06 Formler i retvinklede trekanter del 2
|
|
|
- Sofia Johnsen
- 10 år siden
- Visninger:
Transkript
1 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS Betragtes en enhedscirkel med definitionen af sinus og cosinus indtegnet se figur Bruges Pythagoras på denne trekant fås Figuren viser umiddelbart kun situationen for værdier af vinklen v mellem 0 og 90. Men da (-cos(v)) 2 = cos 2 (v) og (-sin(v)) 2 = sin 2 (v), gælder sammenhængen for alle værdier af v. Se også s. 129 i Mat A1 (grundbogen). Her kaldes formlen for Grundrelationen et andet navn (mere normalt, men til gengæld knap så sympatisk) er Idiot-formlen! Opgaver fra opgavebogen, som handler om grundrelationen: 432, 433 (se s. 52) Lærer: Casper Dahl Rasmussen Side 1
2 Sætning 2 Geometrisk tolkning af tangens Ud fra definitionen af sinus og cosinus i en enhedscirkel kan man udledes en geometrisk betydning af tangens. På figuren ses to ensvinklede trekanter den lille røde inde i enhedscirklen med katete-længderne cos(v) og sin(v) og den store blå med katete-længderne 1 (pga. enhedscirklen) og a. Her vil vi så vise, at a i den blå trekant er tan(v) som det er skrevet på figuren. BEVIS Størrelsesforholdet mellem de to trekanter beregnes: Den anden katete i den blå trekant beregnes ved at gange op med størrelsesforholdet: Den trigonometriske funktion tan(v) var netop defineret som sinus divideret med cosinus, så derfor og beviset er fuldført. Se også s i Mat A1 (grundbogen). Opgaver fra opgavebogen, som handler om den geometriske tolkning af tangens: 423, 424 (se s. 51) En video fra nettet om den geometriske tolkning af tangens: Spørgsmål til overvejelse i forbindelse med videoen: a) Hvilken funktion er det egentlig, som Arne har konstrueret i GeoGebra... tan(v) eller arctan(x)? b) Kunne man lave konstruktionen smartere? Lærer: Casper Dahl Rasmussen Side 2
3 Sætning 3 Formler i retvinklede trekanter I en retvinklet trekant med følgende betegnelser for vinkler og sidelængder gælder disse vigtige formler: BEVIS Beviset bruger størrelsesforholdet mellem ensvinklede trekanter man sammenligner den store røde trekant med den lille blå inde i enhedscirklen (note: den røde trekant kan selvfølgelig godt være mindre end den blå enhedstrekant, så bliver størrelsesforholdet bare mindre end 1) se figur: Lærer: Casper Dahl Rasmussen Side 3
4 Først beregnes størrelsesforholdet: Så opstilles udtryk for siderne a og b ud fra størrelsesforholdet: Da størrelsesforholdet er beregnet til at være c, indsættes det i de to udtryk: Der divideres med c på begge sider af lighedstegnet: og dermed er to af de ønskede formler bevist. Da siden a kaldes den modstående katete i forhold til vinklen A, og siden lille b kaldes den hosliggende katete i forhold til vinklen A, og siden c kaldes hypotenusen (den længste af de tre sider i en retvinklet trekant), kan de to formler også skrives som Den tredje formel (med tangens) kan bevises ud fra definitionen af tangens: I denne definition indsættes de to formler for sinus og cosinus, som lige er udledt, og udtrykket reduceres (brøken forlænges med c): og dermed er den tredje formel bevist. Lærer: Casper Dahl Rasmussen Side 4
5 Se også s i Mat A (grundbogen). Eksempler på brug af formlerne i beregninger: Eksempel 3 se s. 135 Eksempel 4 se s. 136 Opgaver fra opgavebogen, som handler om brugen af formlerne i de retvinklede trekanter (inklusive Pythagoras og ensvinklede trekanter): (se s ). Hjælp på nettet Disse formler kan bevises på mange forskellige måder, og I kan finde et hav af videoer på nettet, hvor folk gennemgår og forklarer beviserne (og diverse sammenhænge mellem sinus, cosinus, tangens og trekanter). Her er nogle eksempler (link til FriViden): Sinus, cosinus og tangens defineret ud fra enhedscirklen: Beviserne for formlerne: Beregningseksempler hvordan bruger man formlerne til konkrete beregninger Hvor mange trekanter? Lærer: Casper Dahl Rasmussen Side 5
6 Opgaver Opgave 2 Opgave 3 Lærer: Casper Dahl Rasmussen Side 6
7 OPG. 4 FRA OPGAVEBOGEN a) Opg. 444 i opgavebogen (se s. 54) b) Opg. 448 og opg. 450 i opgavebogen (se s. 55) c) Opg. 454 i opgavebogen (se s. 55) d) Opg. 457 i opgavebogen (se s. 56) og opg. 466 i opgavebogen (se s. 58) e) Opg. 459 i opgavebogen (se s. 56) f) Opg. 461 i opgavebogen (se s ) g) Opg. 463 i opgavebogen (se s. 57) h) Opg. 467 i opgavebogen (se s. 58) Lærer: Casper Dahl Rasmussen Side 7
Eksamensspørgsmål: Trekantberegning
Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8
TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)
Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale
Geometri, (E-opgaver 9d)
Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige
5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve
5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer
Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4
Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).
Problemløsning i retvinklede trekanter
Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug
1 Geometri & trigonometri
1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant
VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri
VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner
Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri
Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11
MATEMATIK C. Videooversigt
MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...
Trekants- beregning for hf
Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel
Trigonometri. Store konstruktioner. Måling af højde
Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er
I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:
INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en
TRIGONOMETRI, 4 UGER, 9.KLASSE.
TRIGONOMETRI, 4 UGER, 9.KLASSE. FRA FÆLLES MÅL Målsætninger for undervisningsforløbet er opsat efter kompetence, færdigheds og vidensmål samt læringsmål i lærersprog. Geometri og måling Fase 3 Geometriske
Matematik B1. Mike Auerbach. c h A H
Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet
Trigonometri at beregne Trekanter
Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )
Trigonometri. for 9. klasse. Geert Cederkvist
Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,
Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock
Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil
Projekt Beholderkonstruktion. Matematik - A
Projekt Beholderkonstruktion Matematik - A [Skriv et resume af dokumentet her. Resumeet er normalt en kort beskrivelse af dokumentets indhold. Skriv et resume af dokumentet her. Resumeet er normalt en
Mike Vandal Auerbach. Geometri i planen. # b. # a. # a # b.
Mike Vandal Auerbach Geometri i planen # a # a www.mathematicus.dk Geometri i planen 1. udgave, 2018 Disse noter dækker kernestoffet i plangeometri på stx A- og B-niveau efter gymnasiereformen 2017. Al
7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri
7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne
RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L
SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske
Cosinusrelationen. Frank Nasser. 11. juli 2011
Cosinusrelationen Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Geometri, (E-opgaver 9b & 9c)
Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....
Enhedscirklen og de trigonometriske Funktioner
Enhedscirklen og de trigonometriske Funktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for
Pythagoras og andre sætninger
Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler
Eksamensspørgsmål Mat C maj-juni 2016 1E. TWE
1. Rentesregning.... 2 2. Procent- og rentesregning.... 2 3. Rentesregning... 2 4. Opsparingsannuitet... 2 5. Opsparing... 2 6. Geometri... 3 7. Geometri.... 3 8. Geometri... 3 9. Lineære funktioner...
Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri
Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når
Årsplan matematik 8. klasse
Årsplan matematik 8. klasse 2019-2020 Eleverne arbejder med grundbogen Matematrix 8. I undervisningen inddrages digitale undervisningsredskaber såsom Geogebra, Wordmat, MatematikFessor, emat, excel og
Matematik A1. Mike Auerbach. c h A H
Matematik A1 Mike Auerbach B c h a A b x H x C Matematik A1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet
Eksamensspørgsmål 4emacff1
Eksamensspørgsmål 4emacff1 1. Funktioner, Lineære funktioner Gør rede for den lineære funktion y ax b. Forklar herunder betydningen af a og b, og kom ind på det grafiske forløb af en lineær funktion. Kom
Beregning til brug for opmåling, udfoldning og konstruktion
VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages
Vektorer og lineær regression
Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden
Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte
Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og
1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.
Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt
Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet
Rentesregning 1 Forklar begrebet fremskrivningsfaktor. Forklar kapitalfremskrivningsformlen (renteformlen), og opstil/omskriv denne så du kan bestemme 1 af størrelserne, ud fra de 3 andre. Giv eksempler,
Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden.
Tilhørende: Robert Nielsen, 8b Geometribog Indeholdende de vigtigste og mest basale begreber i den geometriske verden. 1 Polygoner. 1.1 Generelt om polygoner. Et polygon er en figur bestående af mere end
A U E R B A C H. c h A H
M A T E M A T I K B 1 M I K E A U E R B A C H WWW.MATHEMATICUS.DK B c h a A b x H x C Matematik B1 4. udgave, 2017 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle
Introduktion til cosinus, sinus og tangens
Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,
M A T E M A T I K B 1
M A T E M A T I K B 1 M I K E A U E R B A C H WWW.MATHEMATICUS.DK B c h a A b x H x C Matematik B1 3. udgave, 2016 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle
Matematik B 2F Mundtlig eksamen Juni - 2011
1. Lineære funktioner Du skal vælge dele af dine emneopgave med ovenstående titel og redegøre nærmere herfor Redegør for a og b s betydning for udseendet af grafen for den lineære funktion og bestemmelse
M I K E A U E R B A C H. c a
M A T E M A T I K A 1 M I K E A U E R B A C H WWW.MATHEMATICUS.DK B c a h A b C x H Matematik A1 4. udgave, 2017 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle
M A T E M A T I K A 1
M A T E M A T I K A 1 M I K E A U E R B A C H WWW.MATHEMATICUS.DK B c a h A b C x H Matematik A1 3. udgave, 2016 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle
Pythagoras Ensvinklede trekanter Trigonometri. Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen
MATEMATIKBANKENS P.E.T. KOMPENDIUM Pythagoras Ensvinklede trekanter Trigonometri Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen FORENKLEDE FÆLLES MÅL FOR PYTHAGORAS, ENSVINKLEDE TREKANTER
Undersøgelser af trekanter
En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,
Opgaver med tegning og beregning af spiral (3D)
Opgaver med tegning og beregning af spiral (3D) GeoGebra kan hentes på: https://www.geogebra.org/download NB: Vælg "GeoGebra Classic 5". Man kan læse om spiralen (engelsk: helix) på: https://en.wikipedia.org/wiki/helix
Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015
Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1
Forslag til løsning af Opgaver om areal (side296)
Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens
Matematik A. Bind 1. Mike Auerbach. c h A H
Matematik A Bind 1 B c h a A b x H x C Mike Auerbach Matematik A, bind 1 1. udgave, 2014 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne
Trekantsberegning 25 B. 2009 Karsten Juul
Trekantsberegning 7,0 3 5 009 Karsten Juul ette häfte indeholder den del af trekantsberegningen som skal kunnes på - niveau i gymnasiet (stx) og hf ra sommer 0 kräves mere remstillingen undgår at forudsätte
Matematik B Klasse 1.4 Hjemmeopaver
Matematik B Klasse 1.4 Hjemmeopaver 1) opgave 336, side 23 Opgaven går ud på at jeg skal finde ud af hvor gamle børnene højst kan være, når forældrene tilsammen er 65 år og de skal være 40 år ældre end
Vektorer og lineær regression. Peter Harremoës Niels Brock
Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.
Opgaver hørende til undervisningsmateriale om Herons formel
Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 15 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kristian Møller
Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8
Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt
1hf Spørgsmål til mundtlig matematik eksamen sommer 2014
1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar 12 juni 12 Institution HTX Sukkertoppen, Københavns tekniske Skole Uddannelse Fag og niveau Lærer(e)
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Forår 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Rabia Jeelani
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold 2hf Matematik C Malene Overgaard
Vinkelrette linjer. Frank Villa. 4. november 2014
Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Ib Michelsen: Matematik C, Geometri 2011 Version 7.1 03-10-11 rettet fejl side 47 sin G:\_nyBog\1-2-trig\nyTrigonometri12.odt
Trigonometri Vinkel v sin(v) Vinkel v sin(v) Vinkel v sin(v) 0,00 0,00 30,00 0,50 60,00 0,87 1,00 0,02 31,00 0,52 61,00 0,87 2,00 0,03 32,00 0,53 62,00 0,88 3,00 0,05 33,00 0,54 63,00 0,89 4,00 0,07 34,00
Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.
Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver
Afstandsformlerne i Rummet
Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
GEOMETRI og TRIGONOMETRI del 2
GEOMETRI og TRIGONOMETRI del x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse COS, SIN, TAN og RETVINKLEDE TREKANTER... 3 Vinkler målt i radianer:... 6 Grundrelationen:... 8 Overgangsformler:...
Differentialkvotient af cosinus og sinus
Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises
Foreløbig lærervejledning. Version juni 2017
Foreløbig lærervejledning Version juni 2017 Kontext 9 Kapitel 1 Foreløbig lærervejledning juni 2017 Om Afstande og vinkler Kernebogen side 4-23 Fælles Mål Geometriske egenskaber og sammenhænge/fase 3 Måling/Fase
Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.
År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb
Formelsamling Matematik C
Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden
Repetition til eksamen. fra Thisted Gymnasium
Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes
Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver
Matematik B Hjemmeopgaver 1) opgave 107c, side 115 Jeg skal tegne en trekant og estemme vinklerne A og C og siderne a, og c. Jeg har følgende mål: Jeg har ikke nok mål til at kunne regne nogle af vinklerne
Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses.
Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: hyp 2 = kat 1 2 +kat 2 2 12 De oplyste tal indsættes; ligningen løses. hyp 2 = 5 2 +12 2 hyp 2 = 25 + 144 = 169 hyp = 13,00 = 13,0 (idet
Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.
Eksamensspørgsmål i ma til 1p sommeren 2009 (revideret) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar formlen til kapitalfremskrivning
Trigonometri - Facitliste
Trigonometri - Facitliste En del opgaver, undersøgelser og aktiviteter er formuleret, så der er flere mulige facit, da resultatet på forskellig måde afhænger af elevernes valg. I de tilfælde anføres eksempelvis
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) August 2015- juni 2017 ( 1 og 2. År) Rybners HTX Matematik B
Opgave 1 Til denne opgave anvendes bilag 1.
Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål
Måling - Fase 3 Bestemme afstande med beregning
Navn: Klasse: Måling - Fase 3 Bestemme afstande med beregning Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer Beviser og forslag til forbedring 1. Jeg kan anvende forholdet mellem sider i
Måling - Fase 3 Bestemme afstande med beregning
Navn: Klasse: Måling - Fase 3 Bestemme afstande med beregning Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer Beviser og forslag til forbedring 1. Jeg kan anvende forholdet mellem sider i
Trigonometri. for 8. klasse. Geert Cederkvist
Trigonometri Ved konstruktion af bygningsærker, hor der kræes stor nøjagtighed, er der ofte brug for, at man kan beregne sider og inkler i geometriske figurer. Alle polygoner kan deles op i trekanter,
User s guide til cosinus og sinusrelationen
User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for
3. Vilkårlige trekanter
3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke
dvs. vinkelsummen i enhver trekant er 180E. Figur 11
Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.
Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter
Projekter: Kapitel 8 Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Trigonometrien til beregning af
