Modul 3: Kontinuerte stokastiske variable

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Modul 3: Kontinuerte stokastiske variable"

Transkript

1 Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 3: Kontinuerte stokastiske variable 3.1 Kontinuerte stokastiske variable Tæthedsfunktion Fordelingsfunktion Middelværdi, varians og spredning Uafhængighed Kendte kontinuerte fordelinger Den uniforme fordeling Eksponentialfordelingen Normalfordelingen Weibullfordelingen Den centrale grænseværdisætning Approximationer til binomial- og Poissonfordelinger Modelcheck Transformationer Kontinuerte stokastiske variable Statistik er kunsten med præcise termer at fastslå det man ikke ved. William Kruskal Tæthedsfunktion En funktion f : R [0, ) kaldes en tæthedsfunktion hvis 1. f er integrabel. 2. f (y) dy = 1. En stokastisk variabel Y kaldes for absolut kontinuert hvis der findes en tæthedsfunktion f Y så P (Y A) = f Y (y) dy for alle hændelser A R. A

2 3.1 Kontinuerte stokastiske variable 2 Bestemmer sandsynligheden for ethvert interval P (a < Y < b) = Terminologi: b a f Y (y) dy, for alle a b. 1. I daglig tale siger vi at Y er kontinuert. 2. f Y kaldes for Y s tæthedsfunktion, eller blot tætheden. 3. Engelsk: Probability density function (PDF) 4. Bemærk, at for ethvert y R gælder: P (Y = y) = f Y (t)dt = Bemærk at P (a < Y < b) = P (a Y b) = P (a Y < b) = P (a < Y b) 6. Den mindste lukkede hændelse A så P(Y A) = 1 kaldes for støtten for Y. Eksempel 3.1: Eksponentialfordelingen Y E (λ) med λ > 0 Defineret ud fra tæthedsfuntion f Y (y) = λe λy, y > 0 (0 ellers). Støtte R +, dvs. Y kan kun antage positive værdier. Bruges som ventetidsfordeling, f.eks. tiden mellem to jordskælv. {y}

3 3.1 Kontinuerte stokastiske variable x Figur 3.1: Forskellige eksponentialfordelinger Fordelingsfunktion Fordelingsfunktionen F Y for Y er defineret ved F Y (y) = P (Y y) = y f Y (t) dt for y R. Engelsk: cumulative distribution function (CDF) Tæthedsfunktionen er givet ud fra F Y : f Y (y) = y F Y (y) (evt. på nær tælleligt mange punkter). Eksponentialfordelingen (fortsat) F Y (y) = 1 e λy, y > 0 (0 ellers). Differentiabel, på nær i 0. Generel definition (uanset om Y er diskret, kontinuert, eller generel): F Y (y) = P (Y y) Enhver fordelingsfunktion F Y opfylder: 1. F Y er svagt voksende.

4 3.1 Kontinuerte stokastiske variable 4 2. F Y er kontinuert fra højre. 3. F Y opfylder lim F (y) = 0 og lim F (y) = 1. y y Enhver F Y som opfylder er fordelingsfunktion for en stokastisk variabel Y. Det kontinuerte tilfælde kendes ved at F Y er (absolut) kontinuert. Det diskrete tilfælde kendes ved at 1. F Y er stykkevis konstant. 2. F Y springer med størrelsen P(Y = y) i y. Eksempel 3.2: binomialfordelingen Y b(n, p) har [y] ( ) n F Y (y) = p i (1 p) n i for y R. i i= Middelværdi, varians og spredning Middelværdi: Vægtet middel af mulige værdier hvis y f Y (y) dy <. Varians: hvis y2 f Y (y) dy <. Spredning (standardafvigelse): Regneregler, husk at µ Y = E(Y ) = y f Y (y) dy, σy 2 = Var(Y ) = (y µ Y ) 2 f Y (y) dy, σ Y = Var(Y ). 1. E(aY + b) = ae(y ) + b (specielt er E(b) = b) 2. Var(aY + b) = a 2 Var(Y ) 3. σ ay = a σ Y 4. E(X + Y ) = E(X) + E(Y ) 5. Var(Y ) = E ( Y 2) E 2 (Y )

5 3.2 Uafhængighed 5 Bevis for 5.: Var(Y ) = E {[Y E(Y )] 2} = E [ Y 2 + E 2 (Y ) 2Y E(Y ) ] = E ( Y 2) + E 2 (Y ) 2E(Y )E(Y ) = E ( Y 2) + E 2 (Y ) 2E 2 (Y ) = E ( Y 2) E 2 (Y ). 3.2 Uafhængighed Husk: n stokastiske variable Y 1, Y 2,...,Y n kaldes uafhængige hvis P (Y 1 y 1, Y 2 y 2,...,Y n y n ) = F Y1 (y 1 )F Y2 (y 2 ) F Yn (y n ). for alle y 1,y 2,...,y n R. Hvis X og Y er uafhængige gælder 1. E(XY ) = E(X) E(Y ) 2. Var(X + Y ) = Var(X) + Var(Y ) Bemærk at 1. og 2. er ækvivalente. Bevis: Lad os forudsætte at X og Y har middelværdi 0 (hvorfor er det nok?). Så fås Var(X + Y ) = E [ (X + Y ) 2] = E ( X 2 + Y 2 + 2XY ) = E ( X 2) + E ( Y 2) + 2E(XY ) = Var(X) + Var(Y ) + 2E(X) E(Y ) = Var(X) + Var(Y ) Definition: kovariansen mellem X og Y defineres ved Cov(X,Y ) = E(XY ) E(X) E(Y ) Hvis X og Y er uafhængige gælder Cov(X, Y ) = 0. Kovariansen måler hvor meget X og Y mangler i at være uafhængige. Bemærk at Cov(X,Y ) = 0 medfører ikke nødvendigvis at X og Y er uafhængige. Kovariansen studeres nærmere i Modul 6.

6 3.3 Kendte kontinuerte fordelinger Kendte kontinuerte fordelinger Den uniforme fordeling Y Uniform(a,b) med a < b Y har støtte (a, b). Alle værdier i (a,b) lige sandsynlige (?) Bedre: sandsynligheden for x < Y < y proportional med y x. Tæthed { 1/(b a) hvis y (a,b) f Y (y) = 0 ellers. Eksempel 3.3: Uniform roulette: Y Uniform(0, 2π). For Y Uniform(a, b) gælder Middelværdi: Varians: Spredning: E(Y ) = a + b 2 Var (Y ) = (b a)2 12 σ Y = b a 12 = (b a) Vises i bog, se også Adams afsnit Eksponentialfordelingen Husk at for Y E (λ) er tæthedsfunktionen f Y (y) = λe λy, y > 0 Fordelingsfunktionen F Y (y) = { 1 e λy y > 0 0 y 0 Middelværdi: E(Y ) = 1 λ Varians: Var (Y ) = 1 λ 2

7 3.3 Kendte kontinuerte fordelinger 7 Spredning: σ Y = 1 λ. Eksempel 3.4: Tid mellem kraftige jordskælv Ventetiden (i dage) mellem kraftige jordskælv (over 7.5 på Richterskalaen) kan modelleres med en eksponentialfordeling med rate λ = Så er E(Y ) = Var (Y ) = σ Y = Udregn sandsynligheden for at der kommer et kraftigt jordskælv inden for 10 dage. Svar: P(Y < 10) = 1 exp ( ) = går mere end 100 dage til næste kraftige jordskælv. Svar P(Y > 100) = 1 [1 exp ( )] = Normalfordelingen Normalfordeling: Y N ( µ,σ 2), parametre µ R og σ 2 > 0. Langt den vigtigste fordeling, både teoretisk og praktisk. Fremkommer når Y er en sum af uendeligt mange uendeligt små stød (næste afsnit). Kaldes også den Gaussiske fordeling, efter C.F. Gauss. Tæthedsfunktionen for N ( µ,σ 2) : f Y (y) = 1 2πσ 2 e 1 2σ 2 (y µ)2, y R. Fordelingen har en pæn klokkeformet tæthedsfunktion, se følgende grafer

8 3.3 Kendte kontinuerte fordelinger x Figur 3.2: Forskellige normalfordelinger. Se også følgende histogrammer med indlagte tætheder. 25 simulerede N(0,1) 100 simulerede N(0,1) simulerede N(0,1) simulerede N(0,1)

9 3.3 Kendte kontinuerte fordelinger 9 Momenter for Y N ( µ,σ 2) : Figur 3.3: Simulation af normalfordelte data. Middelværdi: E(Y ) = µ, positionsparameter. Varians: Var(Y ) = σ 2 Spredning: σ, skalaparameter. Standard normalfordeling: Z N(0, 1) har tæthed ϕ(z) = 1 2π e z2 /2, z R. og fordelingsfunktion Φ (z) = z 1 2π e t2 /2 dt, z R. Bemærk at Φ er i familie med error function erf erf z = 2 π z 0 e t2 dt. (udled selv sammenhængen med Φ, brug at Φ (0) = 1 2 ). Fordelingsfunktionen Φ for N(0,1) er tabellagt (Appendix A.3 i bogen). Bemærk symmetri: og ϕ( z) = ϕ(z) Φ ( z) = 1 Φ (z). Tæthed og fordelingsfunktion for Y kan udtrykkes ved ϕ og Φ: f Y (y) = 1 ( ) y µ σ ϕ σ ( ) y µ F Y (y) = Φ σ Bemærk symmetri omkring µ. Bemærk at µ er positionsparameter og σ er skalaparameter. Udregning af sandsynligheder. Husk: for en generel fordeling gælder: P(a < Y b) = F Y (b) F Y (a).

10 3.3 Kendte kontinuerte fordelinger 10 For standard normalfordelingen Z N(0, 1): Generel normalfordeling Y N ( µ,σ 2) : P (a < Z b) = Φ (b) Φ (a). ( ) d µ P (c < Y d) = Φ Φ σ Giver samme resultat for alle kombinationer af < og. Bemærk: At Y N ( µ,σ 2) er ensbetydende med ( c µ σ ). Z = Y µ σ N(0,1). Eksempel 3.5 Studerendes højde Lad os antage, at en tilfældigt udtrukket studerendes højde har fordeling Y N ( 175,10 2). Udregn sandsynligheden for, at en tilfældigt udtrukket studerende er højere end 180 cm. Svar: P(Y > 180) = 1 P(Y 180) ( ) = 1 P Z 10 = 1 P (Z 0.5) = (tabel A.3) = Find det tal y, så P(Y y) = 0.1. Svar: så er P(Y y) = 0.9, og 0.9 = P(Y y) ( = P Z y 175 ) 10 Fra tabel A.3 fås så y = y = 1.28 Lineære transformationer: Hvis Y N ( µ,σ 2) gælder ay + b N ( aµ + b,a 2 σ 2).

11 3.4 Den centrale grænseværdisætning 11 Specielt gælder Y N ( µ,σ 2). Summer af normalfordelte variable: Hvis Y 1 og Y 2 er uafhængige og Y 1 N ( µ 1,σ1 2 ) og Y 2 N ( µ 2,σ2) 2, så gælder Y 1 + Y 2 N ( µ 1 + µ 2,σ σ2 2). Denne egenskab gør det meget let at regne med normalfordelingen Weibullfordelingen Betegnes Y W(α, β), defineret ved f Y (y) = α β αyα 1 e (y/β)α for y > 0 (0 ellers). Fordelingsfunktion F Y (y) = 1 e (y/β)α for y > 0 (0 ellers). Bemærk: Y/β W(α, 1), så β er en skalaparameter. Bemærk: Y α = E(1/β α ). Bruges som model for min: Y = min {Y 1,...,Y n } (en kædes svageste led). 3.4 Den centrale grænseværdisætning Antag at Y 1,Y 2,...,Y n uafhængige, identisk fordelte stokastiske variable alle med middelværdi µ og varians σ 2. Definer: S n = Y 1 + Y Y n Ȳ n = 1 n S n Z n = S n nµ σ n = Ȳn µ σ/ n For n stor er Z n en sum af mange små uafhængige variable.

12 3.4 Den centrale grænseværdisætning 12 Husk at og specielt E(S n ) = nµ (vi siger at Z er standardiseret). Så gælder for alle z R Var(S n ) = σ 2 n E(Ȳn) = µ Var(Ȳn) = σ 2 /n E(Z n ) = 0 Var(Z n ) = 1 F Zn (z) Φ (z) for n. Kaldes den centrale grænseværdisætning (CLT). Vi siger at Z n konvergerer mod N(0,1) i fordeling. Bemærk: Det eneste krav er at E(Y ) og Var(Y ) eksisterer! For n passende stor kan vi approximere F Zn (z) med Φ (z). Hvor stort et n kræves afhænger af F Y1. Fortolkning: For Z n gælder ( betyder approksimativt fordelt som). For S n gælder tilsvarende Z n N(0,1). S n = nµ + σ nz n N ( nµ,nσ 2). Tilsvarende for Ȳn Ȳ n = µ + σ/ nz n ) N (µ, σ2. n Følgende grafer illustrerer konvergensen i tre tilfælde.

13 3.4 Den centrale grænseværdisætning 13 Uniform(0,1) Gennemsnit af 2 Uniform(0,1) Gennemsnit af 4 Uniform(0,1) Gennemsnit af 8 Uniform(0,1) Figur 3.4: Normalapproksimation til gennemsnit af uniforme fordelinger.

14 3.4 Den centrale grænseværdisætning 14 Eksponential(1) Gennemsnit af 2 E(1) Gennemsnit af 4 E(1) Gennemsnit af 16 E(1) Figur 3.5: Normalapproksimation til gennemsnit af eksponentialfordelinger.

15 3.4 Den centrale grænseværdisætning 15 Binomial(15,0.9) Gennemsnit af 2 b(15,0.9) Gennemsnit af 4 b(15,0.9) Gennemsnit af 30 b(15,0.9) Figur 3.6: Normalapproksimation til gennemsnit af binomialfordelinger Approximationer til binomial- og Poissonfordelinger Binomialfordeling: Y b(n, p): Betingelse: n stor. I praksis skal np og n(1 p) begge være mindst 10. Approximation: Hvis y er et heltal mellem 0 og n, ( ) y np P(Y y) Φ np(1 p) Leddet +0.5 er den såkaldte kontinuitetskorrektion. Approximationen er baseret på CLT. Poissonfordelingen: Y Poisson(λ): Betingelse: λ stor. I praksis skal λ være mindst 10.

16 3.5 Modelcheck 16 Approximation: Hvis y er et heltal større end 0 ( ) y λ P(Y y) Φ λ Leddet +0.5 er den såkaldte kontinuitetskorrektion. Approximationen er baseret på CLT. 3.5 Modelcheck Passer modellen godt til data? Der er mindst tre måder at checke en model på for data y 1,...,y n : 1. Sammenlign tæthedshistogram med tæthedsfunktion. Problem: valg af inddeling. 2. Sammenligning af F Y med empirisk fordelingsfunktion: Problem: svær at vurdere. F n (y) = 1 n {y i y}. 3. QQ-plot, eller fraktilsammenligning, som vi ser på nu. Lad y (1) y (n) betegne de ordnede data. Bemærk at F n (y (i) ) = i n, dvs. y (i) er en slags empirisk i/n-fraktil. Af symmetrigrunde vedtager vi dog y (i) er den empiriske i 1 2 n -fraktil. Antag nu at data kommer fra N ( µ,σ 2). Den teoretiske i 1 2 n -fraktil er µ + σz i, hvor ( ) i z i = Φ n QQ-plot: Tegn punkterne (z i,y (i) ) op for i = 1,...,n. Skal følge en ret linie med hældning σ gennem (0,µ). Formlen for de empiriske fraktilerne varierer mellem programpakkerne.

17 3.5 Modelcheck 17 SAS benytter f.eks. i stedet for ( ) i z i = Φ 1 n ( ) i z i = Φ n Gør kun mindre forskel. Eksempel 1.6 (fortsat): Flagermus på jagt Ordnede data: Ordnede data: y (1) y (2) y (3) y (4) y (5) y (6) y (7) y (8) y (9) y (10) y (11) Teoretiske fraktiler for normalfordeling Φ ( ): Fraktiler: ( ) z 1 z 2 z 3 z 10 z 11 Φ 1 k Figurer Figur 3.8: QQ-plot af afstand mellem flagermus og bytte.

18 3.6 Transformationer 18 Normal Q Q Plot Normal Q Q Plot Sample Quantiles Sample Quantiles Theoretical Quantiles Theoretical Quantiles Normal Q Q Plot Normal Q Q Plot Sample Quantiles Sample Quantiles Theoretical Quantiles Theoretical Quantiles Figur 3.7: QQ-plot af normalfordelte data. Afvigelserne fra den rette linie bliver mindre, jo større n er. De største afvigelser ses i halerne. Man bør se efter S-formede afvigelser eller krumning (opad eller nedad). Har man flere datasæt, bør man se efter systematiske afvigelser plottene. 3.6 Transformationer Hvis Y ikke er normalfordelt, kan man ofte finde en transformation H så X = H(Y ) er normal. Hvis Y er positiv benyttes ofte log Y eller Y c. Eksempel 3.6 Guldårer I 47 mulige guldårer blev målt mængden af udvindeligt guld i gram pr ton. (Figur 3.9)

19 3.6 Transformationer 19 Figur 3.9: Udvindeligt guld i guldårer. Figur 3.10: Log(Udvindeligt guld) i guldårer.

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Almindelige kontinuerte fordelinger

Almindelige kontinuerte fordelinger Almindelige kontinuerte fordelinger Den uniforme fordeling Symbol: X Uniform a,b Beskrivelse: Et tilfældigt tal mellem a og b. Støtte: V X a, b. Tæthedsfunktion: f x 1/ b a for x a,b Fordelingsfunktion:

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Repetition Stokastisk variabel

Repetition Stokastisk variabel Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

Nanostatistik: Middelværdi og varians

Nanostatistik: Middelværdi og varians Nanostatistik: Middelværdi og varians JLJ Nanostatistik: Middelværdi og varians p. 1/28 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit 5.1-5.2: - Fordelingsfunktion - Tæthedsfunktion - Eksempel:

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Transformation af kontinuerte fordelinger på R, flerdimensionale kontinuerte fordelinger, mere om normalfordelingen Helle Sørensen Uge 7, onsdag SaSt2 (Uge 7, onsdag)

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Module 2: Beskrivende Statistik

Module 2: Beskrivende Statistik Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Vigtigste nye emner i.,. og.5 Sandsynlighedsregning. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Siene Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Binomialfordelingen

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg. Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 17. december 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider Skriftlig prøve, den: 17. december 015 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Den flerdimensionale normalfordeling, fordeling af ( X,SSD) Helle Sørensen Uge 9, mandag SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 1 / 16 Program Resultaterne

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede) fordelingsfunktion

Læs mere

StatDataN: Middelværdi og varians

StatDataN: Middelværdi og varians StatDataN: Middelværdi og varians JLJ StatDataN: Middelværdi og varians p. 1/33 Repetition Stokastisk variabel: funktion fra udfaldsrum over i de hele tal eller over i de reelle tal Ex: Ω = alle egetræer,

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@imm.dtu.dk Dagens nye emner afsnit 6.3 (og 6.4 Betingede

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2 Statistik og Sandsynlighedsregning IH kapitel Overheads til forelæsninger, onsdag 5. uge Resultater om normalfordeling X N(µ,σ ). N har tæthed ϕ µ,σ (x) = exp (x µ) πσ σ EX = µ, Var(X) = σ X µ N(0,) σ

Læs mere

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.1

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.1 Noter i fejlteori Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen Version 1.1 April 2013 2 Indhold 1 Motivation 3 2 Det matematiske fundament 5 2.1 Lidt sandsynlighedsregning......................

Læs mere

Sandsynlighed og Statistik

Sandsynlighed og Statistik 36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

3 Stokastiske variable 3.1 Diskrete variable

3 Stokastiske variable 3.1 Diskrete variable 3 Stokastiske variable 3.1 Diskrete variable Punktsandsnligheden benævnes P(x) = P(X = x). {x, P(x)} er en sandsnlighedsfordeling for den stokastiske variabel, X, hvis 1) P(x) $ 0 for alle værdier af x.

Læs mere

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning

VIGTIGT! Kurset består af: 1. Forelæsninger. 2. Øvelser. 3. Litteraturlæsning Intro til statistik Rasmus F. Brøndum, Institut 17 (Matematik) Hjemmeside: people.math.aau.dk/~froberg 22 forelæsninger (hvor af jeg afholder de første 13) + det samme antal øvelsesgange. Hjælpelærer:

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. maj 05 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Betingede sandsynligheder Aase D. Madsen

Betingede sandsynligheder Aase D. Madsen 1 Uge 12 Teoretisk Statistik 15. marts 2004 1. Betingede sandsynligheder Definition Loven om den totale sandsynlighed Bayes formel 2. Betinget middelværdi og varians 3. Kovarians og korrelationskoefficient

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Trivsel og fravær i folkeskolen

Trivsel og fravær i folkeskolen Trivsel og fravær i folkeskolen Sammenfatning De årlige trivselsmålinger i folkeskolen måler elevernes trivsel på fire forskellige områder: faglig trivsel, social trivsel, støtte og inspiration og ro og

Læs mere

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel:

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel: Normal fordeling Tæthedsfunktion for normalfordeling med middelværdi µ og varians σ 2 : Program (8.15-10): f() = 1 µ)2 ep( ( 2πσ 2 2σ 2 ) E µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4 1. vigtige sandsynlighedsfordelinger:

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider. Skriftlig prøve, den: 18. december 2014 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider. Skriftlig prøve, den: 18. december 2014 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider Skriftlig prøve, den: 8. december 04 Kursus nr : 040 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0 Middelværdi og varians Middelværdien af en diskret skalarfunktion f(x), for x = 0, N er: µ = N f(x) N x=0 For vektorfuktioner er middelværdivektoren tilsvarende: µ = N f(x) N x=0 Middelværdien er en af

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere