eksaminand nr Opgavesættet består af 3 sædvanlige (essay) opgaver samt et antal opgaver af multiple choice typen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "eksaminand nr Opgavesættet består af 3 sædvanlige (essay) opgaver samt et antal opgaver af multiple choice typen."

Transkript

1 Københavns Universitet Det Farmaceutiske Fakultet Side 1 af 18 sider Skriftlig prøve: Den 12. januar 2009 Kursus navn og nr: Statistisk Forsøgsplanlægning, A-343 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af eksaminand nr Opgavesættet består af 3 sædvanlige (essay) opgaver samt et antal opgaver af multiple choice typen. De sædvanlige opgaver er placeret forrest, og de ønskes besvaret på sædvanlig skriftlig måde på de dertil udleverede indskrivningsark. Ved bedømmelsen tillægges de sædvanlige opgaver samlet vægt 50% og multiple choice opgaverne ligeledes 50%. Multiple choice opgaverne er placeret efter essayopgaverne og er nummereret med romertallene IV, V,... i selve teksten. Numrene på de enkelte spørgsmål er angivet som (1),(2),(3),... i teksten. Bevarelserne af multiple choice spørgsmålene føres ind i følgende skema. Opgave IV V VI VII VIII IX X Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) Svar Svarmulighederne for multiple choice spørgsmålene er nummereret fra 1 til 6. Indføres et forkert nummer i skemaet, kan dette rettes ved at sværte det forkerte nummer over og anføre det rigtige nedenunder. Er der tvivl om meningen med en rettelse, betragtes spørgsmålet som ubesvaret. Mht. multiple choice opgaverne skal kun skemaet afleveres. Afleveres blankt eller forlades eksamen i utide, skal nærværende forside alligevel afleveres. Kladde, mellemregninger eller andet tillægges ingen betydning, kun tallene indført ovenfor registreres. Der gives 5 point for et korrekt multiple choice svar og 1 for et ukorrekt svar. Ubesvarede spørgsmål eller et 6-tal (svarende til ved ikke ) giver 0 point. Det antal point, der kræves for, at et sæt anses for tilfredstillende besvaret, afgøres endeligt ved censureringen af sættene. Husk nu at forsyne din besvarelse med eksaminantnummer. Sættets sidste side er nr 18; blad lige om og se, at den er der 1

2 Opgave I Der er udført et forsøg, hvor man ønsker at vurdere tre ekstraktionsmetoder, A1, A2 og B. For hver metode undersøger man tre batche af råmateriale, som indeholder det aktive stof, man vil udvinde. Data var som følger, idet der fra hver af de 9 batche er udtaget fire prøver: Metoder A1 A2 B Batche Sum for batche Metodesummer Total sum Man benytter modellen Y ijk = µ + m i + B(m) j(i) + E k(ij) med metode-parametrene m i med i m i =0, og varianskomponenterne σb(m) 2 og σ2 E,altiden sædvanlige notation. Et ANOVA skema er under udarbejdelse, men er knap færdigt: ANOVA beregninger Variationskilde SSQ df s 2 EMS Metoder ??? Batche σB(m) 2 + σ2 E Usikkerhed (E)??? σe 2 Totalt 76.64? Færdiggør skemaet og besvar følgende spørgsmål. Spørgsmål 1: Bestem estimater for µ og for metode-parametrene {m 1,m 2,m 3 }. Spørgsmål 2: Bestem estimater for modellens varianskomponenter, σ 2 B(m) og σ2 E. Spørgsmål 3: Test om modellen (dvs. m i og varianskomponenterne) er statistisk signifikant (benyt α =0.05). Spørgsmål 4: Benyt den estimerede model til at angive variansen for en enkelt måleværdi fra en tilfældigt valgt batch. Spørgsmål 5: Experimentator ønsker at vurdere, om variationen mellem metoder fortrinsvis skyldes forskellen mellem A- og B-metoden. Foretag den tilsvarende variansopspaltning og foretag det tilsvarende test (mod samme variationskilde, som benyttes ved testet af metoder generelt). Hvad vil du nu konkludere? Fortsæt på side 3 2

3 Opgave II I et forsøg med bakterievækst ønsker man at belyse 6 faktorers betydning. Faktorerne og de valgte faktorniveauer er gengivet i følgende tabel. Navn Betydning Niveauer A : Temperatur 18 o C 24 o C B : Tilsætning af NaCl Nej Ja C : Ph i opløsning D: Kulstofkilde KX11 AL13 E: Lysforhold Lyst Mørkt F : Vækstmedium V 1 V 2 Det målte respons var et index, som udtrykker bakteriemængden i en prøve fra hvert af de 8 enkeltforsøg. Design og data er angivet i følgende tabel: Design Data Kon- A B C D = AB E = +AC F = BC Y traster Der er på sædvanlig måde beregnet kontraster svarende til det underliggende fuldstændige faktordesign (dannet af faktorerne A, B og C) og anført i standardrækkefølgen. Man tænker sig, at følgende model kan benyttes: Y ijklmn = µ + A i + B j + C k + D l + E m + F n + ɛ ijklmn hvor alle indices, i n,på sædvanlig måde kan antage én af værdierne {0,1}. Som det fremgår, antages alle vekselvirkninger uden betydning (nul eller nær nul). Iøvrigt benyttes standardantagelser, som f.eks. A 0 + A 1 =0,B 0 +B 1 =0etc. Usikkerhedsbidragets varians kaldes σ 2 ɛ. Spørgsmål 1: Karakterisér (kort) den viste forsøgsplan. Angiv forsøgets definitionsrelation og hovedeffekten A s aliasrelationer. Hvilken resolution har det anførte design. Spørgsmål 2: Experimentator konkluderer, at modellen Y ijklmn = µ + A i + D l + ɛ ijklmn er egnet til at beskrive data, dvs. kun temperatur og kulstofkilde har væsentlig betydning for bakterievæksten. Angiv estimater for µ og faktoreffekterne A = A 1 A 0 og D = D 1 D 0. Fortsæt på side 4 3

4 Spørgsmål 3: Angiv det sædvanlige estimat for σ 2 ɛ (idet de variationsbidrag, som ikke kan tilskrives A og D, benyttes) og opskriv et variansanalyseskema, som illustrerer den valgte model og parametrenes signifikans : Variationskilde SSQ df F-værdi A D Restvariation Totalt Kommentér kortfattet mht. om den valgte model synes rimelig i lyset af det opstillede variansanalyseskema. Fortsæt på side 5 4

5 Opgave III Vi betragter et screeningsforsøg med 4 forskellige gødningstyper (G1, G2, G3, G4) ved dyrkning af en plante, hvorfra man vil udvinde et ekstrakt til brug i en naturmedicin. I forsøget anvendtes 4 niveauer af vandtilsætning (V1, V2, V3, V4) samt 4 forskellige tilsætninger af kompost (α, β, γ, δ). Den påtænkte forsøgsplan og de fundne data er vist i nedenstående skemaer: Design G1 G2 G3 G4 V1 (α) (γ) (δ) (β) V2 (β) (α) (γ) (δ) V3 (δ) (β) (α) (γ) V4 (γ) (δ) (β) (α) Data G1 G2 G3 G4 Sum V V V V Sum Kompost α β γ δ Ialt Sum Følgende beregninger (som du ikke skal kontrollere) er baseret på de viste data fra forsøget: Variationskilde SSQ Gødning Vand Kompost Rest Totalt Spørgsmål 1: Karakterisér forsøget og angiv en passende model til at analysere data fra forsøget. Spørgsmål 2:Analysér nu den opstillede model mht. indflydelse fra gødning, vand og kompost (benyt signifikansniveau 5%). Kommentér resultatet kort. Spørgsmål 3: Angiv et estimat for forsøgsusikkerhedens varians under hensyntagen til resultatet af spørgsmål 2. Spørgsmål 4: Effekterne svarende til de fire gødningstyper kaldes g 1, g 2, g 3 og g 4 med i g i =0. Bestem estimater for g 1, g 2, g 3 og g 4. Spørgsmål 5: Man interesserer sig for, om der kan være en vekselvirkning mellem gødningstype og mængde kompost, da deres fælles effekt muligvis ikke er additiv. Forklar kort, hvorfor dette ikke umiddelbart kan testes ved brug af ovenstående forsøgsplan. Fortsæt på side 6 5

6 Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder er meningsfulde. Opgave IV I et biologisk forsøg ønsker man at studerede effekten fra 2 kontrollerbare faktorer, tid og ph. Samtidig har man en formodning om, at omgivelsernes temperatur kan påvirke forsøgsresultatet, men da denne ikke kan kontrolleres, nøjes man med at registrere temperaturen. Forsøget, der blev udført i en randomiseret rækkefølge, og data er vist (ordnet) i nedenstående tabel. Spørgsmål (1) / IV.1 Design Data Tid ph Temperatur Y (g/kg) Totalt I en model for ovenstående forsøg benævner man typisk temperaturen som 1 En whole plot faktor 2 En tilfældig effekt 3 En kovariat 4 En nested faktor 5 En hierarkisk effekt Fortsæt på side 7 6

7 Man påtænker at anvende følgende principielle model for forsøget: Y ijk = µ + t i + p j + tp ij + α T ijk + ɛ ijk hvor t i angiver tid, p j angiver ph og T ijk angiver temperaturen. i er index for tid, j er index for ph og k er gentagelsesnummer - alt på sædvanlig måde. Alle tre indices løber fra 1 til 2, som det fremgår af data tabellen. Der benyttes den sædvanlige restriktioner i t i = j p j = i p ij = j p ij =0. Svarende til de forskellige mulige (rimelige) varianter af den anførte model er der beregnet følgende residual-kvadratafvigelsessummer: Spørgsmål (2) / IV.2 Nr Model SSQ df 1 Y ijk = µ + t i + p j + tp ij + α T ijk + ɛ ijk Y ijk = µ + t i + p j + tp ij + ɛ ijk Y ijk = µ + t i + p j + α T ijk + ɛ ijk Y ijk = µ + t i + p j + ɛ ijk Y ijk = µ + t i + α T ijk + ɛ ijk Y ijk = µ + t i + ɛ ijk Y ijk = µ + p j + α T ijk + ɛ ijk Y ijk = µ + p j + ɛ ijk Y ijk = µ + α T ijk + ɛ ijk Y ijk = µ + ɛ ijk Du bliver bedt om at teste, om model nr. 1 kan reduceres til model nr. 8. Ved test af, om denne reduktion er tilladelig, fås test værdien, F, og kritisk værdi, C (α =0.05): 1 F = 2.04 og C = F = 1.92 og C = F = 2.89 og C = F = 3.85 og C = F = og C = 4.34 Fortsæt på side 8 7

8 Spørgsmål (3) / IV.3 Angiv under antagelse af model 8 et estimat af hovedeffekten p j, j = {1, 2} (j =1 ph=5.7, og j =2 ph=6.2): 1 p = { -3.25, +3.25} 2 p = { , } 3 p = { -13/8, +13/8} 4 p = { 6.75, -6.75} 5 p = {30.25, } Fortsæt på side 9 8

9 Opgave V Der er gennemført et valideringsstudie af en målemetode på humant fuldblod, hvor man primært har været interesseret i at vurdere den variation, der er mellem de anvendte apparater. I studiet indgik 6 apparater (A1.. A6), der hver blev brugt til dobbeltbestemmelse af på 3 forskellige blodprøver (P1, P2 og P3). Da forsøget krævede forholdsvis meget donorblod, var der tale om forskellige blodprøver på alle apparater, dvs. ialt anvendtes 6 3 = 18 blodprøver fra 18 forskellige donorer. Alle prøver måltes med 2 gentagelser markeret med xx. Alle forhold som tildeling af de enkelte prøver til apparaterne og rækkefølgen af de 6 enkeltmålinger på ét apparat blev randomiseret. Som matematisk model for dette forsøg benyttes P1 P2 P3 A1 x x x x x x A2 x x x x x x A3 x x x x x x A4 x x x x x x A5 x x x x x x A6 x x x x x x y ijk = µ + A i + P (A) j(i) + ɛ k(ij) hvor A i er bidraget fra apparater i = {1, 2, 3, 4, 5, 6}, ogp(a) j(i) er bidraget fra prøver indenfor apparater. Endelig angiver ɛ k(ij) målefejlen på den enkelte måling, k = {1, 2} Alle effekter opfattes som stokastiske, og modellens varianskomponenter er, i rækkefølge som modellens led, σ 2 A, σ2 P (A) og σ2 ɛ. Spørgsmål (4) / V.1 Ved variansanalysen af data skal bl.a. benyttes EMS værdierne svarende til modellens enkelte led. For effekten apparater findes EMS = E{S 2 A } som 1 E{SA 2 } =6σ2 A +σ2 ɛ 2 E{SA 2}=6σ2 A +4σ2 P(A) +σ2 ɛ 3 E{SA 2}=6σ2 A +2σ2 P(A) +σ2 ɛ 4 E{SA 2}=2σ2 P(A) +σ2 ɛ 5 E{S 2 A }=6σ2 A +2σ2 P(A) 6 Ved ikke Fortsæt påside 10 9

10 Følgende skema giver kvadratafvigelsessummer svarende til en fuldstændig krydset struktur Variationskilde Kvadratafvigelsessum Apparater Prøver Prøver Apparater 97.4 (??) Gentagelser (error) (??) (??) Totalt (??) I skemaet mangler der kvadratafvigelsessum for gentagelserne og frihedsgrader for de enkelte led, hvor der er markeret med (??). Fyld nu resten af skemaet ud og besvar følgende spørgsmål. Spørgsmål (5) / V.2 Angiv kvadratafgivelsessum og frihedsgrader svarende til modellens varianskomponent P (A): 1 SSQ = og df = 2 2 SSQ = og df = 11 3 SSQ = og df = 12 4 SSQ = og df = 18 5 SSQ = og df = 23 Spørgsmål (6) / V.3 Angiv F-teststørrelsen og kritisk værdi, C (α =0.05), ved test af om varianskomponenten for apparater, σ 2 A =0: 1 F = (453.1/5)/(( )/12) og C = F = (453.1/5)/((134.5)/18) og C = F = (658/ /5)/((134.5)/18) og C = F = (619.1/12)/((134.5)/18) og C = F = (619.1/12)/((484.6)/11) og C = 2.78 Fortsæt påside 11 10

11 Opgave VI Et forsøg går ud på at optimere udbytte af en kemisk process. Specielt er man interesseret i at belyse effekten af et enzym med doser C1, C2, C3 og C4, samt temperatur T1, T2 og T3. Processen foregår i et varmeskab ved konstant temperatur i 30 minutter. Da temperaturen i varmeskabet tager tid at regulere, har man besluttet, at udføre forsøg med alle fire doser ved en fastholdt temperatur, hvorefter temperaturen indstilles på en ny værdi, og forsøg med alle fire doser gentages. Hele forsøget, der gentages over 2 dage, er vist i nedenstående tabel, hvor randomiseringen er illustreret ved numrene i parentes. C1 C2 C3 C4 T1 x(3) x(1) x(2) x(4) Dag 1 T2 x (12) x (11) x(10) x(9) T3 x(5) x(8) x(6) x(7) C1 C2 C3 C4 T1 x (23) x (21) x (22) x (24) Dag 2 T2 x (13) x (16) x (15) x (14) T3 x (19) x (17) x (20) x (18) Som matematisk model for dette forsøg benyttes følgende standard model for et split plot forsøg: y ijkl = µ + D i + T j + DT ij + C k + DC ik + TC jk + DTC ijk + E ijkl hvor D i er et tilfældigt bidrag fra dage i = {1, 2}, T j angiver bidraget fra temperatur j = {1, 2, 3},og C k er bidraget fra k te dose enzym k = {1, 2, 3, 4}. Videre angiver DT ij, DC ik, TC jk og DTC ijk de sædvanlige led i et forsøg som det foreliggende. Endelig angiver E ijkl målefejlen på den enkelte måling, ijkl, hvor der dog ikke er gentagelser (og l 1). Spørgsmål (7) / VI.1 I variansanalysen kan den såkaldte whole plot varians findes ved hjælp af 1 kvadratafvigelsessummen for hovedvirkningerne af D og T 2 kvadratafvigelsessummen for hovedvirkningen af D 3 kvadratafvigelsessummen for vekselvirkningen DT 4 kvadratafvigelsessummen for hovedvirkningen C og vekselvirkningen CT 5 kvadratafvigelsessummen for den tilfældige fejl Fortsæt påside 12 11

12 Efter forsøget er blevet udført, er følgende kvadratafvigelsessummer beregnet, svarende til en fuldstændig krydset struktur: Variationskilde SSQ df D ? T ? DT 14.44? C 9.28? DC 0.88? TC 3.27? DTC 1.12? Error 0 0 Totalt Find de til skemaet svarende frihedsgrader og besvar følgende Spørgsmål (8) / VI.2 Split plot variansen findes umiddelbart til Spørgsmål (9) / VI.3 I modellen for forsøget kaldes leddet TC jk sædvanligvis 1 En whole plot vekselvirkning 2 En split plot vekselvirkning 3 En stokastisk effekt 4 En to-faktor vekselvirkning 5 En blok effekt Fortsæt påside 13 12

13 Se venligst side 18, hvor der er et par hjælpeskemaer, du eventuelt kan bruge til nogen af de sidste spørgsmål. Opgave VII Der skal udarbejdes en forsøgsplan for et forsøg med 5 faktorer: Navn Betydning Niveauer A : Temperatur 18 o C 24 o C B : Tilsætning af NaCl Ja Nej C : Ph i opløsning D: Lysforhold Lyst Mørkt E : Væksttid 1 dag 2 dage Forsøget ønskes udført som et faktorforsøg ved at indføre faktorerne D og E ved generatorerne D=+AC og E=+BC. Spørgsmål (10) / VII.1 Angiv for dette forsøg aliasrelationen for hovedeffekten A: 1 A=CD=ABCE=BDE 2 A=ACD=BCE=ABDE 3 A=ABCD=CE=ADE 4 A=CDE=ABC=BD 5 A=CD=BC=BD Idet forsøget påtænkes udført af 2 laboranter, der hver udfører 4 enkeltforsøg, indføres Laborant=AB. Forsøgenes fordeling på de to laboranter ønskes bestemt. Fortsæt påside 14 13

14 Spørgsmål (11) / VII.2 Forsøgene, som skal udføres og fordelt på to laboranter, er: 1 e abd cd abce og e abd cd abce 2 abe d abcd bce og bde a bc abcde 3 ae bd acd bce og de ab c abcde 4 (1) a b c og e abc bcd abcde 5 (1) abde cde abc og de ab c abcde Opgave VIII Et 2 4 faktorforsøg med faktorerne A, B, C og D er delt ud på 4 blokke (batche), defineret efter I 1 = AB og I 2 = CD. Forsøgene, der udføres i den principale blok, ønskes. Spørgsmål (12) / VIII.1 Forsøgene, der udføres i den principale blok, er: 1 (1) ac bcd abd 2 (1) abc abd cd 3 (1) bc abc a 4 (1) b acd abcd 5 (1) ab cd abcd Fortsæt påside 15 14

15 Opgave IX Et faktorforsøg med faktorerne A, B, C, D, E har definitions-relationerne I 1 = ABD og I 2 = BCE Spørgsmål (13) / IX.1 Forsøgets resolution er 1 I 2 II 3 III 4 IV 5 V Fortsæt påside 16 15

16 Opgave X I et indledende forsøg med 3 forskellige præparater (A, B, C) har man udført et forsøg med henblik på at sammenligne disse. I forsøget indgik 6 rotter, der hver blev udsat for 2 af de 3 præparater (eventuelt i randomiseret rækkefølge): Forsøgets design blev: Rotte Præparat 1 A C 2 B A 3 B C 4 C A 5 A B 6 B C Analysen af dette forsøg bygger på følgende grundlæggende model: Y ij = µ + R i + p j + ɛ ij hvor µ angiver forsøgets niveau, R i, i = {1, 2, 3, 4, 5, 6}, angiver indflydelsen fra rotte i og p j, j = {1, 2, 3}, angiver virkningen fra præparat j. Endelig er ɛ ij den tilfældige målefejl i enkeltforsøg nr. (i, j). Spørgsmål (14) / X.1 Hvad kalder man sædvanligvis variablen Rotte i et sådant forsøg: 1 En whole plot faktor med 6 niveauer 2 En kovariat med 6 værdier 3 En deterministisk faktor med 6 niveauer 4 En ufuldstændig blok af størrelse 2 5 En tilfældig faktor med 3 niveauer Fortsæt påside 17 16

17 Inden udførelse af forsøget bliver det alligevel diskuteret, om det kan have betydning i hvilken rækkefølge, de to målinger på en rotte udføres. Efter at have overvejet problemet, er der stillet 4 forskellige alternativer op, som vist nedenfor. Betegnelsen (1) betyder, at målingen udføres først, og (2) betyder, at målingen udføres som den anden (efter nogle dages ventetid): Rotte Forslag 1 A(1) C(2) A(1) B(2) B(1) C(2) C(1) A(2) B(1) A(2) C(1) B(2) Forslag 2 C(1) A(2) B(1) A(2) B(1) C(2) A(1) C(2) A(1) B(2) C(1) B(2) Forslag 3 C(1) A(2) B(1) A(2) C(1) B(2) A(1) C(2) A(1) B(2) B(1) C(2) Forslag 4 A(1) C(2) B(1) A(2) B(1) C(2) C(1) A(2) B(1) A(2) B(1) C(2) Spørgsmål (15) / X.2 Hvilket eller hvilke af de stillede forslag er velegnede: 1 Kun forslag 1 og 2 2 Kun forslag 4 3 Kun forslag 3 4 Kun forslag 1 5 Alle undtagen forslag 4 Slut på opgaverne, og så ønskes du et godt nyt år Hjælpeskemaer på næste side. 17

18 Hjælpeskema A B C Hjælpeskema A B C D

Danmarks Farmaceutiske Universitet Side 1 af 18 sider. eksaminant nr

Danmarks Farmaceutiske Universitet Side 1 af 18 sider. eksaminant nr Danmarks Farmaceutiske Universitet Side 1 af 18 sider Skriftlig prøve den: 9 januar 2006 Kursus navn og nr: Statistisk Forsøgsplanlægning, F-343 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret

Læs mere

Intro Design of Experiments

Intro Design of Experiments Intro Design of Experiments OH no: 1 Faktorer, niveauer, behandlinger og gentagelser Styrbare faktorer Faktorer Styrbare (controllable) faktorer Støjfaktorer (nuisance factors) Kvalitative Kvantitative

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Opgavesættet består af 3 sædvanlige (essay) opgaver samt et antal opgaver af multiple choice typen.

Opgavesættet består af 3 sædvanlige (essay) opgaver samt et antal opgaver af multiple choice typen. Danmarks Farmaceutiske Højskole Side 1 af 19 sider Skriftlig prøve den: 6. januar 2003 Kursus navn og nr: Forsøgsplanlægning F343 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af eksaminant

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X. Opgave I I en undersøgelse af et potentielt antibiotikum har man dyrket en kultur af en bestemt mikroorganisme og tilført prøver af organismen til 20 prøverør med et vækstmedium og samtidig har man tilført

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Forsøgsplanlægning og Variansanalyse

Forsøgsplanlægning og Variansanalyse Om Forsøgsplanlægning og Variansanalyse Henrik Spliid IMM Informatik og Matematisk Modellering Danmarks Tekniske Universitet Maj 2009 1 1 Problematik Måledata behæftede med meget større usikkerhed, end

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet!

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet! Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 2. juni 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2012 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

2 0.9245. Multiple choice opgaver

2 0.9245. Multiple choice opgaver Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 16. december 2010 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 22 sider. Skriftlig prøve: 13. december 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

2 X 2 = Antal mygstik på enpersoniløbetaf1minut

2 X 2 = Antal mygstik på enpersoniløbetaf1minut Opgave I I mange statistiske undersøgelser bygger man analysen på anvendelse af normalfordelingen til (eventuelt tilnærmelsesvist) at beskrive den tilfældige variation. Spørgsmål I.1 (1): Forén af følgende

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 8. maj 00 Kursus nr : 005 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord nr Der

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 26. maj 2011 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Forsøgsplanlægning og Variansanalyse Henrik Spliid ISCC, IMM Statistical Consulting Center April 2011

Forsøgsplanlægning og Variansanalyse Henrik Spliid ISCC, IMM Statistical Consulting Center April 2011 IMM Informatik og Matematisk Modellering Danmarks Tekniske Universitet file:foredrag2.tex Forsøgsplanlægning og Variansanalyse af Henrik Spliid ISCC, IMM Statistical Consulting Center April 2011 Henrik

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

2 X 2 = gennemsnitligt indhold af aktivt stof i én tablet fra et glas med 200 tabletter

2 X 2 = gennemsnitligt indhold af aktivt stof i én tablet fra et glas med 200 tabletter Opgave I I mange statistiske undersøgelser benytter man binomialfordelingen til at beskrive den tilfældige variation. Spørgsmål I.1 (1): For hvilken af følgende 5 stokastiske variable kunne binomialfordelingen

Læs mere

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet

Læs mere

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 21 sider Skriftlig prøve: 15. december 2003 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af

Læs mere

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance Plot af B j + ǫ ij (Y ij µ α i )): Program: res 4 2 0 2 B1 B2 B3 B4 B5 1. vi starter med at gennemgå opgave 3 side 513. 2. nyt: to-sidet variansanalyse 1 2 3 4 5 block σ 2 : within blocks variance σb 2

Læs mere

To-sidet variansanalyse

To-sidet variansanalyse Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter Ekstraopgaver uge 2-02402 Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 15. december 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :...

Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :... År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik Skriftlig prøve, den 5. december 3. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige. "Vægtning":

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 14. december 2013 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 27. maj 20 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift) (bord

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 1. december 2011 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14 Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

Matematik B. Studentereksamen. Fredag den 22. maj 2015 kl stx151-MAT/B

Matematik B. Studentereksamen. Fredag den 22. maj 2015 kl stx151-MAT/B Matematik B Studentereksamen 1stx151-MAT/B-22052015 Fredag den 22. maj 2015 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU Fredag den 12. december 2008 Kl. 09.00 13.00 HFE083-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med

Læs mere

gl-matematik B Studentereksamen

gl-matematik B Studentereksamen gl-matematik B Studentereksamen gl-1stx121-mat/b-25052012 Fredag den 25. maj 2012 kl. 9.00-13.00 Side 1 af 5 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 29 sider. Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041. (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 29 sider. Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041. (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 29 sider Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041 Kursus navn: Statistik 1 Tilladte hjælpemidler: Alle sædvanlige Dettesæterbesvaretaf: (navn) (underskrift)

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer 1 (003-ordning) Antal sider i opgavesættet (incl. forsiden): 10 (ti)

Læs mere

Alle hjælpemidler er tilladt. Computer med Matlab kræves. Navn :.Læreren... Underskrift :... Bord nr. :... Ogave

Alle hjælpemidler er tilladt. Computer med Matlab kræves. Navn :.Læreren... Underskrift :... Bord nr. :... Ogave Skriftlig prøve, den 14. december 015. Kursus navn: Billedanalyse. Kursus nummer: 050 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. Computer med Matlab kræves. 4 timer Alle opgaver vægtes

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 19. december 1998. Kursus navn : 04250 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe32-mat/b-2908203 Torsdag den 29. august 203 kl. 9.00-3.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave -6 med i alt 6 spørgsmål.

Læs mere

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar Side 1 af 26 sider Skriftlig prøve, den 14. december 2013. Kursus navn: Billedanalyse. Kursus nummer: 02502 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. 4 timer Alle opgaver vægtes ligeligt.

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Test nr. 6 af centrale elementer 02402

Test nr. 6 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 6 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

MATEMATIK A-NIVEAU-Net

MATEMATIK A-NIVEAU-Net STUDENTEREKSAMEN MAJ AUGUST 2007 2011 MATEMATIK A-NIVEAU-Net torsdag 11. august 2011 Kl. 09.00 14.00 frs112-matn/a-11082011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret formelsamling

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al

Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al Program Tosidet variansanalyse og forsøgsplanlægning Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Ensidet ANOVA: repetition og Collinge eksempel. Additiv tosidet ANOVA (blokforsøg) Tosidet ANOVA

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

Skriftlig eksamen BioMatI (MM503)

Skriftlig eksamen BioMatI (MM503) INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen BioMatI (MM503) 14. januar 2009 2 timer med alle sædvanlige hjælpemidler, inklusive brug af lommeregner/computer. OPGAVESÆTTET

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod.

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. 1-stikprøve t-test (Eksamen 2005 opgave 1) Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. I nedenstående tabel betragtes blodprøver fra 9 patienter. Hver

Læs mere

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl? Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 20. december 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 20. december 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 20. december 2011 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe102-mat/b-31082010 Tirsdag den 31. august 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik B. Studentereksamen. Torsdag den 13. august 2015 kl stx152-mat/b

Matematik B. Studentereksamen. Torsdag den 13. august 2015 kl stx152-mat/b Matematik B Studentereksamen stx152-mat/b-13082015 Torsdag den 13. august 2015 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

År: 2000 Kursusnr: 04250 Indledende Billedbehandling NAVN :... Underskrift :... Bord nr. :... Opgave 11 12 13 14 15 16 17 18 19 20

År: 2000 Kursusnr: 04250 Indledende Billedbehandling NAVN :... Underskrift :... Bord nr. :... Opgave 11 12 13 14 15 16 17 18 19 20 Skriftlig prøve, den 19. December 2000. Kursus navn: Indledende billedbehandling. Tilladte hjælpemidler: Alle sædvanling. "Vægtning": Alle opgaver vægtes ligeligt. NAVN :..................................................

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Program. Flersidet variansanalyse og hierarkiske modeller. Eksempel: iltoptag for krabber. Eksempel: iltoptag for krabber.

Program. Flersidet variansanalyse og hierarkiske modeller. Eksempel: iltoptag for krabber. Eksempel: iltoptag for krabber. Program Flersidet variansanalyse og hierarkiske modeller Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 50, mandag) Flersidet ANOVA 1 / 19 StatBK (Uge 50, mandag) Flersidet ANOVA 2 / 19 Eksempel:

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx131-MAT/B-24052013 Fredag den 24. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 0. maj 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl. 9.00 12.00 IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 5

Læs mere

Analyse af Saltdata. Henrik Spliid

Analyse af Saltdata. Henrik Spliid Analyse af Saltdata Henrik Spliid December 1999 0 Analyse af restsalt ved udspredning af fugtsalt og saltlage Page 1 of 12 Indledning Nrvrende rapport beskriver kort resultaterne af en statistisk analyse

Læs mere

Matematik A. Studentereksamen. Tirsdag den 23. maj 2017 kl Digital eksamensopgave med adgang til internettet. 2stx171-MATn/A

Matematik A. Studentereksamen. Tirsdag den 23. maj 2017 kl Digital eksamensopgave med adgang til internettet. 2stx171-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet stx171-matn/a-305017 Tirsdag den 3. maj 017 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Torsdag den 11. august 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3.

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3. Model Program (8.15-10): 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. Bruger nu to indices: i = 1,...,k for gruppenr. og j = 1,...,n i for observation indenfor gruppe. k = 3 grupper: µ 1

Læs mere