Givet D [a, b] [c, d] og f : D R en funktion. 1

Størrelse: px
Starte visningen fra side:

Download "Givet D [a, b] [c, d] og f : D R en funktion. 1"

Transkript

1 Oversigt S].,.,.3 Inelinger i to retninger S]. oule integrls over retngles Nøgleor og egreer oelt integrl Fuinis sætning Generelle områer Tpe I Tpe II egneregler Nem ulighe ( ij, ij ) Inelt rektngel, ], ] Clulus - Uge. - Clulus - Uge. - Integrlet i to vrile S]. oule integrls over ret... Fuini: Alle veje fører til om S]. Iterte integrls efinition Givet rektnglet, ], ]. oelt integrlet f en funktion f : er f(, )A Når grænseværien eksisterer. lim m m,n i j n f( ij, ij ) A Sætning (Fuinis sætning) L, ], ] og ntg f : er kontinuert. Så er oeltintegrlet lig e itereree integrler og f(, ) A f(, ) A f(, ) f(, ) Clulus - Uge. - 3 Clulus - Uge. - Generelle områer Generelle områer efinition Givet, ], ] og f : en funktion. { f(, ) hvis (, ) F (, ) hvis (, ), ], ]\, ], ] oeltintegrlet er f(, )A F (, )A Clulus - Uge. - Clulus - Uge. - Volumen Tpe I Bemærkning Givet et områe og en positiv f :. Legemet i 3 E {(,, z) (, ), z f(, )} g () hr volumen V givet ve oeltintegrlet V f(, )A g () Områe f Tpe I {(, ), g () g ()} Clulus - Uge. - 7 Clulus - Uge. - 8

2 Tpe I Tpe I Tpe I integrl 3 For f givet på {(, ), g () g ()} er integrlet et itereret integrl f(, )A g() g() f(, ) Eksempel på Tpe I mængen f(, ) + {(, ), + } oelt integrlet eregnes itereret f(, )A + ( + ) Clulus - Uge. - 9 Clulus - Uge. - Tpe I Tpe I Eksempel - figur + {(, ), + } Clulus - Uge. - Eksempel - fortst ( + )A + ] + + ( + ) (( + ) + ( + ) ( ) ( ) ) ( ) Clulus - Uge. - ] Tpe II Tpe II Tpe II integrl For f givet på {(, ), h () h ()} er integrlet et itereret integrl h () h () f(, )A h() h() f(, ) Områe f Tpe II {(, ), h () h ()} Clulus - Uge. - 3 Clulus - Uge. - Tpe II Tpe II Eksempel på Tpe II mængen f(, ) + Eksempel - figur {(, ), } oelt integrlet eregnes itereret f(, )A ( + ) {(, ), } Clulus - Uge. - Clulus - Uge. -

3 Tpe II Tpe I Eksempel - fortst ( + )A ] ( + ) ( 3 3/ + / 3 3 ) / + 7 7/ 3 ] 9 3 Eksempel på Tpe I mængen f(, ) + {(, ), } oelt integrlet eregnes itereret f(, )A ( + ) Clulus - Uge. - 7 Clulus - Uge. - 8 Tpe I Tpe I Eksempel - figur Eksempel - fortst ( + )A + 3 ] 3 ( + ) ( () + 3 ()3 ( ) 3 ( ) 3 ) ] {(, ), } 3 Clulus - Uge. - 9 Clulus - Uge. - Tpe II Tpe II Eksempel 3 på Tpe II mængen f(, ) Eksempel 3 - figur 3 3 {(, ), 3 + } oelt integrlet eregnes itereret f(, )A {(, ), 3 + } Clulus - Uge. - Clulus - Uge. - Tpe II Volumen f hjørne Eksempel 3 - fortst A ] + 3 ( ) ] Hjørne (Se også eksempel ) Givet treknten {(, ), } Et hjørne me kntlænger,, > er givet ve E {(,, z) (, ), z } Vis t volumenet V Clulus - Uge. - 3 Clulus - Uge. -

4 Hjørne Volumen f hjørne Hjørne - figur z Hjørne - fortst {(, ), } {(, ), } E {(,, z) (, ), z } er en Tpe I mænge. Volumenet f hjørnet er V ( ) A ( ) Clulus - Uge. - Clulus - Uge. - Tpe I Volumen f kile Hjørne - fortst V ( ) A ( ) ( )3 ] ] ( ) Kile (Se også opgve ) Givet hlvirklen {(, ), } En kile er givet ve Fin volumenet V. E {(,, z) (, ), z } Clulus - Uge. - 7 Clulus - Uge. - 8 Kile Volumen f kile Kile - figur z Kile - fortst {(, ), } er en Tpe I mænge. Volumenet f kilen er V A {(, ), } E {(,, z) (, ), z } Clulus - Uge. - 9 Clulus - Uge. - 3 Tpe I egneregler Kile - fortst V A ] ( ) ] egneregler for oeltintegrl (f(, ) + g(, ))A f(, )A + g(, )A 7 f(, )A f(, )A Hvis f(, ) g(, ), så er 8 f(, )A g(, )A Clulus - Uge. - 3 Clulus - Uge. - 3

5 Opelt områe S].3 oule integrls over generl regions egneregler for oeltintegrl Hvis områet er opelt i,, så er 9 f(, )A f(, )A + f(, )A Opelt områe Cirkelring opelt som to Tpe I områer Cirkelring opelt som to Tpe II områer Clulus - Uge Clulus - Uge. - 3 Arel Nttig ulighe efinition (Arel som oeltintegrl) Arelet f et områe er A() A Bemærk A() A A ( i, j ) Sætning (Ulighe om rel) Hvis m f(, ) M så er ma() f(, )A MA() Bemærk Følger f regneregler for integrl og relformlen ovenfor. Clulus - Uge. - 3 Clulus - Uge. - 3 Et slg på tsken Eksempel på irkelskiven sin() os() f(, ) e {(, ) + } Funktionen vureres e e sin() os() e oelt integrlet vureres e π e sin() os() A eπ Clulus - Uge. - 37

Definition Givet D [a, b] [c, d] og f : D R en funktion. 1. Figur

Definition Givet D [a, b] [c, d] og f : D R en funktion. 1. Figur Oversigt S].,.,.3 Inddelinger i to retninger S]. oule integrls over retngles Nøgleord og egreer oelt integrl Figur Fuinis sætning Generelle områder Tpe I Tpe II Regneregler Nem ulighed d ( ij, ij ) Inddelt

Læs mere

Bemærkning Den dobbelte Riemannsum af en funktion f : R R er. 2 Sætning (Polært koordinatskift) For f kontinuert på det polære rektangel

Bemærkning Den dobbelte Riemannsum af en funktion f : R R er. 2 Sætning (Polært koordinatskift) For f kontinuert på det polære rektangel Oversigt [S].4,.5,.7 Pol og sigtelinje [S] Appendi H. Polr coordintes Nøgleord og egreer epetition: Polære koordinter Lgkgestkker Koordintskift Tpe II vrinten August, opgve Populære nvendelser Flv højere...

Læs mere

Oversigt [S] 5.2, 5.4, 12.1

Oversigt [S] 5.2, 5.4, 12.1 Oversigt [S] 5.2, 5.4, 12.1 Nøgleord og begreber Bestemt integral Areal iemann summer Volumen Dobbelt integral Test dobbelt integral iemann dobbeltsummer Nyttige regneregler for integral Test integral

Læs mere

Oversigt [S] 5.2, 5.4, 12.1

Oversigt [S] 5.2, 5.4, 12.1 Oversigt [S] 5.2, 5.4, 12.1 Nøgleord og begreber Bestemt integral Areal iemann summer Volumen Dobbelt integral Test dobbelt integral iemann dobbeltsummer Nyttige regneregler for integral Test integral

Læs mere

N 0 3gleord og begreber 7 0 Dobbelt integral 7 0 Fubinis s 0 3tning 7 0 Generelle omr 0 2der. 7 0 Regneregler 7 0 Nem ulighed

N 0 3gleord og begreber 7 0 Dobbelt integral 7 0 Fubinis s 0 3tning 7 0 Generelle omr 0 2der. 7 0 Regneregler 7 0 Nem ulighed 1 3Oversigt 7 4 [S] 12.1, 12.2, 12.3 N 0 3gleord og begreber 7 0 obbelt integral 7 0 Fubinis s 0 3tning 7 0 Generelle omr 0 2der 7 0 Type I 7 0 Type II 7 0 Regneregler 7 0 Nem ulighed Calculus 2-2006 Uge

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Stamfunktion & integral

Stamfunktion & integral PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn

Læs mere

Projekt 7.3 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter

Projekt 7.3 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Hv er mtemtik? Projekt 7.3 Firkntstrigonometri og Ptolemios sætning i ykliske firknter Trigonometrien til eregning f ukente vinkler, sier og reler for treknter er stort set utømt me ulening f sinusreltionerne,

Læs mere

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0 INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til

Læs mere

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning: Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

1 Plan og rumintegraler

1 Plan og rumintegraler 1 PLAN OG RUMINTEGRALER 1 1 Pln og rumintegrler Ligesom for funktioner f en vribel kn mn for kontinuerte funktioner f flere vrible definere deres integrle. Vi vil her kun beskæftige os med funktioner f

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

k(k 1)(k 2)... (k n + 1) = = 12 2 = 6

k(k 1)(k 2)... (k n + 1) = = 12 2 = 6 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Binomilformlen Binomilkoefficienter Binomilrækken Tylor polynomier Vurdering f Tylor s restled Eksponentilrækken konvereger mod eksponentilfunktionen Clculus

Læs mere

Lektion 5 Det bestemte integral

Lektion 5 Det bestemte integral f(x) dx = F (b) F () Lektion 5 Det bestemte integrl Definition Integrlregningens Middelværdisætning Integrl- og Differentilregningens Hovedsætning Bereging f bestemte integrler Regneregler Arel mellem

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningseskrivelse Stmoplysninger til rug ved prøver til gymnsile uddnnelser Termin Juni 2016 Institution Uddnnelse Fg og niveu Lærere Hold Fvrskov Gymnsium Stx Mtemtik A Peter Lundøer (Lu) 3k Mtemtik

Læs mere

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER STUDENTEREKSAMEN NOVEMBER-DECEMBER 007 007-8-V MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Tirsdg den 18 december 007 kl 900-1000 BESVARELSEN AFLEVERES KL 1000 Der

Læs mere

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleor og begreber Differentiabel funktion i en variabel Partielle afleee i flere variable Notation og regneregler for partielle afleee Test partielle afleee Grafisk afleee

Læs mere

Analysens Fundamentalsætning

Analysens Fundamentalsætning Anlysens Fundmentlsætning Frnk Nsser 11. juli 2011 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Integralregning. Version juni Mike Vandal Auerbach

Integralregning. Version juni Mike Vandal Auerbach Integrlregning Version.0 27. juni 209 y f x Mike Vndl Auerch www.mthemticus.dk Integrlregning Version.0, 209 Disse noter er skrevet til mtemtikundervisningen på stx A- og B-niveu efter gymnsiereformen

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 38, 010 Produceret f Hns J. Munkholm berbejdet f Jessic Crter 1 l Hopitls regler Afsnit 4.3 l Hopitls regel I omhndler beregning f grænseværdier f formen lim x f(x) g(x), hvor

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

ANALYSE 1, 2014, Uge 3

ANALYSE 1, 2014, Uge 3 ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R =

Planintegralet. Preben Alsholm 5. maj 2008. 1.1 Integralet af en funktion af én variabel. 1, x i ] et tal t i. Summen. n f (t i ) (x i x i 1 ) R = Plnintegrlet Preben Alsholm 5. mj 8 Plnintegrlet. Integrlet f en funktion f én vribel et bestemte integrl efinition Ld f være en funktion defineret på intervllet [ b]. Ld = x x... x n = b være en inddeling

Læs mere

ANALYSE 1, 2015, Uge 2

ANALYSE 1, 2015, Uge 2 ANALYSE 1, 2015, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks

Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks Formelsmling for mtemtik niveu B og A på højere hndelseksmen Appendiks April Mtemtik B Procentregning Procentvis vækst Værdien f en given vriel x liver ændret fr x til x 1. Den %-vise vækst eregnes ved:

Læs mere

Elementær Matematik. Ligninger og uligheder

Elementær Matematik. Ligninger og uligheder Elementær Mtemtik Ligninger og uligheer Ole Witt-Hnsen 0 Inhol. Førstegrsligninger.... Nulreglen.... Uligheer og regning me uligheer.... Doeltuligheer.... Anengrsligningen... Ligninger og uligheer. Førstegrsligninger

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Oversigt [S] 5., 5.3, 5.4,.,. Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 6 Uge 39.

Læs mere

Projekt 5.7 Hovedsætninger om differentiable funktioner et opgaveforløb

Projekt 5.7 Hovedsætninger om differentiable funktioner et opgaveforløb Hvd er mtemtik?, e-og Projekter: Kpitel 5 Projekt 57 Hovedsætninger om differentile funktioner Projekt 57 Hovedsætninger om differentile funktioner et opgveforlø Projektet er en udvidelse f fsnittet i

Læs mere

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =

Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx = Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen (

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 39, 200 Produceret f Hns J. Munkholm berbejdet f Jessic Crter Integrtion ved substitution Afsnit5.6 Ubestemte integrler s. 37-39 Reglen om differentition f en smmenst funktion

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN

( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN Projekt 7.7 Simpsons formel Simpson vr søn f en selvlært væver, og skulle egentlig selv hve været en væver, men en solformørkelse vkte hns interesse for mtemtik og nturvidensk og mod lle odds lykkedes

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10 Oversigt [LA] 9 Nem vej til rel Nøgleord og begreber Helt simple determinnter Determinnt defineret Effektive regneregler Genkend determinnt nul determinnt nul Produktreglen Inversreglen inversregel og

Læs mere

Geometriske egenskaber & sammenhæng - Fase 3

Geometriske egenskaber & sammenhæng - Fase 3 Nvn: Klsse: Geometriske egensker smmenhæng - Fse 3 Vurdering fr 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer eviser og forslg til foredring 1. Jeg kender til og kn ruge Pythgors lærersætning. 2. Jeg

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 39, 009 Produceret f Hns J. Munkholm 1 Linerisering s. 66-67 Lineriseringen f f omkring x =, er den lineære funktion, der hr tngenten som grf. Klder mn den L er forskriften

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Fejlforplantning. Landmålingens fejlteori - Lektion 9 - Repetition - Fejlforplantning. Kovariansmatrix. Kovariansmatrix

Fejlforplantning. Landmålingens fejlteori - Lektion 9 - Repetition - Fejlforplantning. Kovariansmatrix. Kovariansmatrix Fejlforplntning Lndmålingens fejlteori Lektion 9 Repetition - Fejlforplntning Ksper K Berthelsen - kk@mthudk http://peoplemthudk/ kk/undervisning/lf11 Institut for Mtemtiske Fg Alorg Universitet Lndmåling

Læs mere

Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8.

Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8. Anlyse Øvelser Rsmus Sylvester Bryder. og 5. oktober 3 Supplerende opgve Ld C([, b], C) betegne rummet f lle kontinuerte funktioner f : [, b] C, hvor < b, og definér et indre produkt på C([, b], C) ved

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Oversigt [S] 5.2, 5.3, 5.4, 2., 2.2 Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 26

Læs mere

Michel Mandix (2017) Derfor er der behov for en række værktøjer, som kan bruges også til de vilkårlige trekanter. a b c A B C

Michel Mandix (2017) Derfor er der behov for en række værktøjer, som kan bruges også til de vilkårlige trekanter. a b c A B C Mihel Mndix (07) Sinusreltionen Nott Side f 9 Sinusreltionen Indtil videre, er der kun eskrevet, hvordn mn eregner på retvinklede treknter. Men desværre er det lngtfr lle treknter, som er retvinklede.

Læs mere

REGULARITET AF LØSNINGER M.M.

REGULARITET AF LØSNINGER M.M. REGULARITET AF LØSNINGER M.M. E. SKIBSTED Inhol 1. Plan og forusætninger 1 2. Generalisering af [B, Theorem 3.8] 1 3. Autonomt tilfæle 3 3.1. Mængen D er åben 3 3.2. Strømmen er kontinuert på D 4 4. Tisafhængige

Læs mere

Det dobbelttydige trekantstilfælde

Det dobbelttydige trekantstilfælde Det dobbelttydige trekntstilfælde Heine Strømdhl, Københvns Kommunes Ungdomsskoler Formålet med denne rtikel er t formulere en meget simpel grfisk løsningsmetode til det dobbelttydige trekntstilfælde med

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

Integralregning. Erik Vestergaard

Integralregning. Erik Vestergaard Integrlregning Erik Vestergrd Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, Hderslev 4 Erik Vestergrd www.mtemtikfysik.dk Indholdsfortegnelse Indholdsfortegnelse. Indledning 4. Stmfunktioner 4. Smmenhængen

Læs mere

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet.

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet. !#" $ "&% (')"&*,+.-&/102%435"&6,+879$ *1')*&: or et system, hvor kun den termiske energi ændres, vil tilvæksten E term i den termiske energi være: E term A + Q hvor A er de ydre kræfters rbejde på systemet

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

Beregning af bestemt integrale ved partiel integration og integration ved substitution:

Beregning af bestemt integrale ved partiel integration og integration ved substitution: Beregning f estemt integrle ved prtiel integrtion og integrtion ved sustitution: f John V. Petersen Prtiel integrtion Sætning : Prtiel integrtion... si. Løsning f integrle... si. Plot f løsningsrelet...

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 016. runde Besvrelser som flder uden for de løsninger som ligger til grund for pointskemerne, bedømmes ved nlogi så skridt med tilsvrende vægt i den

Læs mere

Figurer. Planere: glatte, udjævne. Linjer. EB og AI, GK og HJ, MO og NP. Linjer. Vinkler Plane figurer Flytninger. 2 Linjestykker. 1 Hvad husker I?

Figurer. Planere: glatte, udjævne. Linjer. EB og AI, GK og HJ, MO og NP. Linjer. Vinkler Plane figurer Flytninger. 2 Linjestykker. 1 Hvad husker I? Figurer Linjer Vinkler Plne figurer Flytninger Plnere: gltte, udjævne 1 Hvd husker I? 2 2 Linjestykker Fortsæt sætningerne. En linje er... Et linjestykke er... Tegn linjestykkerne: I, C, CE, F og FI. b

Læs mere

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0.

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Stakke i rum, geometri

Stakke i rum, geometri S1 Stkke i rum, geometri 1.1 Arel, fldemål...2 1.2 Digonl-vinklen...2 1.3 Digonl-længden, de 3 Pythgors er...2 1.4 Sinus-reltionerne...4 1.5 Indyrdes vinkelrette linier...4 1.6 Cirklens omkreds og rel...4

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Tegning. Arbejdstegning og isometrisk tegning Perspektivtegning Ligedannede figurer Målestoksforhold Konstruktion

Tegning. Arbejdstegning og isometrisk tegning Perspektivtegning Ligedannede figurer Målestoksforhold Konstruktion Tegning Arejs og isometrisk Perspektiv Ligennee figurer Målestoksforhol Konstruktion Hilsen fr Bornholm Østerlrs Runkirke Iso = ens Metri = mål : Erling Hgensen, www.merling.k Bivl og rejser Tegn en rejs

Læs mere

Måling. Omkreds Areal Rumfang Enheder Regnehistorier. 1 Mål og omskriv Mål trælisterne i centimeter, og omskriv til decimeter og centimeter.

Måling. Omkreds Areal Rumfang Enheder Regnehistorier. 1 Mål og omskriv Mål trælisterne i centimeter, og omskriv til decimeter og centimeter. Måling Omkreds Arel Rumfng Enheder Regnehistorier Milli =. 000 Centi = Dei = = 0,00 00 = 0,0 0 = 0, entimeter m kvdrtentimeter m 2 kuikentimeter m I det 8. århundrede lev måleenheden meter opfundet i Frnkrig.

Læs mere

Fra arbejdstegning til isometrisk tegning og omvendt

Fra arbejdstegning til isometrisk tegning og omvendt Nr. 5 Fr rejdstegning til isometrisk tegning og omvendt Forfr Fr siden Fr oven Forfr Fr siden Fr oven Klssektivitet. yg en figur med -7 centikuer, og tegn en rejdstegning. Gem figuren. yt tegning med en

Læs mere

Integralregning. for A-niveau i stx, udgave Karsten Juul

Integralregning. for A-niveau i stx, udgave Karsten Juul Integrlregning or A-niveu i st, udgve 7 Krsten Juul Stmunktion (uestemt integrl) Hvd er en stmunktion? UndersÄg om g( er stmunktion til ( GÄr rede or t g( er stmunktion til ( En unktion hr mnge stmunktioner

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010

Matematikprojekt. Integralregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 15 Oktober 2010 Mtemtikprojekt om Integrlregning Lvet f Arendse Morsing Gunill Olesen Julie Slvensky Michel Hnsen 15 Oktober 21 Indhold I Del 1................................ 3 I Generelt om stmfunktioner og integrler........

Læs mere

ANALYSE 1, 2013, Uge 2

ANALYSE 1, 2013, Uge 2 ANALYSE 1, 2013, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

DesignMat Uge 8 Integration og elementære funktioner

DesignMat Uge 8 Integration og elementære funktioner DesignMat Uge 8 Integration og elementære funktioner Preben Alsholm Forår 008 Hyperbolske funktioner. sinh og cosh sinh og cosh Sinus hyperbolsk efineres sålees for alle x R sinh x = ex e x Cosinus hyperbolsk

Læs mere

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel Oversigt [S] 8.5, 8.6, 8.7, 8.0 Nøgleord og begreber Seks berømte potensrækker Potensrække Konvergensrdius Differentition og integrtion f potensrækker Tylor og McLurin rækker August 00, opgve 4 Den geometriske

Læs mere

Integralregning. for A-niveau i stx, udgave Karsten Juul

Integralregning. for A-niveau i stx, udgave Karsten Juul Integrlregning or A-niveu i st, udgve 5 Krsten Juul Stmunktion (uestemt integrl) Hvd er en stmunktion? UndersÄg om g( er stmunktion til ( GÄr rede or t g( er stmunktion til ( En unktion hr mnge stmunktioner

Læs mere

Start i cirklen med nummer 1 - følg derefter pilene:

Start i cirklen med nummer 1 - følg derefter pilene: Bogstaver Bogstavet a Skriv bogstavet a i skrivehusene: Farv den figur som starter med a: Bogstavet b Skriv bogstavet b i skrivehusene: Farv den figur som starter med b: Bogstavet c Skriv bogstavet c i

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksmen Algoritmer og Dtstrukturer (DM507) Institut for Mtemtik og Dtlogi Synsk Universitet, Oense Torsg en 26. juni 2008, kl. 9 3 Alle sævnlige hjælpemiler (lærebøger, notter, osv.) smt brug

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO I kpitlet skl eleverne lære om plne og rumlige igurers egensker og om eres nvenelse som geometriske moeller. I en orinelse kommer e l.. til t eskætige sig me eregninger omkres, rel og rumng, me grunplnstegninger

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

Grafregner-projekt om differentiation.

Grafregner-projekt om differentiation. Grafregner-projekt om ifferentiation. Motivation: Når nu ifferentieret giver, og e ifferentieret giver e, hvorfor får man så ikke e når man ifferentiere e? Formål: ) At opnå kenskab til, og forståelse

Læs mere

Trigonometri FORHÅNDSVIDEN

Trigonometri FORHÅNDSVIDEN Trigonometri I dette kpitel skl du rejde med trigonometri. Ordet trigonometri stmmer fr græsk og etyder trekntsmåling. Den mtemtik, der ligger g trigonometrien, hr du llerede rejdet med. Det drejer sig

Læs mere

Algebra, ligninger og uligheder

Algebra, ligninger og uligheder Alger, ligninger og uligheder I dette kpitel skl du rejde med ligninger og uligheder. Et esøg på Bkken kn give nledning til mnge overvejelser over priser. Det kunne fx være den smlede pris for turen og

Læs mere

K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN. Matematik F Geometri

K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN. Matematik F Geometri K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN Mtemtik F Geometri www.if.dk Mtemtik F Geometri Forord Redktør Hgen Jørgensen År 2004 est. nr. Erhvervsskolernes Forlg Munkehtten 28 5220 Odense

Læs mere

Eksamen i Calculus Mandag den 4. juni 2012

Eksamen i Calculus Mandag den 4. juni 2012 Eksamen i Calculus Mandag den 4. juni 212 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt

Læs mere

Eksamen i Calculus Tirsdag den 3. juni 2014

Eksamen i Calculus Tirsdag den 3. juni 2014 Eksamen i Calculus Tirsdag den 3. juni 2014 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... BRØER... LIGNINGER... 3 PARENTESER... 3 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.

Læs mere

Noget om Riemann integralet. Noter til Matematik 2

Noget om Riemann integralet. Noter til Matematik 2 Noget om Riemnn integrlet. Noter til Mtemtik 2 Arne Jensen Afdeling for Mtemtik og Dtlogi Institut for Elektroniske Systemer Alborg Universitetscenter Fredrik Bjers Vej 7 9220 Alborg Ø 4. pril 1991 Revideret

Læs mere

Linjer på skift. Figurer. Format 5. Nr. 15. a a Tegn AB, BC, AE, CD og CF, GH, GI. b Tegn de to parallelle linjestykker, der kan tegnes til GH.

Linjer på skift. Figurer. Format 5. Nr. 15. a a Tegn AB, BC, AE, CD og CF, GH, GI. b Tegn de to parallelle linjestykker, der kan tegnes til GH. Linjer på skift Nr. 15 Tegn B, BC, E, CD og CF, GH, GI. Tegn de to prllelle linjestykker, der kn tegnes til GH. c Hvd hedder de to linjestykker? d Tegn det vinkelrette linjestykke til GH, der endnu ikke

Læs mere

1. Eksperimenterende geometri og måling

1. Eksperimenterende geometri og måling . Eksperimenterende geometri og måling Undersøgelse Undersøgelsen drejer sig om det såkldte Firfrveproblem. For mere end 00 år siden fndt mn ved sådnne undersøgelser frem til, t fire frver er nok til t

Læs mere

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3

Læs mere

Projekt 10.3 Terningens fordobling

Projekt 10.3 Terningens fordobling Hvd er mtemtik? C, i-og Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deduere sig til og konstruere ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige, t l den viden, der

Læs mere

Projekt puttetæpper til julemærkehjemmet Kildemose. Puttetæppeblokke 1998-2007. 10 års jubilæum

Projekt puttetæpper til julemærkehjemmet Kildemose. Puttetæppeblokke 1998-2007. 10 års jubilæum Projekt puttetæpper til julemærkehjemmet Kildemose Puttetæppelokke 1998-2007 10 års juilæum fter ønske udgives de lokke, som er rugt i projektet. lokkene er lle trditionelle lokke, som kn ruges til personligt

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave Teknisk Mtemtik Formler Teknisk Mtemtik Formler Preen Mdsen 8. udge Teknisk mtemtik Formler er et prktisk opslgsærk, der gier et hurtigt oerlik oer lle formler fr læreogens enkelte kpitler. Ud oer formlerne

Læs mere