Opgaver i solens indstråling

Størrelse: px
Starte visningen fra side:

Download "Opgaver i solens indstråling"

Transkript

1 Opgaver i solens indstråling I nedenstående opgaver skal vi kigge på nogle aspekter af Solens indstråling på Jorden. Solarkonstanten I 0 = 1373 W m angiver effekten af solindstrålingen på en flade med arealet 1 m 2 anbragt udenfor Jordens atmosfære så Solens stråler falder vinkelret ind på fladen. 2 Kig på enheden for solarkonstanten: W/m 2. Det udtales Watt pr. kvadratmeter. Da Watt (W) er det samme som Joule (J) pr. sekund (s), så regnes solarkonstanten altså i Joule pr. sekund pr. kvadratmeter. Da Joule er en enhed for energi, angiver solarkonstanten altså, at der afsættes en solenergi på 1373 Joule på 1 m 2 i løbet af 1 sekund. Vel at mærke udenfor atmosfæren og vinkelret på solstrålerne! Vi siger også, at intensiteten er 1373 W/m 2. I det følgende skal du regne en lille opgave, som viser nogle vigtige pointer. Se også oplysninger i V-hæftet siderne 77 samt Opgave 1 I det følgende forestiller vi os, at vi har anbragt en plade med arealet 9 m 2 lige udenfor Jordens atmosfære, på en sådan måde, at den står vinkelret på Solens stråler. Situationen er vist på figur 1 på næste side. Figur 2 viser situationen i 3D. Lad os forestille os, at vi har et apparat, som kan måle den solenergi, som rammer pladen. a) Hvor megen solenergi, regnet i Joule (J), rammer pladen i løbet af 5 sekunder? b) Samme spørgsmål for 1 dag.

2 2 Erik Vestergaard Figur 1 tmosfæren Jordaksen Ækvator Figur 2 Figur 3 Jordaksen Ækvator

3 Erik Vestergaard 3 Figur 4 Jordaksen Ækvator Figur 5 nes retning nes retning 1 v u flytter vi pladen indenfor atmosfæren ned til Jorden, som vist på figur 3. Pladen er stadig vinkelret på strålerne. Vi antager nu desuden, at pladen reflekterer lysenergi som en gennemsnitlig flade på Jorden. Ifølge vores teori vil kun 71% af den oprindelige energi fra b) nu absorberes i pladen. c) Forklar, hvorfor ikke al solenergien fra b) absorberes i pladen? (se V-hæftet side 77). d) Hvor meget energi absorberes i pladen i løbet af en dag?

4 4 Erik Vestergaard Hidtil har vi anbragt pladen vinkelret på solstrålerne. Forestil dig nu, at vi flytter pladen et andet sted hen på Jorden, så pladen danner en vinkel på 30 med solstrålerne. Så aftager intensiteten, fordi en mindre solenergi rammer pladen, som det er vist på figur 5. Figur 5 illustrerer også, at man ville have fået den samme solenergi ved at anvende en plade med arealet 1, placeret vinkelret på solstrålerne. Man kan vise, at der er følgende sammenhæng mellem arealet og arealet 1 : 1 = cos( v), hvor v er vinklen pladen er drejet i forhold til vinkelret. år I har lært om retvinklede trekanter i matematik, vil I forstå denne formel. Foreløbigt skal I bare vide, at man skal gange cosinus-faktoren cos( v ) på, når man vil bestemme solenergien, når pladen er drejet vinklen v væk fra vinkelret position. I vores tilfælde er v= 30. e) Bestem den energi, som absorberes i den drejede plade i løbet af en dag, stadig indenfor atmosfæren. Hjælp: Gang resultatet i spørgsmål d) med cos(30 ) ved at bruge lommeregnerens cosinusfunktion. Husk at indstille den til at regne i grader (Deg)! f) Benyt pointerne ovenfor til at forklare, hvorfor områder i nærheden af polerne overvejende absorberer mindre solenergi end områder nær ækvator. g) Det nævnes ofte i medierne, at man skal passe ekstra på med at tage solbad fra kl Forklar hvorfor intensiteten af sollyset varierer i løbet af dagen. Hjælp: Hvad sker der med Jorden i løbet af en dag?

5 Erik Vestergaard 5 h) Årstiderne har naturligvis også en betydning for Solens indstråling. Det er omtalt i Fysik C Tillæg til emnet planeter. edskriv de vigtigste pointer her. Hjælp: Se siderne 6 og 7 i tillægget, især side 7. Opgave 2 Tror du, at Merkur har en anden solarkonstant end Jorden? Samme spørgsmål med lbedo-værdi? rgumenter. Søg eventuelt også på Internettet for værdier. Opgave 3 I det følgende skal du studere siderne 77 samt i V-hæftet: a) Hvad er begrebet lbedo for noget.

6 6 Erik Vestergaard b) Forklar pointen i Energibalance side i V-hæftet. Redegør for udtrykket for 4 I ind side 82, og udregn en værdi for I ind. Udtrykket Iud = σ T får I serveret og skal ikke redegøre for. Hvorfor vil en energibalance automatisk indstille sig? c) Løs ligningen Iind = Iud, hvor T er den ubekendte. Hvilken værdi for temperaturen får I? Hvordan skal resultatet tolkes? d) Hvad er problematikken i Global opvarmning?

Solindstråling på vandret flade Beregningsmodel

Solindstråling på vandret flade Beregningsmodel Solindstråling på vandret flade Beregningsmodel Formål Når solens stråler rammer en vandret flade på en klar dag, består indstrålingen af diffus stråling fra himlen og skyer såvel som solens direkte stråler.

Læs mere

Drivhuseffekten. Hvordan styres Jordens klima?

Drivhuseffekten. Hvordan styres Jordens klima? Drivhuseffekten Hvordan styres Jordens klima? Jordens atmosfære og lyset Drivhusgasser Et molekyle skal indeholde mindst 3 atomer for at være en drivhusgas. Eksempler: CO2 (Kuldioxid.) H2O (Vanddamp.)

Læs mere

Solens energi kan tæmmes af nanoteknologi Side 34-37 i hæftet

Solens energi kan tæmmes af nanoteknologi Side 34-37 i hæftet SMÅ FORSØG Solens energi kan tæmmes af nanoteknologi Side 34-37 i hæftet Strøm og lys En lysdiode lyser med energien fra et batteri. Det let at få en almindelig rød lysdiode til at lyse med et 4,5 Volts

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Storcirkelsejlads. Nogle definitioner. Sejlads langs breddeparallel

Storcirkelsejlads. Nogle definitioner. Sejlads langs breddeparallel Storcirkelsejlads Denne note er et udvidet tillæg til kapitlet om sfærisk geometri i TRIPs atematik højniveau 1, ved Erik Vestergaard. Nogle definitioner I dette afsnit skal vi se på forskellige aspekter

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Strålingsbalance og drivhuseffekt - en afleveringsopgave

Strålingsbalance og drivhuseffekt - en afleveringsopgave LW 014 Strålingsbalance og drivhuseffekt - en afleveringsopgave FORMÅL: At undersøge den aktuelle strålingsbalance for jordoverfladen og relatere den til drivhuseffekten. MÅLING AF KORTBØLGET STRÅLING

Læs mere

Brombærsolcellens Fysik

Brombærsolcellens Fysik Brombærsolcellens Fysik Søren Petersen En brombærsolcelle er, ligesom en almindelig solcelle, en teknologi som udnytter sollysets energi til at lave elektricitet. I brombærsolcellen bliver brombærfarvestof

Læs mere

Øvelse 3: Stråling og solskinstimer

Øvelse 3: Stråling og solskinstimer Øvelse 3: Stråling og solskinstimer Mere end 99,9% af den energi, der bruges på jorden, stammer fra Solen. Den samlede energimængde, som udsendes (emitteres) fra Solen er på 3.865x10 26 W. På vejen gennem

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger Fysikøvelse Erik Vestergaard www.matematikfysik.dk Musik og bølger Formål Hovedformålet med denne øvelse er at studere det fysiske begreb stående bølger, som er vigtigt for at forstå forskellige musikinstrumenters

Læs mere

Trigonometri og afstandsbestemmelse i Solsystemet

Trigonometri og afstandsbestemmelse i Solsystemet Trigonometri og afstandsbestemmelse i Solsystemet RT1: fstandsberegning (Fra katederet) 5 RT2: Bold og Glob 6 OT1:Bestemmelse af Jordens radius 9 OT2:Modelafhængighed 11 OT3:fstanden til Månen 12 OT4:Månens

Læs mere

Vinklens påvirkning på skuddet af Claus Kjeldsen

Vinklens påvirkning på skuddet af Claus Kjeldsen Vinklens påvirkning på skuddet af Claus Kjeldsen Indledning Det er velkendt, at mange skytter skyder over målet, når der skydes i kuperet terræn, eller fra bygninger, hvor man ikke skyder lige på målet

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

Interferens og gitterformlen

Interferens og gitterformlen Interferens og gitterformlen Vi skal studere fænomenet interferens og senere bruge denne viden til at sige noget om hvad der sker, når man sender monokromatisk lys, altså lys med én bestemt bølgelængde,

Læs mere

Nr. 4-2007 Drivhusgasser - og deres betydning for klimaet Fag: Fysik A/B/C Udarbejdet af: Ole Ahlgren, Rønde Gymnasium, september 2009

Nr. 4-2007 Drivhusgasser - og deres betydning for klimaet Fag: Fysik A/B/C Udarbejdet af: Ole Ahlgren, Rønde Gymnasium, september 2009 Nr. 4-2007 Drivhusgasser - og deres betydning for klimaet Fag: Fysik A/B/C Udarbejdet af: Ole Ahlgren, Rønde Gymnasium, september 2009 Spørgsmål til artiklen 1. Forklar, hvad der menes med begrebet albedo.

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Opgaver i lineær regression

Opgaver i lineær regression Erik Vestergaard www.matematikfysik.dk 1 Opgaver i lineær regression Opgave 1 I Troposfæren op til en højde af ca. 12 km over jordoverfladen aftager lufttemperaturen på en regelmæssig måde. istock.com/ttsz

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

FYSIKEMNE 1: SOLPANELER INTRODUKTION AKTIVITETEN I NATURV IDENSKABERNES HUS ORGANISERING TEORI

FYSIKEMNE 1: SOLPANELER INTRODUKTION AKTIVITETEN I NATURV IDENSKABERNES HUS ORGANISERING TEORI FYSIKEMNE 1: SOLPANELER INTRODUKTION En af udfordringerne ved at gennemføre en rumrejse til Mars er at skaffe strøm til alle instrumenterne ombord. En mulighed er at medbringe batterier, men da de både

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver Matematik B Hjemmeopgaver 1) opgave 107c, side 115 Jeg skal tegne en trekant og estemme vinklerne A og C og siderne a, og c. Jeg har følgende mål: Jeg har ikke nok mål til at kunne regne nogle af vinklerne

Læs mere

Beregning til brug for opmåling, udfoldning og konstruktion

Beregning til brug for opmåling, udfoldning og konstruktion VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Opdrift i vand og luft

Opdrift i vand og luft Fysikøvelse Erik Vestergaard www.matematikfysik.dk Opdrift i vand og luft Formål I denne øvelse skal vi studere begrebet opdrift, som har en version i både en væske og i en gas. Vi skal lave et lille forsøg,

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Den Flydende Kran Samson

Den Flydende Kran Samson Den Flydende Kran Samson Formål: Kranen Samson, har en maksimal løfteevne på 900 tons, kranarmen er på 67 meter. Formålet med dette projekt er at løse nogle forskellige opgaver om geometrien for kranen.

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

REFLEKTION eller GLANS standarder

REFLEKTION eller GLANS standarder Flensbjerg 8 Fax: + 3943 7768 DK-49 Holeby, Lolland Phone : + 3943 7767 export@dansksolenergi.dk VAT id.: DK288323 REFLEKTION eller GLANS standarder Der findes ikke en let måde, at matematisk beregne eller

Læs mere

Svingninger. Erik Vestergaard

Svingninger. Erik Vestergaard Svingninger Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2009. Billeder: Forside: Bearbejdet billede af istock.com/-m-i-s-h-a- Desuden egne illustrationer. Erik Vestergaard

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Forsøget blev udført af Gruppen: Anders Faurskov, Mikkel Rask og Victor Hjort

Forsøget blev udført af Gruppen: Anders Faurskov, Mikkel Rask og Victor Hjort Fysik rapport 2015, 1c, Vejen Gymnasium og Hf Titel: Opvarmning med spritkoger Dato for udførelse: 12/11-2015 Forsøget blev udført af Gruppen: Anders Faurskov, Mikkel Rask og Victor Hjort Rapporten er

Læs mere

Progression frem mod skriftlig eksamen

Progression frem mod skriftlig eksamen Progression frem mod skriftlig eksamen Ikke alle skal have 12 Eksamensopgavernes funktion i det daglige og til eksamen Progression i sættet progression i den enkelte opgave Hvornår inddrages eksamensopgaver

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: 333247 2015 Projekt Matematik B-niveau Differentialregning Anders Jørgensen, Kirstine Irming, Mark Kddafi, Zehra Köse og Tobias Winberg Indledning I dette

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Undervisningsmateriale til udvalgte artikler fra tidsskriftet Aktuel Naturvidenskab Se mere på www.aktuelnaturvidenskab.dk

Undervisningsmateriale til udvalgte artikler fra tidsskriftet Aktuel Naturvidenskab Se mere på www.aktuelnaturvidenskab.dk Nr. 4. 2007 Tre cykler, sommer og en istid Fag: Fysik A/B/C, Naturgeografi B/C Udarbejdet af: Philip Jakobsen, Silkeborg Gymnasium, November 2007 BOX 1 er revideret i september 2015. Spørgsmål til artiklen

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Kære kommende gefionit,

Kære kommende gefionit, Kære kommende gefionit, Mange elever oplever, at det er svært at starte i gymnasiet. Dette skyldes naturligvis blandt andet, at man skal til at vænne sig til en anden skole, andre lærere, andre klassekammerater,

Læs mere

Geometri, (E-opgaver 9b & 9c)

Geometri, (E-opgaver 9b & 9c) Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...

Læs mere

Arbejdsopgaver i emnet bølger

Arbejdsopgaver i emnet bølger Arbejdsopgaver i emnet bølger I nedenstående opgaver kan det oplyses, at lydens hastighed er 340 m/s og lysets hastighed er 3,0 10 m/s 8. Opgave 1 a) Beskriv med ord, hvad bølgelængde og frekvens fortæller

Læs mere

Ligninger med Mathcad

Ligninger med Mathcad Ligninger med Mathcad for standardforsøget for B-niveau Udgave.02 Eksemplerne viser hvordan man kan finde frem til facit. Eksemplerne viser ikke hvordan besvarelsen kan formuleres. Der forudsættes et vist

Læs mere

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009 Lysets hastighed Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.1.009 Indholdsfortegnelse 1. Opgaveanalyse... 3. Beregnelse af lysets hastighed... 4 3.

Læs mere

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU Onsdag den 13 august 2008 Kl 0900 1300 STX082-MAB Opgavesættet er delt i to dele Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål Delprøven

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

Matematik og Fysik for Daves elever

Matematik og Fysik for Daves elever TEC FREDERIKSBERG www.studymentor.dk Matematik og Fysik for Daves elever MATEMATIK... 2 1. Simple isoleringer (+ og -)... 3 2. Simple isoleringer ( og )... 4 3. Isolering af ubekendt (alle former)... 6

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Teorien. solkompasset

Teorien. solkompasset Teorien bag solkompasset Preben M. Henriksen 31. juli 2007 Indhold 1 Indledning 2 2 Koordinatsystemer 2 3 Solens deklination 4 4 Horisontalsystemet 5 5 Solkompasset 9 6 Appendiks 11 6.1 Diverse formler..............................

Læs mere

Projekt Solovn. HTX 2x 2014. Kristian, Jacob B, Anja og Camilla

Projekt Solovn. HTX 2x 2014. Kristian, Jacob B, Anja og Camilla Projekt Solovn HTX 2x 2014. Kristian, Jacob B, Anja og Camilla I denne rapport er der fokus på udregninger omkring parabler. Disse bygger på forsøg med en selvbygget solovn. 26-9-2014 Indhold Forord...

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere

Læringsprogram Pro C

Læringsprogram Pro C Læringsprogram Pro C TriangleSolver Emil Lynegaard & Steffen Immerkær 3.6i Emil Lynegaard (emilcl10) Steffen Immerkær (steffenhi10) 1 Indholdsfortegnelse Emil Lynegaard & Steffen Immerkær 3.6i Abstract...

Læs mere

Fig. 1. De elektromagnetiske svingningers anvendelse. Det synlige lys udgør kun en meget ringe del af svingningernes anvendelse.

Fig. 1. De elektromagnetiske svingningers anvendelse. Det synlige lys udgør kun en meget ringe del af svingningernes anvendelse. Lys og planter. Elektromagnetiske svingninger. Uden at beskrive teorien bag de elektromagnetiske svingninger kender vi alle til fænomenets udnyttelse i form af f.eks. radiobølger, radar, varme, lys, og

Læs mere

Brydningsindeks af vand

Brydningsindeks af vand Brydningsindeks af vand Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 15. marts 2012 Indhold 1 Indledning 2 2 Formål

Læs mere

Matlab script - placering af kran

Matlab script - placering af kran Matlab script - placering af kran 1 Til at beregne den ideelle placering af kranen hos MSK, er der gjort brug af et matlab script. Igennem dette kapitel vil opbygningen af dette script blive gennemgået.

Læs mere

CSP-solanlæg til produktion af grøn fjernvarme

CSP-solanlæg til produktion af grøn fjernvarme CSP-solanlæg til produktion af grøn fjernvarme - Concentrated solar power Picture SCHOTT Solar CSP-solanlæg til fjernvarme Efter flere års eksporteventyr med leverancer af dampkedler til store solkraftværker,

Læs mere

Det skrå kast uden luftmodstand

Det skrå kast uden luftmodstand Det skrå kast uden luftmodstand I dette lille tillæg skal i smart benytte ektorer til at udlede udtryk for stedfunktionen og hastigheden i det skrå kast uden luftmodstand. Vi il gøre brug af de fundamentale

Læs mere

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

Det tilstræbte matematikindhold og teknologi spiller det sammen?

Det tilstræbte matematikindhold og teknologi spiller det sammen? 75 K O M M E N TA R E R Det tilstræbte matematikindhold og teknologi spiller det sammen? Henrik Bang Center for Computerbaseret Matematikundervisning, CMU Claus Larsen Center for Computerbaseret Matematikundervisning,

Læs mere

Undervisningsbeskrivelse for hold h1mac4b5

Undervisningsbeskrivelse for hold h1mac4b5 Undervisningsbeskrivelse for hold h1mac4b5 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution KVUC Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Drivhuseffekten er det fænomen der søger for at jorden har en højere middeltemperatur, end afstanden til solen berettiger til.

Drivhuseffekten er det fænomen der søger for at jorden har en højere middeltemperatur, end afstanden til solen berettiger til. 1 Modul 5 Vejr og klima Drivhuseffekten gør at der er liv på jorden Drivhuseffekten er det fænomen der søger for at jorden har en højere middeltemperatur, end afstanden til solen berettiger til. Planeten

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs101-matn/a-605010 Onsdag den 6 maj 010 kl 0900-1400 Opgavesættet er delt i to dele Delprøve 1: timer med autoriseret

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

Klodens temperatur og drivhuseffekten.

Klodens temperatur og drivhuseffekten. Klodens temperatur og drivhuseffekten (vers. 1.0, 17-0-09) Klodens temperatur og drivhuseffekten. Grundlæggende bestemmes jordens temperatur af en energibalance mellem 1) stråling fra solen, der absorberes

Læs mere

ViTre ver. 91 Opdatering fra ScanDis A/S. Instruktion og nyheder i TAL. Automatisk ro Ny forbedret udtalebog. Automatisk ro

ViTre ver. 91 Opdatering fra ScanDis A/S. Instruktion og nyheder i TAL. Automatisk ro Ny forbedret udtalebog. Automatisk ro ViTre ver. 91 Opdatering fra ScanDis A/S Instruktion og nyheder i TAL Automatisk ro Ny forbedret udtalebog Automatisk ro ScanDis A/S ViTre version 91 opdatering Side 1 Ny indstilling af oplæsning med funktionen

Læs mere

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives.

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives. Eksamensspørgsmål - maj/juni 2016 1. Tal Du skal redegøre for løsningsregler for ligninger. Forklar, hvordan følgende ligning kan løses grafisk: x + 4 = 3x - 2 Redegør for opstilling af formler til løsning

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter Fag: Matematik Hold: 26 Lærer: Harriet Tipsmark Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter 33-35 Målet for undervisningen er, at eleverne tilegner sig gode matematiske færdigheder og at

Læs mere

HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model

HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model Energiregnskab som matematisk model side 2 Løsning af kalorimeterligningen side 3 Artiklen her knytter sig til kapitel 3, Energi GYLDENDAL

Læs mere

FØRSTE BOG OM KLIMA OG VEJR BERNDT SUNDSTEN & JAN JÄGER

FØRSTE BOG OM KLIMA OG VEJR BERNDT SUNDSTEN & JAN JÄGER Forskerne tror, at jordens klima forandres, fordi vi slipper alt for meget ud i naturen. Forstå, hvorfor jordens klima er ved at blive varmere. For at kunne løse dette store problem, må vi hjælpes ad.

Læs mere

Projekt Beholderkonstruktion. Matematik - A

Projekt Beholderkonstruktion. Matematik - A Projekt Beholderkonstruktion Matematik - A [Skriv et resume af dokumentet her. Resumeet er normalt en kort beskrivelse af dokumentets indhold. Skriv et resume af dokumentet her. Resumeet er normalt en

Læs mere

a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 :

a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 : Eksemplarisk løsning af eksamensopgave Nedenstående opgaver er delprøven med hjælpemidler fra Matematik B eksamen d. 22 maj 2014 restart with Gym : Opgave 7 a) For at bestemme a og b i y=ax+b defineres

Læs mere

QUIZSPØRGSMÅLENE skal besvares via app en. Nogle er fx multiple choice og andre ja/nej. OPGAVERNE skal beregnes, og svaret skal tastes i app en.

QUIZSPØRGSMÅLENE skal besvares via app en. Nogle er fx multiple choice og andre ja/nej. OPGAVERNE skal beregnes, og svaret skal tastes i app en. ELEVHÆFTE MA+GI Opgavetyper QUIZSPØRGSMÅLENE skal besvares via app en. Nogle er fx multiple choice og andre ja/nej. OPGAVERNE skal beregnes, og svaret skal tastes i app en. EKSTRAOPGAVERNE skal ikke bruges

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet frs111-matn/a-405011 Tirsdag den 4. maj 011 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013

Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013 EUC SYD HTX 1.B Projekt kroppen Fysik Mads Peter, Niels Erik, Kenni og Søren Bo 06-09-2013 Indhold Indledning/formål... 2 Forventninger... 2 Forsøget... 2 Svedekassen... 2 Fremgangsforløb... 2 Materialer...

Læs mere

Undervisningsbeskrivelse for 1ama

Undervisningsbeskrivelse for 1ama Undervisningsbeskrivelse for 2016-2017 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2017 Institution Uddannelse Fag og niveau Lærer(e) Hold Horsens HF og VUC HF2 Matematik

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Nattehimlen september 2016

Nattehimlen september 2016 Nattehimlen september 2016 Zodiacal lys set fra La Silla, Chile (credit ESO). Jupiter forsvinder ud af syne i denne måned, men i vest efter solnedgang dukker den strålende Venus op. I begyndelsen af måneden

Læs mere

Bevægelse op ad skråplan med ultralydssonde.

Bevægelse op ad skråplan med ultralydssonde. Bevægelse op ad skråplan med ultralydssonde. Formål: a) At finde en formel for accelerationen i en bevægelse op ad et skråplan, og at prøve at eftervise denne formel, ud fra en lille vinkel og vægtskål

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Drivhuseffekten er det fænomen, der sørger for at jorden har en højere middeltemperatur, end afstanden til solen berettiger til.

Drivhuseffekten er det fænomen, der sørger for at jorden har en højere middeltemperatur, end afstanden til solen berettiger til. 1 Modul 5 Vejr og klima Drivhuseffekten gør at der er liv på jorden Drivhuseffekten er det fænomen, der sørger for at jorden har en højere middeltemperatur, end afstanden til solen berettiger til. Planeten

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe32-mat/b-2908203 Torsdag den 29. august 203 kl. 9.00-3.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave -6 med i alt 6 spørgsmål.

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering. Fag: Matematik Hold: 27 Lærer: Jesper Svejstrup Pedersen Undervisnings-mål 9 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 32-37 i arbejdet med geometri at benytte

Læs mere

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard Mandags Chancen En optimal spilstrategi Erik Vestergaard Spilleregler denne note skal vi studere en optimal spilstrategi i det spil, som i fjernsynet går under navnet Mandags Chancen. Spillets regler er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin maj-juni 2013 Institution ZBC Ringsted Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Jacob Debel 12HTX11 Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl stx161-MAT/A

Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl stx161-MAT/A Matematik A Studentereksamen 1stx161-MAT/A-24052016 Tirsdag den 24. maj 2016 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere