemekanikken Moderne Fysik 3 Side 1 af 7 Sidste gang: Indførelsen af kvantiseringsbegrebet for lysenergi (lysets energi bæres af udelelige fotoner med E = hν). I dag: Yderligere anvendelse af kvantiseringsbegrebet

Læs mere

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi Statistisk mekanik 2 Side 1 af 10 Entropi Entropi er en tilstandsvariabel 1, der løst formuleret udtrykker graden af uorden. Entropien er det centrale begreb i termodynamikkens anden hovedsætning (TII):

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere

Laboratorieøvelse Kvantefysik

Laboratorieøvelse Kvantefysik Formålet med øvelsen er at studere nogle aspekter af kvantefysik. Øvelse A: Heisenbergs ubestemthedsrelationer En af Heisenbergs ubestemthedsrelationer handler om sted og impuls, nemlig at (1) Der gælder

Læs mere

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen S.&P. DIFFERENTIALLIGNINGER 2. februar 2006 Oversigt nr. 1 I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen [EP] Elementary differential equations with boundary

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 17. oktober, 2013 1 Partielle differentialligninger 1.1 D Alemberts løsning af bølgeligningen [Bogens sektion 12.4 på side 553]

Læs mere

Dobbeltspalte-eksperimentet. Lad os først se lidt nærmere på elektroner, som skydes imod en skærm med en smal spalte:

Dobbeltspalte-eksperimentet. Lad os først se lidt nærmere på elektroner, som skydes imod en skærm med en smal spalte: Dobbeltspalte-eksperimentet Nogle af kvantemekanikkens særheder kan illustreres med det såkaldte dobbeltspalte-eksperiment, som er omtalt side 73 i Atomernes vilde verden. Rent historisk fandt man elektronen

Læs mere

Røntgenspektrum fra anode

Røntgenspektrum fra anode Røntgenspektrum fra anode Elisabeth Ulrikkeholm June 24, 2016 1 Formål I denne øvelse skal I karakterisere et røntgenpektrum fra en wolframanode eller en molybdænanode, og herunder bestemme energien af

Læs mere

Kolde atomare gasser Skræddersyet kvantemekanik. Georg M. Bruun Fysiklærerdag 2011

Kolde atomare gasser Skræddersyet kvantemekanik. Georg M. Bruun Fysiklærerdag 2011 Kolde atomare gasser Skræddersyet kvantemekanik Georg M. Bruun Fysiklærerdag Wednesday, January 6, Hovedbudskaber Bose-Einstein Kondensation = Identitetskrise for kvantepartikler BEC i atomare ultrakolde

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 5. november 2016 1 Partielle differentialligninger 1.1 Udledning af varmeligningen Vi vil nu på samme måde som med bølgeligningen

Læs mere

Optisk gitter og emissionsspektret

Optisk gitter og emissionsspektret Optisk gitter og emissionsspektret Jan Scholtyßek 19.09.2008 Indhold 1 Indledning 1 2 Formål og fremgangsmåde 2 3 Teori 2 3.1 Afbøjning................................... 2 3.2 Emissionsspektret...............................

Læs mere

MODUL 1-2: ELEKTROMAGNETISK STRÅLING

MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1 - ELEKTROMAGNETISKE BØLGER I 1. modul skal I lære noget omkring elektromagnetisk stråling (EM- stråling). I skal lære noget om synligt lys, IR- stråling, UV-

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Forventet bane for alfapartiklerne. Observeret bane for alfapartiklerne. Guldfolie

Forventet bane for alfapartiklerne. Observeret bane for alfapartiklerne. Guldfolie Det såkaldte Hubble-flow betegner galaksernes bevægelse væk fra hinanden. Det skyldes universets evige ekspansion, der begyndte med det berømte Big Bang. Der findes ikke noget centrum, og alle ting bevæger

Læs mere

Kvantemekanik. Atomernes vilde verden. Klaus Mølmer. unı vers

Kvantemekanik. Atomernes vilde verden. Klaus Mølmer. unı vers Kvantemekanik Atomernes vilde verden Klaus Mølmer unı vers Kvantemekanik Atomernes vilde verden Kvantemekanik Atomernes vilde verden Af Klaus Mølmer unı vers Kvantemekanik Atomernes vilde verden Univers

Læs mere

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi Statistisk mekanik 2 Side 1 af 10 Entropi Entropi er en tilstandsvariabel 1, der løst formuleret udtrykker graden af uorden i et system. Da der er mange flere uordnede (tilfældigt ordnede) mikrotilstande

Læs mere

Bilag 24 - fysik B Fysik B - stx, juni Identitet og formål. 1.1 Identitet

Bilag 24 - fysik B Fysik B - stx, juni Identitet og formål. 1.1 Identitet Bilag 24 - fysik B Fysik B - stx, juni 2008 1. Identitet og formål 1.1 Identitet Det naturvidenskabelige fag fysik omhandler menneskers forsøg på at udvikle generelle beskrivelser, tolkninger og forklaringer

Læs mere

Noter til KM1 og KM2 på KU (Kvantemekanik 1 og 2)

Noter til KM1 og KM2 på KU (Kvantemekanik 1 og 2) Noter til KM1 og KM2 på KU (Kvantemekanik 1 og 2) Nikolai Plambech Nielsen, LPK331. Version 1.1 Indhold I Kvant 1 4 1 Bølgefunktionen 4 1.1 Schrödingerligningen....................................... 4

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

Program 1. del. Kvantemekanikken. Newton s klassiske mekanik. Newton s klassiske mekanik

Program 1. del. Kvantemekanikken. Newton s klassiske mekanik. Newton s klassiske mekanik Kvantemekanikken Kvantemekanikken som fysisk teori Kvantemekanikkens filosofiske paradokser og paradoksale anvendelser. Program 1. del. Introduktion til klassisk fysik Niels Bohrs atom (1913) Kvantemekanikken

Læs mere

Kvantiseringsbegrebet

Kvantiseringsbegrebet Kvantemekanik 1 Side 1 af 17 Kvantiseringsbegrebet I 1670 erne fremsatte Sir Isaac Newton en teori for lys, hvori han beskrev lys som en byge af partikler. I 1678 fremsatte hollænderen Christiaan Huygens

Læs mere

MÅLING AF MELLEMATOMARE AFSTANDE I FASTE STOFFER

MÅLING AF MELLEMATOMARE AFSTANDE I FASTE STOFFER MÅLING AF MELLEMATOMARE AFSTANDE I FASTE STOFFER Om diffraktion Teknikken som bruges til at måle precise mellematomare afstande i faste stoffer kaldes Røntgendiffraktion. 1 Diffraktion er fænomenet hvor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juli/August 2014 Institution VUC Vest, Esbjerg afdeling Uddannelse Fag og niveau Lærer(e) Hold STX Fysik B

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf/Hfe Fysik B august 2014

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter

Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter Oktober 2012 Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter Da læreplanen for fysik på A-niveau i stx blev revideret i 2010, blev kernestoffet udvidet med emnet Elektriske

Læs mere

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?:

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: Angiv de variable: Check din forventning ved at hælde lige store mængder vand i to glas med henholdsvis store og små kugler. Hvor

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51 Skråplan Dan Elkvist Albrechtsen, Edin Ikanović, Joachi Mortensen Hold 4, gruppe n + 1, n {3}, uge 50-51 8. januar 2008 Figurer Sider ialt: 5 Indhold 1 Forål 3 2 Teori 3 3 Fregangsåde 4 4 Resultatbehandling

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model

HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model Energiregnskab som matematisk model side 2 Løsning af kalorimeterligningen side 3 Artiklen her knytter sig til kapitel 3, Energi GYLDENDAL

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Kvantemagnetisme er et

Kvantemagnetisme er et KVANTEMAGNETER - Magneter når de er allermindst Verdens mindste magneter består af ganske få atomer. På denne skala kan vi observere mærkelige fænomener, fordi atomerne både kan opgøre sig som partikler

Læs mere

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( )

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( ) Kvantemekanik 0 Side af 9 Bintatomet I Sfæisk hamoniske Ifølge udtyk (9.7) e Lˆ Lˆ og de eksistee således et fuldstændigt sæt af = 0 samtidige egenfunktione fo ˆL og L ˆ de som antydet i udtyk (9.8) kan

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

LYS I FOTONISKE KRYSTALLER 2006/1 29

LYS I FOTONISKE KRYSTALLER 2006/1 29 LYS I FOTONISKE KRYSTALLER OG OPTISKE NANOBOKSE Af Peter Lodahl Hvordan opstår lys? Dette fundamentale spørgsmål har beskæftiget fysikere gennem generationer. Med udviklingen af kvantemekanikken i begyndelsen

Læs mere

Kernereaktioner. 1 Energi og masse

Kernereaktioner. 1 Energi og masse Kernereaktioner 7 1 Energi og masse Ifølge relativitetsteorien gælder det, at når der tilføres energi til et system, vil systemets masse altid vokse. Sammenhængen mellem energitilvæksten og massetilvækstener

Læs mere