Mat 1. 2-timersprøve den 17. maj 2016.

Størrelse: px
Starte visningen fra side:

Download "Mat 1. 2-timersprøve den 17. maj 2016."

Transkript

1 Mat -timersprøve den 7 maj 6 JE 6 Opgave restart; Givet funktionen f:=x-sqrt(*x-); Spørgsmål f := x/ x K Funktionen er defineret for x K R x R Dvs Dm f er intervallet [ ;N[ Spørgsmål Med udviklingspunktet x = fås P:=unapply(mtaylor(f(x),x=,),x); P := x/x K x K C x K Spørgsmål diff(f(x),x,x,x,x); K x K 7/ Ifølge Taylors formel med x = findes for ethvert x R et ξ mellem x og, så f x = P (x)cr (x), hvor f x KP (x)=r (x) = f ξ x K =K!! ξk 7/ x K =K 8 $ ξk 7/ x K For x = findes da et ξ mellem og, så f = P K 8 $ ξk 7/ K = P Benyttes P i stedet for f, så er fejlen f KP da % ξ % P(/); = R = 8 $ ξk 7/ K 8 $ ξk 7/ % 8$ = 7,

2 restart;with(linearalgebra):with(plots): Givet den symmetriske matrix A:=<<88/,8/ <8/,7/; evalf(p(/)); evalf(/^7); evalf(p(/)-/^7); Tilføjelse til spørgsmål : Da f KP P K 7 % f 6 K 7 % f Altså : 98! f Opgave Spørgsmål = R! P! 6! fås =! 7 A := og dermed g:=(x,y)-evalb(x[]<y[]): ev:=sort(eigenvectors(a,output=list),g); ev := 9,, K, 6,, Heraf aflæses, at A = x har egenværdierne 9 og 6 med E 9 = span E 6 = span Da A er symmetrisk er de to egenvektorrum E 9 og E 6 ortogonale K og

3 v:=ev[,,]; er en basis for E 9 q:=(-)*normalize(v,euclidean); er en ortonormal basis for E 9 v:=ev[,,]; er en basis for E 6 q:=normalize(v,euclidean); hvor q = q,er en ortonormal basis for E 6 v := K q := v := q := Egenvektorerne q, q ) er da en ortonormal basis for = udstyret med det sædvanlige skalarprodukt Sættes Q:=<q q; Q := og Lambda:=DiagonalMatrix([9,6]); Λ := 9 6 så er Q positiv ortogonal og Λ = Q K A Q=Q T A Q Kontrol med Maple: Transpose(Q)Q;Determinant(Q); K K

4 Q^(-)AQ; Transpose(Q)AQ; Spørgsmål En ellipse E er i et sædvanligt retvinklet x, y -koordinatsystem i planen givet ved matrixligningen x x y A = y Af spørgsmål haves nu følgende: (O ; q, q er et nyt sædvanligt retvinklet koordinatsystem i planen fremkommet ved en drejning af det givne koordinatsystem om O Forbindelsen mellem de gamle koordinater x, y og de nye koordinater x, y for et punkt P i planen er givet ved x x = Q y y Ellipsens ligning i det nye koordinatsystem er x y Q T A Q x 6 C y 9 = x y = x y 9 6 x y = 9 x C6 y = Heraf aflæses, at ellipsens halve storakse a = og ellipsens halve lilleakse b = X Kaksen, som er linien gennem O med retningsvektor q, har ligningen y =K x Y Kaksen, som er linien gennem O med retningsvektor q, har ligningen y = x <x ya<x,y; 88 x C 8 y x C 8 x C 7 y y E:=expand(%)=;

5 E := 88 x C 68 x y C 7 y = implicitplot({e,y=-/*x,y=/*x},x=-,y=-,scaling= constrained); y K K x K K Opgave restart;with(linearalgebra):with(plots): For en glat funktion f : = / = med f, = er et vektorfelt V i x, y Kplanen givet ved V x, y = Vf x, y =(f ' x (x,y), f ' y (x,y)) = ( x Ky C,K xy) Spørgsmål Vf x, y =, x = og y =G eller y = og x =K Samtlige stationære punkter for f er da,,,k og K, Spørgsmål Hvis f har egentligt lokalt maksimum eller egentligt lokalt minimum i et punkt, så må punktet være et stationært punkt, da f ikke har undtagelsespunkter diff(x-y^+,x);

6 Hessematricen for f i punktet x, y er H(x,y):=<<,-*y <-*y,-*x; diff(-*x*y,y); diff(x-y^+,y); H x, y := H(,):=subs(x=,y=,H(x,y)); H, := K x K y K y K y K x K K Eigenvalues(H(,),output=list); C 7, K 7 Da de to egenværdier for H, har modsat fortegn, så har f hverken egentligt lokalt maksimum eller egentligt lokalt minimum i det stationære punkt, H(,-):=subs(x=,y=-,H(x,y)); H, K := Eigenvalues(H(,-),output=list); C 7, K 7 Da de to egenværdier for H,K har modsat fortegn, så har f hverken egentligt lokalt maksimum eller egentlig lokalt minimum i det stationære punkt,k H(-,):=subs(x=-,y=,H(x,y)); H K, := Eigenvalues(H(-,),output=list);, Da begge egenværdier for H K, er positive, har f egentligt lokalt minimum i det stationære punkt K, Altså: f har netop ét egentligt lokalt minimum nemlig i punktet K, og ingen egentlige lokale maksima Spørgsmål Trappelinie K:, / x, / x, y Da gradientfeltet Vf =(V x, V y ) er givet, kan vi finde f med f, = ved formlen f x, y = f, CTan Vf, K =Tan Vf, K = x V x (t, )dt + y V y (x, t)dt

7 = x (t C)dt C y K xt dt = x Cx Kxy Spørgsmål f:=(x,y)-/*x^+x-x*y^; f := x, y / x Cx Kx y 'f(-,)'=f(-,); f K, = K contourplot(f(x,y),x=-,y=-,contours=); y K K K x K Opgave K restart;with(linearalgebra):with(plots): prik:=(x,y)-vectorcalculus[dotproduct](x,y): kryds:=(x,y)-convert(vectorcalculus[crossproduct](x,y),vector):

8 A={ x, y % x % og K π % y % π } Vi betragter funktionen h:=(x,y)-x*cos(y); for x, y A h := x, y /x cos y Graffladen F ={(x, y, z) % x %, K π % y % π, z = hx, y } plotd(h(x,y),x=,y=-pi/pi/,scaling=constrained,view= ); Spørgsmål Parameterfremstilling for F r:=<u,v,h(u,v);

9 hvor u [; ] og v [K π ; π ] r:=diff~(r,u); r:=diff~(r,v); Fladens normalvektor er N:=kryds(r,r); r := r := r := N := u v u cos v cos v Ku sin v Kcos v u sin v Spørgsmål I dette spørgsmål og i det næste spørgsmål betragtes desuden et vektorfelt V i x, y, z Krummet om hvilket det oplyses, at Div(V) x, y, z = x Cy Cz og Rot(V) x, y, z = z, x, y Med den valgte orientering af den lukkede randkurve vf for F er n F = N u, v (højrekonvention) N u, v Af Stokes' sætning fås da Cirk(V, vf = Flux(Rot(V), F)= n F $Rot V dμ = F π K π N u, v $Rot V (r(u,v))du dv integrand:=prik(n,<*u*cos(v),*u,*v); integrand := K cos v u C u sin v C v Int(Int(integrand,u=),v=-Pi/Pi/)=int(int(integrand,u= ),v=-pi/pi/); π K π K cos v u C u sin v C v du dv = K π

10 Spørgsmål Parameterfremstilling for det massive område Ω i rummet R:=<u,v,w*u*cos(v); R := u v w u cos v hvor u [; ], v [K π ; π ] og w [; ] vω er den lukkede overflade af Ω orienteret med udadrettet enhedsnormalvektor Af Gauss' sætning fås da Flux(V, vω)= Ω Div (V) dμ= π K π Div (V)(R(u,v,w)) JR(u,v,w) du dv dw M:=<diff~(R,u) diff~(r,v) diff~(r,w); M := JR:=Determinant(M); w cos v Kw u sin v u cos v JR := u cos v som er R, da u [; ] og v [K π ; π ] integrand:=expand((w*u*cos(v)+v+u)*jr); integrand := u cos v w Cu cos v v Cu cos v Int(Int(Int(integrand,u=),v=-Pi/Pi/),w=)=int(int (int(integrand,u=),v=-pi/pi/),w=); π K π u cos v w Cu cos v v Cu cos v du dv dw = πc 6

Mat 1. 2-timersprøve den 17. maj 2016.

Mat 1. 2-timersprøve den 17. maj 2016. Opgave restart; Givet funktionen f:=x-sqrt(*x-); Spørgsmål Mat -timersprøve den 7 maj 6 JE 6 f := x/ x K Funktionen er defineret for x K R x R Dvs Dm f er intervallet [ ;N[ diff(f(x),x,x,x,x); K x K 7/

Læs mere

Mat 1. 2-timersprøve den 13. maj 2017.

Mat 1. 2-timersprøve den 13. maj 2017. Mat. -timersprøve den. maj 7. JE.5.7 Opgave restart:with(plots): En funktion f af to reelle variable er for x, y s, givet ved f:=(x,y)-y/(x^+y^); f d x, y / y x Cy f(x,y); y x Cy Spørgsmål I x, y Kplanen

Læs mere

Mat 1. 2-timersprøve den 14. maj 2018.

Mat 1. 2-timersprøve den 14. maj 2018. Mat. 2-timersprøve den 4. maj 28. JE 9.5.8 Opgave restart:with(linearalgebra):with(plots): En reel fnktion f af to reelle variable er givet ved f:(x,y)-4*y*(x^2+/3*y^2-); expand(f(x,y)); f d x, y 4 y x

Læs mere

OPGAVE 1 Det nedenstående klip er fra et Maple-ark hvor en reel funktion f (x, y) med definitionsmængden (x,y) x 2 + y 2 < 1 } bliver undersøgt:

OPGAVE 1 Det nedenstående klip er fra et Maple-ark hvor en reel funktion f (x, y) med definitionsmængden (x,y) x 2 + y 2 < 1 } bliver undersøgt: DANMARKS TEKNISKE UNIVERSITET Skriftlig prøve den 7. maj 00. Kursus Navn: Matematik (-timers prøve for forårssemesteret). Kursus nr. 0005 Tilladte hjælpemidler: Alle af DTU tilladte hjælpemidler må medbringes

Læs mere

Maj 2015 (alle opgaver og alle spørgsmål)

Maj 2015 (alle opgaver og alle spørgsmål) Maj 2015 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Ved eksamen er der ikke tid til f.eks. at lave illustrationer,

Læs mere

Ekstremum for funktion af flere variable

Ekstremum for funktion af flere variable Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable

Læs mere

Maj 2013 (alle opgaver og alle spørgsmål)

Maj 2013 (alle opgaver og alle spørgsmål) Maj 2013 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Jeg gider ikke håndregne i de simple spørgsmål! Her

Læs mere

Lokalt ekstremum DiploMat 01905

Lokalt ekstremum DiploMat 01905 Lokalt ekstremum DiploMat 0905 Preben Alsholm Institut for Matematik, DTU 6. oktober 00 De nition Et stationært punkt for en funktion af ere variable f vil i disse noter blive kaldt et egentligt saddelpunkt,

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1

Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1 Besvarelse af Eksamensopgaver Juni 5 i Matematik H Opgave De fire vektorer stilles op i en matrix som reduceres: 4 4 4 8 4 4 (a) Der er ledende et-taller så dim U =. Som basis kan f.eks. bruges a a jfr.

Læs mere

Eksamen maj 2018, Matematik 1, DTU

Eksamen maj 2018, Matematik 1, DTU Eksamen maj 2018, Matematik 1, DTU NB: Nedenstående udregninger viser flere steder mere end én metode. Det er der IKKE tid til eksamen! Ligeledes er der ikke krav om eller tid til at illustrere med plots!

Læs mere

Ekstremumsbestemmelse

Ekstremumsbestemmelse Ekstremumsbestemmelse Preben Alsholm 24. november 2008 1 Ekstremumsbestemmelse 1.1 Ekstremum for funktion af én variabel: Definitioner Ekstremum for funktion af én variabel: Definitioner Punktet a kaldes

Læs mere

Andengradsligninger i to og tre variable

Andengradsligninger i to og tre variable enote 0 enote 0 Andengradsligninger i to og tre variable I denne enote vil vi igen beskæftige os med andengradspolynomierne i to og tre variable som også er behandlet og undersøgt med forskellige teknikker

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Vektorfelter. enote Vektorfelter

Vektorfelter. enote Vektorfelter enote 24 1 enote 24 Vektorfelter I enote 6 indføres og studeres vektorer i plan og rum. I enote 16 ser vi på gradienterne for funktioner f (x, y) af to variable. Et gradientvektorfelt for en funktion af

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

Taylorpolynomier og Taylors sætning

Taylorpolynomier og Taylors sætning og Taylors sætning 10. november 2008 I Givet en funktion f og et udviklingspunkt x 0. Find et polynomium P n af grad højst n, så f og P n har samme nulte, første, anden, tredie,..., n te a edede i punktet

Læs mere

Eksamen i Mat F, april 2006

Eksamen i Mat F, april 2006 Eksamen i Mat F, april 26 Opgave Lad F være et vektorfelt, givet i retvinklede koordinater som: Udregn F og F: F x F = F x i + F y j + F z k = F y = z 2 F z xz y 2 F = F x + F y + F z = + + x. F = F z

Læs mere

Eksamen i Mat F, april 2006

Eksamen i Mat F, april 2006 Eksamen i Mat F, april 26 Opgave 1 Lad F være et vektorfelt, givet i retvinklede koordinater som: F x x F = F x i + F y j + F z k = F y = 2z F z y Udregn F og F: F = F x + F y + F z = 1 + +. F = F z F

Læs mere

Mat 1. 2-timersprøve den 10. december 2017.

Mat 1. 2-timersprøve den 10. december 2017. Ma. -imersprøve den. december 7. JE 8..7 Opgave resar;wih(linearalgebra): Give de inhomogene lineære ligningssysem lign:=x-*x+3*x3=a^+*a-3; lign d x K x C3 x3 = a C a K3 lign:=x+*x-*x3=a^+3; lign d x C

Læs mere

Uge 11 Lille Dag. Opgaver til OPGAVER 1. Det ortogonale komplement

Uge 11 Lille Dag. Opgaver til OPGAVER 1. Det ortogonale komplement OPGAVER 1 Opgaver til Uge 11 Lille Dag Opgave 1 Det ortogonale komplement a) I R 2 er der givet vektoren (3, 7). Angiv en basis for det ortogonale komplement. b) Find i R 3 en basis for det ortogonale

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

Om første og anden fundamentalform

Om første og anden fundamentalform Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Geometriske grundbegreber 8. lektion

Geometriske grundbegreber 8. lektion 1 / 14 Geometriske grundbegreber 8. lektion Martin Raussen Institut for matematiske fag Aalborg Universitet 1.4.2008 2 / 14 (Regulære) parameterfremstillinger for en flade Eksempler Kurver på flader og

Læs mere

Symmetriske og ortogonale matricer Uge 7

Symmetriske og ortogonale matricer Uge 7 Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji

Læs mere

Mat 1. 2-timersprøve den 5. december 2016.

Mat 1. 2-timersprøve den 5. december 2016. Mat. -timersprøve den 5. december 6. JE 4..6 Opgave > restart;with(linearalgebra): Et inhomogent lineært ligningssystem bestående at tre ligninger med fire ubekendte, x og x 4 har totalmatricen T = [A

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

MATEMATIK 3 EN,MP 17. september 2014 Oversigt nr. 1

MATEMATIK 3 EN,MP 17. september 2014 Oversigt nr. 1 MATEMATIK 3 EN,MP 7. september 204 Oversigt nr. Her bringes en samling af de gamle eksamensopgaver: (jan. 204) Betragt begyndelsesværdiproblemet y (t) + 7y (t) + 2y(t) = e t sin(2t) for t > 0, y(0) = 2,

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

Stokes rotationssætning

Stokes rotationssætning enote 27 1 enote 27 Stokes rotationssætning I denne enote vil vi benytte Gauss divergenssætning fra enote 26 til at motivere, bevise, og illustrere Stokes sætning, som udtrykker en præcis sammenhæng mellem

Læs mere

Mat H 2 Øvelsesopgaver

Mat H 2 Øvelsesopgaver Mat H 2 Øvelsesopgaver 18. marts 1998 1) dx dt + 2t 1+t x = 1 2 1+t, fuldstændig løsning. 2 2) ẋ + t 2 x = t 2, fuldstændig løsning. 3) ẋ 2tx = t, x() = 1. 4) ẋ + 1 t x = 1 t 2, t >, undersøg løsningen

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

STEEN MARKVORSEN DTU COMPUTE 2016

STEEN MARKVORSEN DTU COMPUTE 2016 STEEN MARKVORSEN DTU COMPUTE 2016 2 Indhold 1 Regulære flader i rummet 5 1.1 Det sædvanlige koordinatsystem i rummet..................... 5 1.2 Graf-flader for funktioner af to variable......................

Læs mere

Symmetriske matricer. enote Skalarprodukt

Symmetriske matricer. enote Skalarprodukt enote 19 1 enote 19 Symmetriske matricer I denne enote vil vi beskæftige os med et af de mest benyttede resultater fra lineær algebra den såkaldte spektralsætning for symmetriske matricer. Den siger kort

Læs mere

5 opgaver er korrekt besvarede.

5 opgaver er korrekt besvarede. KØbenhavns universitet N a turvidenskab e lig embeqsek~a!,!len vfnteren,1963-64... ----- MATEMATIK 1. Skriftlig prøve 2, (algebra og geometri).. Alle hjælpemidler er tilladt. En besvarelse betragtes som

Læs mere

Kurver og flader i geometri, arkitektur og design 23. lektion

Kurver og flader i geometri, arkitektur og design 23. lektion Kurver og flader i geometri, arkitektur og design 23. lektion Department of Mathematical Sciences Aalborg University Denmark 9.5.2011 Normal- og hovedkrumninger i et fladepunkt Normalkrumningen k = k n

Læs mere

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30. Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære

Læs mere

Matematisk modellering og numeriske metoder. Lektion 13

Matematisk modellering og numeriske metoder. Lektion 13 Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 9. november 25 Divergens af et vektorfelt [Sektion 9.8 og.7 i bogen, s. 43]. Definition af og og egenskaber for divergens Lad

Læs mere

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene. MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)

Læs mere

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable MOGENS ODDERSHEDE LARSEN Funktioner af flere variable 3. udgave 06 i FORORD Dette notat giver en kort indføring i, hvorledes man ved anvendelse af passende regnemidler og benyttelse af partielle afledede

Læs mere

Eksamen maj 2019, Matematik 1, DTU

Eksamen maj 2019, Matematik 1, DTU Eksamen maj 2019, Matematik 1, DTU NB: Nedenstående udregninger viser flere steder mere end én metode. Det er der IKKE tid til eksamen! Ligeledes er der ikke krav om eller tid til at illustrere med plots.

Læs mere

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM01 Juni 1993 marts 2006

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM01 Juni 1993 marts 2006 INSTITUT FOR MATEMATIK OG DATALOGI TIDLIGERE EKSAMENSOPGAVER MM01 Juni 1993 marts 2006 i Forord Denne opgavesamling skal bruges med den forståelse, at pensumbeskrivelsen for kurset har undergået en række

Læs mere

Oversigt [S] 9.6, 11.1, 11.2, App. H.1

Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Her skal du lære om 1. Funktioner i flere variable 2. Grafen og niveaukurver 3. Grænseovergange og grænseværdier 4. Kontinuitet i flere variable 5. Polære koordinater

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 4 1 enote 4 Taylor s approksimationsformler for funktioner af én variabel I enote 19 og enote 21 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier i

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

Diagonalisering. Definition (diagonaliserbar)

Diagonalisering. Definition (diagonaliserbar) 1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og

Læs mere

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Nøgleord og begreber Eksistens og entydighed Elementære funktioner Eksponential af matrix Retningsfelt Eulers metode Hastighedsfelt for system Eulers metode for

Læs mere

STEEN MARKVORSEN DTU COMPUTE 2017

STEEN MARKVORSEN DTU COMPUTE 2017 STEEN MARKVORSEN DTU COMPUTE 2017 2 Indhold 1 Regulære flader i rummet 5 1.1 Det sædvanlige koordinatsystem i rummet..................... 5 1.2 Graf-flader for funktioner af to variable......................

Læs mere

Taylorpolynomier. Preben Alsholm. 17. april 2008. Taylorpolynomier. Funktion af ere variable. Preben Alsholm. Taylorpolynomier

Taylorpolynomier. Preben Alsholm. 17. april 2008. Taylorpolynomier. Funktion af ere variable. Preben Alsholm. Taylorpolynomier . 17. april 008 for I Givet en funktion f og et udviklingspunkt x 0. Find et polynomium P n af grad højst n, så f og P n har samme nulte, første, anden, tredie,..., n te a edede i punktet x 0.. for I Givet

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve.

Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve. Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid) Tangenthældninger langs en kurve x Retningsfelter x x(t) sin(π t) + x / π cos(π t) Jeppe Revall Frisvad

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1) Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Matematikken bag Parallel- og centralprojektion

Matematikken bag Parallel- og centralprojektion Matematikken bag parallel- og centralojektion 1 Matematikken bag Parallel- og centralojektion Dette er et redigeret uddrag af lærebogen: Programmering med Delphi fra 2003 (570 sider). Delphi ophørte med

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

Løsninger til eksamensopgaver på A-niveau 2017

Løsninger til eksamensopgaver på A-niveau 2017 Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på

Læs mere

Eksempel på 2-timersprøve 1 Løsninger

Eksempel på 2-timersprøve 1 Løsninger Eksempel på -timersprøve Løsninger Preben lsholm Marts 4 Opgave Vi skal løse ligningen () z (8 + i) e i 6 = Løsningen ønskes angivet på rektangulær form, dvs. på formen x + iy, hvor x; y R. Vi nder umiddelbart

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan Matematik Semesteruge 5 6 (30. september -. oktober 2002) side Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med opgaveregning

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable MOGENS ODDERSHEDE LARSEN Funktioner af flere variable. udgave 015 i FORORD Dette notat giver en kort indføring i, hvorledes man ved anvendelse af passende regnemidler og benyttelse af partielle afledede

Læs mere

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...

Læs mere

Noter til Lineær Algebra

Noter til Lineær Algebra Noter til Lineær Algebra Eksamensnoter til LinAlg Martin Sparre, www.logx.dk, August 2007, Version π8 9450. INDHOLD 2 Indhold 0. Om disse noter.......................... 3 Abstrakte vektorrum 4. Definition

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Her skal du lære om Separable ligninger Logistisk ligning og eksponentiel vækst 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens

Læs mere

Matematik F Et bud på hvordan eksamenssæt løses

Matematik F Et bud på hvordan eksamenssæt løses Matematik F Et bud på hvordan eksamenssæt løses Jeppe Trøst Nielsen 11. april 21 Denne samling af ligninger og løsninger er udarbejdet efter det princip, at eksamenssættene ikke ændrer sig specielt meget

Læs mere

Klassisk Taylors formel

Klassisk Taylors formel p. 1/17 Klassisk Taylors formel Sætning Lad f : (a, b) R være n gange differentiabel. For x 0, x (a, b) findes et ξ mellem x 0 og x der opfylder at f(x) = f(x 0 )+ f (x 0 ) 1! (x x 0 )+...+ f(n 1) (x 0

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående

Læs mere

Eksempel på 2-timersprøve 2 Løsninger

Eksempel på 2-timersprøve 2 Løsninger Eksempel på -timersprøve Løsninger Preben lsholm Februar 4 Opgave Maplekommandoerne expand( (z-*exp(i*pi/))*(z-*exp(-i*pi/))*(z-exp(i*pi/))*(z-exp(-i*pi/))): sort(%); resulterer i polynomiet z 4 z + z

Læs mere

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable

MOGENS ODDERSHEDE LARSEN. Funktioner af flere variable MOGENS ODDERSHEDE LARSEN Funktioner af flere variable 3. udgave 016 i FORORD Dette notat giver en kort indføring i, hvorledes man ved anvendelse af passende regnemidler og benyttelse af partielle afledede

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Mathematicus AB1. # a # b. # a # b. Mike Vandal Auerbach.

Mathematicus AB1. # a # b. # a # b. Mike Vandal Auerbach. Mathematicus AB1 # a # b # a # b Mike Vandal Auerbach www.mathematicus.dk Mathematicus AB1 1. udgave, 2017 Disse noter er skrevet til matematikundervisning på stx og må anvendes til ikke-kommercielle formål.

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

Projekt 6.5 Ellipser brændpunkter, brændstråler og praktisk anvendelse i en nyrestensknuser

Projekt 6.5 Ellipser brændpunkter, brændstråler og praktisk anvendelse i en nyrestensknuser Projekt 65 Ellipser brændpunkter brændstråler og praktisk anvendelse i en nyrestensknuser Ellipsens ligning undersgte vi kapitel i bog B I det flgende skal vi undersge ellipser som banekurver og vise hvorledes

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

VEKTORGEOMETRI del 2 Skæringer Projektioner Vinkler Afstande

VEKTORGEOMETRI del 2 Skæringer Projektioner Vinkler Afstande VEKTORGEOMETRI del Skæringer Projektioner Vinkler Afstande x-klasserne Gammel Hellerup Gymnasium Februar 019 ; Michael Szymanski ; mz@ghg.dk 1 Indhold OVERSIGT... 3 SKÆRINGSPUNKTER OG RØRINGSPUNKTER...

Læs mere

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan så vælge tegnet. - For at definere noget, eks en x værdi,

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere