Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold

Størrelse: px
Starte visningen fra side:

Download "Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold"

Transkript

1 Bernoulli s lov Med eksempler fra Indhold 1. Indledning Strømning i væsker Bernoulli s lov Tømning af en beholder via en hane i bunden...4 Ole Witt-Hansen Køge Gymnasium 2008

2 Bernoulli s lov 1 1. Indledning Formålet med denne note er at udlede en af de mest grundlæggende lovmæssigheder i hydro- og aerodynamikken, som er opkal efter den store fysiker og matematiker Bernoulli, og som bærer hans navn. Bernoulli s lov er først udle for laminar (dvs. ikke turbolent) strømning i væsker og gasser. Tubolent strømning betyder, at der er strømhvirvler. Turbulent strømning er næsten matematisk utilgængeligt. 2. Strømning i væsker En stationær strømning betyder, at hastigheden af enhver væskepartikel på et givet sted er uforandret i størrelse og retning. En strømningslinie er en linie, der følger en væskepartikel. Ved laminar strømning, kan strømningslinierne ikke være lukkede kurver. I det følgende vil vi konsekvent anvende d i stedet for Δ til at betegne små (faktisk uendelig små) tilvækster. For eksempel dv i stedet for Δv, ds i stedet for Δs. På denne måde bliver forholdet mellem to tilvækster til en differentialkvotient, f.eks: v ds På figuren er afgrænset et rør, som følger strømningslinierne. (et kunne go være et virkeligt rør, som væsken (viscositetsfrit) strømmede igennem, men det er uvæsentligt). Vi antager først at væsken er inkompressibel (usammentrykkelig), altså at massefylden ρ er den same overalt, hvilket gælder for væsker, men ikke for gasser. Væsken bevæger sig langsommere ved A 1 end ved A 2 fordi røret er tykkere på dette sted. I tidsrummet forskydes væsken stykket ds 1 ved A 1, og stykket ds 2 ved A 2. Væskerumfangene dv 1 = A 1 ds 1 og dv 2 = A 2 ds 2 må være ens, (da ρ er konstant) og da ds 1 =v 1 og ds 2 =v 2 finder man: A 1 v 1 = A 2 v 2, eller (2.1) A 1 v 1 = A 2 v 2 (langs en strømningslinie) Hvis væsken (eller gassen) er kompressibel, vil det i stedet være masserne dm 1 og dm 2, der er ens i de to rumfang dv 1 og dv 2. dm 1 = dm 2 <=> ρ 1 dv 1 = ρ 2 dv 2 <=> ρ 1 A 1 v 1 = ρ 2 A 2 v 2 (2.2) ρ 1 A 1 v 1 = ρ 2 A 2 v 2 Hvor ρ 1 og ρ 2 er massefylderne ved (1) og (2) henholdsvis. Ligningen (2.2) har mange andre anvendelser end ved væskestrømning. en er for eksempel grundlaget for analyse af trafikale problemer (kødannelse) på motorveje. I denne sammenhæng betyder ρ tætheden af biler (som ikke er konstant) og v er hastigheden på et bestemt sted.

3 Bernoulli s lov 2 Hvis der hverken forsvinder eller bliver tilført biler, så fremgår det af ligningen, at hvis hastigheden formindskes, så bliver tætheden tilsvarende forøget. a der er en naturlig grænse for tætheden for biler på en motorvej, så vil trafikken gå i stå, når denne tæthed nås. På samme måde, hvis antallet af vejbaner halveres, så skal hastigheden enten fordobles (næppe!) eller tætheden skal fordobles. et sidste er velken. 3. Bernoulli s lov Vi vil nu udlede Bernoulli s lov, som giver sammenhængen mellem trykket p i et punkt af væsken og strømningshastigheden v i dette punkt. Vi ser igen på et rør, som følger strømningslinierne. Når væsken forskubbes fra (a) til (b) ved (1), så forskubbes den fra (c) til (d) ved (2). Alle størrelser med indeks (1) er placeret i det nederste område, og allestørrelser med indeks (2) er fra det øverste område. (Se figuren). et gælder fx trykkene p 1 og p 2. et samlede arbejde, der udføres på væsken er da =F 1 ds 1 F 2 ds 2. Idet F = pa, kan et skrives. (3.1) da = p 1 A 1 ds 1 p 2 A 2 ds 2 = p 1 dv 1 p 2 dv 2 Hvis væsken er inkompressibel er dv 1 = dv 2. Vi anvender nu den generelle sætning: Hvis man ser bort fra gnidning (her viscositet), så er: Udført arbejde = tilvæksten i energi. (3.2) da = de kin + de pot en kinetiske energi af væsken mellem (b) og (c) er Uændret, da det er en stationær strømning. erfor er tilvæksten i kinetisk energi forskellen mellem de kinetiske energier af væsken af de to væskerumfang ved (2) og (1). de kin = ½(dm 2 ) v ½(dm 1 ) v 1 2 hvor dm 1 = dm 2 = ρdv Heraf får man: (3.3) de kin = ½ ρ v 2 2 dv - ½ρ v 2 1 dv På samme måde får man for den potentielle energi E pot = mgy (Lodrette akse betegnes y) (3.4) de pot = (dm 2 )g y 2 - (dm 1 )g y 1 = ρ g y 2 dv - ρ g y 1 dv isse (3.1), (3.3) og (3.4) indsættes nu i (3.2). p 1 dv p 2 dv = ½ ρ v 2 2 dv - ½ρ v 2 1 dv + ρ g y 2 dv - ρ g y 1 dv Efter bortforkortning af dv, og ordning efter indeks (1) og (2) på venstre og højre side, får man.

4 Bernoulli s lov 3 p 1 + ½ρ v ρ g y 1 = p 2 + ½ ρ v ρ g y 2 enne ligning kaldes for Bernoulli s lov og den urykker, at (3.5) p + ½ρ v 2 + ρ g y = konstant (langs en strømningslinie). Vi har udle Bernoulli s lov under 3 forudsætninger: 1) Laminar strømning (ingen turbulens/strømhvirvler) 2) Viscositetsfri væske (gas) (Intet energitab som følge af gnidning). 3) Inkompressibel (usammentrykkelig) væske (gas). et er yderst sjældent at alle disse tre betingelser er opfyl samtidig, men alligevel danner Bernoulli s lov grundlaget for de fleste teoretiske beregninger i hydrodynamikken. I aerodynamikken er man i almindelighed henvist til empiriske (ud fra forsøg) lovmæssigheder og vinunnelforsøg. Alligevel giver Bernoulli s lov en kvalitativ forklaring på, hvorfor det er muligt at flyve (uden at baske med vingerne) noget altid har været (og er) et mysterium for de fleste. Figuren demonstrerer Bernoulli s lov. en viser en flyvemaskinevinge. På grund af vingens form, skal luften passere en længere vej over vingen, end under vingen, og luften over vingen får dermed en større hastighed. Ifølge Bernoulli s lov betyder dette, at trykket på oversiden er mindre end trykket på undersiden. et er denne trykforskel, der giver en opdrift, som kompenserer for tyndekraften på maskinen. Flykonstruktion er baseret på ingeniørkunst, erfaring og vinunnelforsøg mere end på teoretiske beregninger. Aerodynamik er overordentlig kompliceret, især når der kommer turbulens og det gør der! 3.6 Eksempel: For at illustrere Bernoulli s lov, vil vi lave et enkelt (urealistisk) regneeksempel. Vi antager, at hastigheden er 20% større på oversiden af vingen. Vi finder da fra Bernouli s lov: (der er ikke noget bidrag fra potentiel energi). p 1 + ½ρ v 2 = p 2 + ½ ρ (1,2v) 2 => Δp = p 1 p 2 = ½ ρ 0,44v 2. Indsætter man ρ= ρ luft = 1,29 kg/m 3, v = 360 km/h = 100 m/s, finder man: Δp =2, N/m 2 =2, atm = 284 kp/m 2. 1 atm N/m 2 1 kp/m 2. Med et vingefang å 20 m 2 svarer dette til en opdrift på: 284 kp/m 2 20 m 2 = kp. ette svarer til tyngden af 5,68 ton.

5 Bernoulli s lov 4 4. Tømning af en beholder via en hane i bunden Vi betragter en beholder fyl med viscositetsfri væske op til en højde over udløbsventilen (studsen) i bunden. Væsken har massefylden. Vi anvender herefter Bernoullis lov, men udelader leddet med tryk, da vi antager at det ydre tryk er det samme på overfladen, som i bunden, og vi erstatter y med h til at betegne dybden (4.1) ½ρ v ρ g h 1 = ½ ρ v ρ g h 2 Ved overfladen h = 0 er v = 0, og i dybden h er hastigheden v. Herved giver Bernoullis lov det samme som gælder for et frit fald i tyngdefeltet: (4.2) ½ ρ v 2 + ρ g(-h) = 0 v 2gh v er hastigheden, hvormed væsken løber ud af hanen. Hvis massen af væsken i beholderen er m = m(t), og hvis røret til hanen har tværsnitsarealet, gælder der kontinuitetsligningen for den mængde væske dm, der i tidsrummet strømmer ud gennem hanen. dm v. (Minustegnet fordi m aftager). Hvis beholderens tværsnit er A, er samtidig m = Ah, så dm dm Ved at sætte de to uryk for lig med hinanden, finder man: dh A dh A v og indsættes ud- trykket v 2gh, får man en differentialigning for h. dh dh (4.3) A 2gh 2g h A Ligningen kan løses ved separation: dh h h dh t 2 g 2g h A 0 h A 0 2 h 2 h0 2g t h h0 A 2g 2A t

6 Bernoulli s lov 5 (4.4) h h 0 2g t 2A 2 Beholderen er tømt, når h = 0. et sker ifølge ligningen ovenfor til tidspunktet: A 2h g 0 t For en beholder med A = 50 x 50 cm 2 og h 0 =1,0 m, og =2,0 cm 2. Giver det en tid for tømning, som er: = 564 s.

Opdrift og modstand på et vingeprofil

Opdrift og modstand på et vingeprofil Opdrift og modstand på et vingeprofil Thor Paulli Andersen Ingeniørhøjskolen Aarhus Universitet 1 Vingens anatomi Et vingeprofil er karakteriseret ved følgende bestanddele: forkant, bagkant, korde, krumning

Læs mere

Tryk. Tryk i væsker. Arkimedes lov

Tryk. Tryk i væsker. Arkimedes lov Tryk. Tryk i væsker. rkimedes lov 1/6 Tryk. Tryk i væsker. rkimedes lov Indhold 1. Definition af tryk...2 2. Tryk i væsker...3 3. Enheder for tryk...4 4. rkimedes lov...5 Ole Witt-Hansen 1975 (2015) Tryk.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side af 7 Skriftlig prøve, tirsdag den 6. december, 008, kl. 9:00-3:00 Kursus navn: ysik Kursus nr. 00 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning": Besvarelsen

Læs mere

Naturvidenskabeligt grundforløb

Naturvidenskabeligt grundforløb Før besøget i Tivoli De fysiologiske virkninger af g-kræfter. Spørgsmål der skal besvares: Hvorfor er blodtrykket større i fødderne større end blodtrykket i hovedet? Hvorfor øges pulsen, når man rejser

Læs mere

1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P.

1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P. M3 1. Tryk I beholderen på figur 1 er der en luftart, hvis molekyler bevæger sig rundt mellem hinanden. Med jævne mellemrum støder de sammen med hinanden og de støder ligeledes med jævne mellemrum mod

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Måling af turbulent strømning

Måling af turbulent strømning Måling af turbulent strømning Formål Formålet med at måle hastighedsprofiler og fluktuationer i en turbulent strømning er at opnå et tilstrækkeligt kalibreringsgrundlag til modellering af turbulent strømning

Læs mere

Grundlæggende fluid mekanik

Grundlæggende fluid mekanik Slide 1 Hvad er Fluid mekanik? Fluid er en fællesbetegnelse for væsker og gasser. Mekanik er en beskrivelse af den måde de opfører sig på i bevægelse. Fluid mekanik er altså en international betegnelse

Læs mere

Introduktion til aerodynamik

Introduktion til aerodynamik Introduktion til aerodynamik Hvorfor flyver den? Helt overordnet: Grunden til at et fly kan flyve er luftstrømmen henover vingerne. Husk det, ingen luftstrøm ingen flyvning! Og den flyver fordi der heldigvis

Læs mere

Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist.

Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist. Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist. Forudsætninger: funktioner (matematik) og primære vindsystemer

Læs mere

Opdrift i vand og luft

Opdrift i vand og luft Fysikøvelse Erik Vestergaard www.matematikfysik.dk Opdrift i vand og luft Formål I denne øvelse skal vi studere begrebet opdrift, som har en version i både en væske og i en gas. Vi skal lave et lille forsøg,

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning.

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning. E2 Elektrodynamik 1. Strømstyrke Det meste af vores moderne teknologi bygger på virkningerne af elektriske ladninger, som bevæger sig. Elektriske ladninger i bevægelse kalder vi elektrisk strøm. Når enderne

Læs mere

Tilstandsligningen for ideale gasser

Tilstandsligningen for ideale gasser ilstandsligningen for ideale gasser /8 ilstandsligningen for ideale gasser Indhold. Udledning af tilstandsligningen.... Konsekvenser af tilstandsligningen...4 3. Eksempler og opgaver...5 4. Daltons lov...6

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 7. august 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 31. maj 2016 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Hastighedsprofiler og forskydningsspænding

Hastighedsprofiler og forskydningsspænding Hastighedsprofiler og forskydningsspænding Formål Formålet med de gennemførte forsøg er at anvende og sammenligne 3 metoder til bestemmelse af bndforskydningsspændingen i strømningsrenden. Desden er formålet,

Læs mere

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm Elektromagnetisme 7 Side 1 af 12 Med dette emne overgås fra elektrostatikken, som beskriver stationære ladninger, til elektrodynamikken, som beskriver ladninger i bevægelse (elektriske strømme, magnetfelter,

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

Energien i Vinden Redigeret

Energien i Vinden Redigeret Energien i Vinden Redigeret 5/4-07 Hvor meget af vindens energi kan man udnytte?? Vindhastigheden har stor betydning for den mængde vindenergi, som en vindmølle kan omdanne til elektricitet. Har man oplevet

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Anvendelser af integralregning

Anvendelser af integralregning Anvendelser af integralregning I 1600-tallet blev integralregningen indført. Vi skal se, hvor stærkt et værktøj det er til at løse problemer, som tidligere forekom uoverstigelige. I matematik-grundbogen

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 5. november 2016 1 Partielle differentialligninger 1.1 Udledning af varmeligningen Vi vil nu på samme måde som med bølgeligningen

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm Elektromagnetisme 7 Side 1 af 1 Med dette emne overgås fra elektrostatikken, som beskriver stationære ladninger, til elektrodynamikken, som beskriver ladninger i bevægelse (elektriske strømme, magnetfelter,

Læs mere

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål.

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. a. Buens opbygning Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. Buen påvirker pilen med en varierende kraft, der afhænger meget af buens opbygning. For det

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

STUDENTEREKSAMEN MAJ 2007 Vejledende opgavesæt nr. 1 FYSIK A-NIVEAU. Xxxxdag den xx. måned åååå. Kl. 09.00 14.00 STX071-FKA V

STUDENTEREKSAMEN MAJ 2007 Vejledende opgavesæt nr. 1 FYSIK A-NIVEAU. Xxxxdag den xx. måned åååå. Kl. 09.00 14.00 STX071-FKA V STUDENTEREKSAMEN MAJ 2007 Vejledende opgavesæt nr. 1 FYSIK A-NIVEAU Xxxxdag den xx. måned åååå Kl. 09.00 14.00 STX071-FKA V Opgavesættet består af 8 opgaver med i alt 15 spørgsmål. De stillede spørgsmål

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 8 sider Skriftlig prøve, den 24. maj 2005 Kursus navn: Fysik 1 Kursus nr.: 10022 Tilladte hjælpemidler: Alle hjælpemidler tilladt. "Vægtning": Besvarelsen vægtes

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Profil af et vandløb. Formål. Teori

Profil af et vandløb. Formål. Teori Dato Navn Profil af et vandløb Formål At foretage systematiske feltobservationer og målinger omkring en ås dynamik At udarbejde faglige repræsentationsformer, herunder tegne et profiludsnit At måle strømningshastighed

Læs mere

U = φ. R = ρ l A. Figur 1 Sammenhængen mellem potential, φ og spændingsfald, U: U = φ = φ 1 φ 2.

U = φ. R = ρ l A. Figur 1 Sammenhængen mellem potential, φ og spændingsfald, U: U = φ = φ 1 φ 2. Ohms lov Vi vil samle os en række byggestene, som kan bruges i modelleringen af fysiske systemer. De første to var hhv. en spændingskilde og en strømkilde. Disse elementer (sources) er aktive og kan tilføre

Læs mere

1. Hvor lang tid tager det at blive trukket op til højden 20 m?

1. Hvor lang tid tager det at blive trukket op til højden 20 m? Efterbehandlingsark 1 Nedenfor er vist to grafer for bevægelsen i. Den første graf viser, hvor mange gange du vejer mere eller mindre end din normale vægt. Den anden graf viser højden. Spørgsmål til grafen

Læs mere

0BOpgaver i tryk og gasser. 1BOpgave 1

0BOpgaver i tryk og gasser. 1BOpgave 1 0BOpgaver i tryk og gasser 1BOpgave 1 Blandede opgaver i densitet ( = massefylde): a) Luftens densitet ved normal stuetemperatur og tryk er 1,20 kg/m 3. Hvor meget vejer luften i et rum med længde 6,00m,

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Teoretiske Øvelser Mandag den 13. september 2010

Teoretiske Øvelser Mandag den 13. september 2010 Hans Kjeldsen hans@phys.au.dk 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion

Læs mere

Enkelt og dobbeltspalte

Enkelt og dobbeltspalte Enkelt og dobbeltsalte Jan Scholtyßek 4.09.008 Indhold 1 Indledning 1 Formål 3 Teori 3.1 Enkeltsalte.................................. 3. Dobbeltsalte................................. 3 4 Fremgangsmåde

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 27. maj 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q1-1 To mekanikopgaver (10 points) Læs venligst den generelle vejledning i en anden konvolut inden du går i gang. Del A. Den skjulte metalskive (3.5 points) Vi betragter et sammensat legeme bestående af

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber 1 Basisbegreber ellæren er de mest grundlæggende størrelser strøm, spænding og resistans Strøm er ladningsbevægelse, og som det fremgår af bogen, er strømmens retning modsat de bevægende elektroners retning

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Differential- ligninger

Differential- ligninger Differential- ligninger Et oplæg 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der kan gennemgås før man går i gang med en lærebogs fremstilling af emnet differentialligninger Læreren skal

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Energitekniske grundfag 5 ECTS

Energitekniske grundfag 5 ECTS Energitekniske grundfag 5 ECTS Kursusplan 1. Jeg har valgt energistudiet. Hvad er det for noget? 2. Elektro-magnetiske grundbegreber 3. Introduktion, grundbegreber og the Engineering Practice 4. Elektro-magnetiske

Læs mere

Energien i Vinden. Side 1 af 16. Hvor meget af vindens energi kan man udnytte?? Senest Redigeret 21/10-2009. http://windturbine.me/windturbines.

Energien i Vinden. Side 1 af 16. Hvor meget af vindens energi kan man udnytte?? Senest Redigeret 21/10-2009. http://windturbine.me/windturbines. Hvor meget af vindens energi kan man udnytte?? Senest Redigeret /0-009. htt://windturbine.me/windturbines.html htt://www.unitedenergy.com/df/wind_ower.df Udskr. 7--09 Side af 6 Vindens energi er baseret

Læs mere

Rektangulær potentialbarriere

Rektangulær potentialbarriere Kvantemekanik 5 Side 1 af 8 ektangulær potentialbarriere Med udgangspunkt i det KM begrebsapparat udviklet i KM1-4 beskrives i denne lektion flg. to systemer, idet system gennemgås, og system behandles

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00 Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Mandag d. 11. juni 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Energitekniske grundfag 5 ECTS

Energitekniske grundfag 5 ECTS Energitekniske grundfag 5 ECTS Kursusplan 1. Jeg har valgt energistudiet. Hvad er det for noget?. Elektro-magnetiske grundbegreber 3. The Engineering Practice 4. Elektro-magnetiske grundbegreber 5. Termodynamiske

Læs mere

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006 Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato

Læs mere

Puls og g-påvirkning. Efterbehandlingsark 1. Hjertet som en pumpe. Begreber: Sammenhæng mellem begreberne: Opgave 1. Opgave 2

Puls og g-påvirkning. Efterbehandlingsark 1. Hjertet som en pumpe. Begreber: Sammenhæng mellem begreberne: Opgave 1. Opgave 2 Efterbehandlingsark 1 Hjertet som en pumpe Begreber: Puls = hjertets frekvens = antal slag pr. minut Slagvolumen = volumen af det blod, der pumpes ud ved hvert hjerteslag Minutvolumen = volumen af det

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 2. juni 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 2. juni 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 2. juni 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Bilag A. Tegninger af vægge V1-V5 og NØ

Bilag A. Tegninger af vægge V1-V5 og NØ SCC-Konsortiet P33 Formfyldning i DR Byen Bilag A Tegninger af vægge V1-V5 og NØ SCC-Konsortiet P33 Formfyldning i DR Byen Bilag B Støbeforløb for V1-V5 og NØ Figur B-1 viser et eksempel på temperaturudviklingen

Læs mere

Præsentation af Model til beregning af spredning fra klapning af uddybningsmaterialer. Præsenteret af Jan Dietrich. 21.

Præsentation af Model til beregning af spredning fra klapning af uddybningsmaterialer. Præsenteret af Jan Dietrich. 21. Præsentation af Model til beregning af spredning fra klapning af uddybningsmaterialer Præsenteret af Jan Dietrich 21. november 2013 Klapprocessens hovedelementer Tømning af prammen Sediment stråle ned

Læs mere

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1 Udbredelseshastighed for bølger i forskellige stoffer 1 Bølgeligningen Indhold 1. Bølgeligningen.... Udbredelseshastigheden for bølger på en elastisk streng...3 3. Udbredelseshastigheden for longitudinalbølger

Læs mere

Massefylden af tør luft ved normalt atmosfærisk tryk ved havets overade ved 15 C bruges som standard i vindkraftindustrien og er lig med 1, 225 kg

Massefylden af tør luft ved normalt atmosfærisk tryk ved havets overade ved 15 C bruges som standard i vindkraftindustrien og er lig med 1, 225 kg 0.1 Vindens energi 0.1. VINDENS ENERGI I dette afsnit... En vindmølle omdanner vindens kinetiske energi til rotationsenergi ved at nedbremse vinden, således at hastigheden er mindre efter at rotorskiven

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Brugsvejledning for Frit fald udstyr

Brugsvejledning for Frit fald udstyr Brugsvejledning for 1980.10 Frit fald udstyr 13.12.10 Aa 1980.10 1. Udløser 2. Tilslutningsbøsninger for prøveledninger 3. Trykknap for udløser 4. Kontaktplader 5. Udfræsning for placering af kugle 6.

Læs mere

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3 Gaslovene SH ver. 1.2 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................

Læs mere

Dronninglund Gymnasium Fysik skriftlig eksamen 27. maj 2011

Dronninglund Gymnasium Fysik skriftlig eksamen 27. maj 2011 Opgave 1. Solfanger Det viste anlæg er et ventilationssystem, som opvarmer luft udefra og blæser den ind i huset. Luften opvarmes idet, den strømmer langs en sort metalplade, der er opvarmet af solstrålingen.

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Projekt 3.7. Pythagoras sætning

Projekt 3.7. Pythagoras sætning Projekt 3.7. Pythagoras sætning Flere beviser for Pythagoras sætning... Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... Opgave 1: Et kinesisk og et indisk bevis for Pythagoras sætning...

Læs mere

Figur 1. fs10 Matematik - Tennisklubben

Figur 1. fs10 Matematik - Tennisklubben Figur 1 fs10 Matematik - Tennisklubben 1 Hammel Tennisklub Hammel tennisklub har eksisteret siden år 1904 1.1 Hvor lang tid har klubben eksisteret? Der spilles fra april, til oktober starter. 1.2 Hvor

Læs mere

Studieretningsprojekt for, 2009-10 Matematik og Fysik Opgavetitel: Vindenergi

Studieretningsprojekt for, 2009-10 Matematik og Fysik Opgavetitel: Vindenergi Studieretningsprojekt for, 2009-10 Matematik og Fysik Opgavetitel: Vindenergi Du skal fortælle om, hvordan vindmøllen producerer energi, samt udlede formlen for vindens effekt 1 3 P vind A v 2 Endvidere

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51 Skråplan Dan Elkvist Albrechtsen, Edin Ikanović, Joachi Mortensen Hold 4, gruppe n + 1, n {3}, uge 50-51 8. januar 2008 Figurer Sider ialt: 5 Indhold 1 Forål 3 2 Teori 3 3 Fregangsåde 4 4 Resultatbehandling

Læs mere

Baggrundsmateriale til Minigame 7 side 1 A + B C + D

Baggrundsmateriale til Minigame 7 side 1 A + B C + D Baggrundsmateriale til Minigame 7 side 1 Indhold Kernestof... 1 Supplerende stof... 1 1. Differentialligninger (Baggrundsmateriale til Minigame 3)... 1 2. Reaktionsorden (Nulte-, første- og andenordensreaktioner)...

Læs mere

Undersøgelse af flow- og trykvariation

Undersøgelse af flow- og trykvariation Undersøgelse af flow- og trykvariation Formål Med henblik på at skabe et kalibrerings og valideringsmål for de opstillede modeller er trykniveauerne i de 6 observationspunkter i sandkassen undersøgt ved

Læs mere

Kræfter og Arbejde. Frank Nasser. 21. april 2011

Kræfter og Arbejde. Frank Nasser. 21. april 2011 Kræfter og Arbejde Frank Nasser 21. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

8 cm 0,7 m 3,1 m 0,25 km. 38 mm 84 dm 24,8 km 35.660 cm. 527.125 mm 32,1 m 0,2 cm 84,37 m. 47,25 km 45,27 m 0,875 km 767,215 m

8 cm 0,7 m 3,1 m 0,25 km. 38 mm 84 dm 24,8 km 35.660 cm. 527.125 mm 32,1 m 0,2 cm 84,37 m. 47,25 km 45,27 m 0,875 km 767,215 m 8.01 Enheder 8 cm 0, m 3,1 m 0,25 km 38 mm 84 dm 24,8 km 35.660 cm 52.125 mm 32,1 m 0,2 cm 84,3 m 4,25 km 45,2 m 0,85 km 6,215 m 2.500 dm 2 48 m 2 2 km 2 56.000 cm 2 0,45 km 2 6,2 ha 96.000 cm 2 125.000.000

Læs mere

Elektromagnetisme 13 Side 1 af 8 Maxwells ligninger. Forskydningsstrømme I S 1

Elektromagnetisme 13 Side 1 af 8 Maxwells ligninger. Forskydningsstrømme I S 1 Elektromagnetisme 13 Side 1 af 8 Betragt Amperes lov fra udtryk (1.1) anvendt på en kapacitor der er ved at blive ladet op. For de to flader og S der begge S1 afgrænses af C fås H dl = J ˆ C S n da = I

Læs mere

DETTE OPGAVESÆT INDEHOLDER 5 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE

DETTE OPGAVESÆT INDEHOLDER 5 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE DETTE OPGAVESÆT INDEHOLDER 5 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE SPØRGSMÅL ENS. SPØRGSMÅLENE I DE ENKELTE OPGAVER KAN LØSES UAFHÆNGIGT AF HINANDEN. 1 Opgave 1 En massiv metalkugle

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?:

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: Angiv de variable: Check din forventning ved at hælde lige store mængder vand i to glas med henholdsvis store og små kugler. Hvor

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Bestemmelse af hydraulisk ledningsevne

Bestemmelse af hydraulisk ledningsevne Bestemmelse af hydraulisk ledningsevne Med henblik på at bestemme den hydrauliske ledningsevne for de benyttede sandtyper er der udført en række forsøg til bestemmelse af disse. Formål Den hydrauliske

Læs mere

Matematik A. 5 timers skriftlig prøve NY ORDNING. Højere Teknisk Eksamen maj 2008 HTX081-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve NY ORDNING. Højere Teknisk Eksamen maj 2008 HTX081-MAA. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fredag den 30. maj 2008 kl. 9.00-14.00 Side 1 af 9 Matematik A Prøvens varighed er 5

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Newton-Raphsons metode

Newton-Raphsons metode Newton-Raphsons metode af John V. Petersen Indhold Indledning: Numerisk analyse og Newton-Raphsons metode... 2 Udlede Newtons iterations formel... 2 Sætning 1 Newtons metode... 4 Eksempel 1 konvergens...

Læs mere

Statistisk mekanik 12 Side 1 af 9 Van der Waals-gas

Statistisk mekanik 12 Side 1 af 9 Van der Waals-gas Statistisk mekanik Side af 9 Ideale gasmolekyler har pr. definition ingen udstrækning og påirker ikke hinanden med kræfter. En an der Waals-gas, hor der tages højde for såel molekylær udstrækning som er-molekylære

Læs mere

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer Dansk Fysikolympiade 2007 Landsprøve Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar Prøvetid: 3 timer Opgavesættet består af 6 opgaver med tilsammen 17 spørgsmål. Svarene på de stillede

Læs mere

GUX. Matematik. A-Niveau. Torsdag den 26. maj Kl Prøveform a GUX161 - MAA

GUX. Matematik. A-Niveau. Torsdag den 26. maj Kl Prøveform a GUX161 - MAA GUX Matematik A-Niveau Torsdag den 26. maj 2016 Kl. 09.00-14.00 Prøveform a GUX161 - MAA 1 Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne 1 til 10 med i alt 25 spørgsmål. De 25 spørgsmål

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau maj 2015

Løsninger til eksamensopgaver på fysik A-niveau maj 2015 Løsninger til eksamensopgaver på fysik A-niveau 2015 26. maj 2015 Opgave 1: Sous vide a) Når man regner med, at varmelegemet er en simpel modstand, gælder Ohms 1. lov U RI også, når det er vekselstrøm,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG INDHOLDSFORTEGNELSE Formelsamling... side Grundlæggende færdigheder... side 4 a Finde konstanterne a og b i en regneforskrift (og p eller r)... side 4 b

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærere Hold Termin hvori undervisningen afsluttes: maj-juni 2011 HTX

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere