MASO Uge 9 Eksempler på Eksamensopgaver

Størrelse: px
Starte visningen fra side:

Download "MASO Uge 9 Eksempler på Eksamensopgaver"

Transkript

1 MASO Uge 9 Eksempler på Eksamensopgaver Martin Søndergaard Christensen

2 Eksamen 2013B

3 Eksamen 2013B Opgave 2 Findes der komplekse tal z 1 og z 2 så z 1 + z 2 = 2, z 1 z 2 = 3

4 Eksamen 2013B Opgave 2 Findes der komplekse tal z 1 og z 2 så z 1 + z 2 = 2, z 1 z 2 = 3 Skrives om på første ligning og substituerer med den anden: z1 2 2z 1 + z 1 z 2 = 0 z1 2 2z = 0

5 Eksamen 2013B Opgave 2 Findes der komplekse tal z 1 og z 2 så z 1 + z 2 = 2, z 1 z 2 = 3 Skrives om på første ligning og substituerer med den anden: z 2 1 2z 1 + z 1 z 2 = 0 z 2 1 2z = 0 Andengradsligningen har løsningerne z 1 = 2 ± ( 2) = 2 ± 8 2 = 1 ± i 2.

6 Teori brush-up Theorem Lad f : R n R n være en C 1 funktion, og lad x 0 R n være et punkt så determinanten f (x 0 ) 0. Sæt y 0 = f (x 0 ). Da findes en C 1 funktion g : R n R n, defineret i nærheden af y 0, så g er invers til f i nærheden af y 0 og x 0.

7 Teori brush-up Theorem Lad f : R n R n være en C 1 funktion, og lad x 0 R n være et punkt så determinanten f (x 0 ) 0. Sæt y 0 = f (x 0 ). Da findes en C 1 funktion g : R n R n, defineret i nærheden af y 0, så g er invers til f i nærheden af y 0 og x 0. Altså, hvis x x 0 og y y 0 gælder f ( g(y) ) = y, g ( f (x) ) = x

8 Opgave 3 Lad f : R 5 R 2 være givet ved ( ) x1 y f (x 1, x 2, x 3, y 1, y 2 ) = 1 + x 3. x 1 x 2 + x 2 y 2 (a) Find Jacobi matricen for f.

9 Opgave 3 Lad f : R 5 R 2 være givet ved ( ) x1 y f (x 1, x 2, x 3, y 1, y 2 ) = 1 + x 3. x 1 x 2 + x 2 y 2 (a) Find Jacobi matricen for f. Differentierer vi, fås: ( ) f y1 0 1 x (x 1, x 2, x 3, y 1, y 2 ) = 1 0 x 2 x 1 + y x 2

10 Opgave 3 Lad f : R 5 R 2 være givet ved ( ) x1 y f (x 1, x 2, x 3, y 1, y 2 ) = 1 + x 3. x 1 x 2 + x 2 y 2 (a) Find Jacobi matricen for f. (b) Vis at (1, 1, 1, 1, 1) er invertibel. f (y 1,y 2 )

11 Opgave 3 Lad f : R 5 R 2 være givet ved ( ) x1 y f (x 1, x 2, x 3, y 1, y 2 ) = 1 + x 3. x 1 x 2 + x 2 y 2 (a) Find Jacobi matricen for f. (b) Vis at (1, 1, 1, 1, 1) er invertibel. f (y 1,y 2 ) f (1, 1, 1, 1, 1) = (y 1, y 2 ) ( )

12 Opgave 3 Lad f : R 5 R 2 være givet ved ( ) x1 y f (x 1, x 2, x 3, y 1, y 2 ) = 1 + x 3. x 1 x 2 + x 2 y 2 (a) Find Jacobi matricen for f. (b) Vis at (1, 1, 1, 1, 1) er invertibel. f (y 1,y 2 ) (c) Gør rede for at F : R 5 R 5 givet ved F (x 1, x 2, x 3, y 1, y 2 ) = (x 1, x 2, x 3, f (x 1, x 2, x 3, y 1, y 2 )) er invertibel nær (1, 1, 1, 1, 1) og (1, 1, 1, 2, 2).

13 Opgave 3 Lad f : R 5 R 2 være givet ved ( ) x1 y f (x 1, x 2, x 3, y 1, y 2 ) = 1 + x 3. x 1 x 2 + x 2 y 2 (a) Find Jacobi matricen for f. (b) Vis at (1, 1, 1, 1, 1) er invertibel. f (y 1,y 2 ) (c) Gør rede for at F : R 5 R 5 givet ved F (x 1, x 2, x 3, y 1, y 2 ) = (x 1, x 2, x 3, f (x 1, x 2, x 3, y 1, y 2 )) er invertibel nær (1, 1, 1, 1, 1) og (1, 1, 1, 2, 2) detf (1, 1, 1, 1, 1) = det =

14 Opgave 3 Lad f : R 5 R 2 være givet ved ( ) x1 y f (x 1, x 2, x 3, y 1, y 2 ) = 1 + x 3. x 1 x 2 + x 2 y 2 (a) Find Jacobi matricen for f. (b) Vis at (1, 1, 1, 1, 1) er invertibel. f (y 1,y 2 ) (c) Gør rede for at F : R 5 R 5 givet ved F (x 1, x 2, x 3, y 1, y 2 ) = (x 1, x 2, x 3, f (x 1, x 2, x 3, y 1, y 2 )) er invertibel nær (1, 1, 1, 1, 1) og (1, 1, 1, 2, 2). (d) Vis at der findes en C 1 funktion g : R 5 R 5, defineret nær (1, 1, 1, 2, 2) så (f g)(u 1, u 2, u 3, v 1, v 2 ) = (v 1, v 2 )

15 Husk fra forrige opgave at der findes en funktion g : R 5 R 5 defineret i nærheden af (1, 1, 1, 2, 2) så F (g(y)) = y. Altså hvis (u 1, u 2, u 3, v 1, v 2 ) er tæt på (1, 1, 1, 2, 2) så gælder at F ( g(u 1, u 2, u 3, v 1, v 2 ) ) = (u 1, u 2, u 3, v 1, v 2 ). Skriv g(u 1, u 2, u 3, v 1, v 2 ) = (x 1, x 2, x 3, y 1, y 2 ). Ser vi på ovenstående ligning og forskriften for F, gælder altså at ( x1, x 2, x 3, f (x 1, x 2, x 3, y 1, y 2 ) ) = (u 1, u 2, u 3, v 1, v 2 ), med andre ord (f g)(u 1, u 2, u 3, v 1, v 2 ) = (v 1, v 2 ).

16 Teori brush-up Theorem Lad f : R n+m R m være en C 1 -funktion og betragt ligningen f (x, y) = 0, (x R n, y R m ). Lad (x 0, y 0 ) R n+m være en løsning og antag at f (x 0, y 0 ) y 0. Da findes en C 1 -funktion g : R n R m så g(x) = y, når y y 0 og x x 0.

17 Teori brush-up Theorem Lad f : R n+m R m være en C 1 -funktion og betragt ligningen f (x, y) = 0, (x R n, y R m ). Lad (x 0, y 0 ) R n+m være en løsning og antag at f (x 0, y 0 ) y 0. Da findes en C 1 -funktion g : R n R m så g(x) = y, når y y 0 og x x 0. Desuden gælder ( ) g f 1 ( ) f x = y x

18 Teori Brush-up Optimerings opskrift Antag at du vil maksimere f : R n R under bi-betingelsen g(x 1,..., x n ) b. Betragt Lagrange-funktionen L(x) = f (x) λg(x) Hvis der findes et punkt x 0 R n der maksimerer f, så løser x 0 ligningerne L(x 0 ) x i = f (x 0) x i λ g(x 0) x i = 0, (1 i n) med λ 0 (men λ = 0 hvis g(x 0 ) < b), og g(x 0 ) b

19 Eksamen 2012A, Opgave 4 Opgave 4 Alice bruger alle sine penge på vare 1 og vare 2. Hun køber x 1 enheder af vare 1 til prisen p 1 og x 2 enheder af vare 2 til prisen p 2. Hun arbejder T timer i løbet af hele livet, bortset fra L timer hvor hun holder fri, til lønnen w pr. arbejdstime efter skat. Funktionen f (x 1, x 2, L) måler hendes udbytte ved forbrug af x 1 enheder af vare 1, x 2 enheder af vare 2 og ved at holde fri i L timer.

20 Eksamen 2012A, Opgave 4 Opgave 4 Alice bruger alle sine penge på vare 1 og vare 2. Hun køber x 1 enheder af vare 1 til prisen p 1 og x 2 enheder af vare 2 til prisen p 2. Hun arbejder T timer i løbet af hele livet, bortset fra L timer hvor hun holder fri, til lønnen w pr. arbejdstime efter skat. Funktionen f (x 1, x 2, L) måler hendes udbytte ved forbrug af x 1 enheder af vare 1, x 2 enheder af vare 2 og ved at holde fri i L timer. Delopgave (a) Hvad har følgende maksimeringsproblem at gøre med Alices liv?: Maksimér f (x 1, x 2, L) under bibetingelsen g(x 1, x 2, L) = p 1 x 1 + p 2 x 2 + w(l T ) = 0.

21 Delopgave (b) Begrund at Lagrangebetingelserne for ovenstående maksimeringsproblem er p 1 x 1 + p 2 x 2 + w(l T ) = 0 f x 1 λp 1 = 0 f x 2 λp 2 = 0 f L λw = 0

22 Delopgave (c) Forklar hvorfor Lagrange betingelserne har en løsning på formen x 1 x1 (p 1, p 2, w) x 2 L = x2 (p 1, p 2, w) L (p 1, p 2, w) λ λ (p 1, p 2, w) i nærheden af en given løsning hvis eller matricen er invertibel. H = p 1 p 2 w 0 2 f L x 1 p 1 2 f L x 2 p 2 w 2 f x 1 x 1 2 f x 1 x 2 2 f x 1 L 2 f x 2 x 1 2 f x 2 x 2 2 f x 2 L 2 f L L

23 Bemærk at Lagrange betingelserne kan skrives på formen hvor F : R 7 R 4 er givet ved F (x 1, x 2, L, λ, p 1, p 2, w) = 0, p 1 x 1 + p 2 x 2 + w(l T ) f F (x 1, x 2, L, λ, p 1, p 2, w) = x 1 λp 1 f x 2 λp 2. f L λw Her bemærkes det at H = F (x 1, x 2, L, λ), hvorfor det ønskede følger af sætningen om implicit givne funktioner.

24 Delopgave (d) Redegør for ligningerne H (p 1, p 2, w) (p 1, p 2, w) x1 x2 L λ x1 x2 L λ = x1 x2 T L λ λ 0 (1) 0 0 λ x1 x2 T L = H 1 λ λ λ (2)

25 Delopgave (d) Redegør for ligningerne H (p 1, p 2, w) (p 1, p 2, w) x1 x2 L λ x1 x2 L λ = x1 x2 T L λ λ 0 (1) 0 0 λ x1 x2 T L = H 1 λ λ λ Bemærk at ligningerne (1) og (2) er ækvivalente. Ligning (2) følger direkte af sætningen om implicit givne funktioner. (2)

26 Delopgave (e) Vis at L w = (H 1 ) 31 (T L ) + (H 1 ) 34 λ.

27 Delopgave (e) Vis at L w = (H 1 ) 31 (T L ) + (H 1 ) 34 λ. Fra delopgave (d) har vi: x1 x1 x1 p 1 p 2 w x2 x2 x (H 1 ) 11 (H 1 ) 12 (H 1 ) 13 (H 1 ) 14 2 p 1 p 2 w L L L p 1 p 2 w = (H 1 ) 21 (H 1 ) 22 (H 1 ) 23 (H 1 ) 24 (H 1 ) 31 (H 1 ) 32 (H 1 ) 33 (H 1 ) 34 λ λ λ (H 1 ) 41 (H 1 ) 42 (H 1 ) 43 (H 1 ) 44 p 1 p 2 w x1 x2 T L λ λ λ

28 Delopgave (e) Vis at L w = (H 1 ) 31 (T L ) + (H 1 ) 34 λ. Fra delopgave (d) har vi: x1 x1 x1 p 1 p 2 w x2 x2 x (H 1 ) 11 (H 1 ) 12 (H 1 ) 13 (H 1 ) 14 2 p 1 p 2 w L L L p 1 p 2 w = (H 1 ) 21 (H 1 ) 22 (H 1 ) 23 (H 1 ) 24 (H 1 ) 31 (H 1 ) 32 (H 1 ) 33 (H 1 ) 34 λ λ λ (H 1 ) 41 (H 1 ) 42 (H 1 ) 43 (H 1 ) 44 p 1 p 2 w x1 x2 T L λ λ λ

29 Delopgave (f) Alice s arbejdsløn efter skat ændrer sig ganske lidt fra w til w + w. Giv et estimat af Alices fritid L (w + w) med den nye indkomst. Er det klart at Alice vil arbejde mere, hvis hun får mere i løn efter skat?

30 Delopgave (f) Alice s arbejdsløn efter skat ændrer sig ganske lidt fra w til w + w. Giv et estimat af Alices fritid L (w + w) med den nye indkomst. Er det klart at Alice vil arbejde mere, hvis hun får mere i løn efter skat? L (w + w) L (w) + L w w

31 Delopgave (g) Hvor har vi vist at x1 p 1 w + p x1 2 w + w x 1 w = T L.

32 Delopgave (g) Hvor har vi vist at x1 p 1 w + p x1 2 w + w x 1 w = T L. I opgave (d): x p 1 p 2 w 0 1 x1 x1 2 f 2 f 2 f x 1 x 1 x 2 x 1 L x 1 p 1 p 1 p 2 w x2 x2 x 2 2 f 2 f 2 f p x 1 x 2 x 2 x 2 L x 2 p 2 1 p 2 w L L L 2 f 2 f 2 p 1 p 2 w f x 1 L x 2 L L L w λ λ λ p 1 p 2 w x1 x2 T L = λ λ λ

33 Delopgave (h) En (velkendt?) matematisk sætning siger at f (x 1, x 2, L ) w = f x1 x 1 w + f x2 x 2 w + f L L w. Hvilken?

34 Delopgave (h) En (velkendt?) matematisk sætning siger at f (x 1, x 2, L ) w = f x1 x 1 w + f x2 x 2 w + f L L w. Hvilken? Kædereglen: f (x 1, x 2, L ) w = ( f x 1 f x 2 f L ) x1 w x2 w L w

35 Delopgave (i) Økonomer tolker Lagrangemultiplikatoren som den marginal nytte af arbejdslønnen per arbejdstime. Dermed mener de at λ = Hvorfor er det rigtigt? 1 f (x1, x 2, L ) T L. w Ved hjælp af flere af de tidligere delopgaver får vi at: f (x 1, x 2, L ) w = (h) f x1 x 1 w + f x2 x 2 w + f L = (b) λ x1 (p 1 w + p 2 = (g) λ (T L ) L w x 1 w + w x 1 w )

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible

Læs mere

IKKE-LINEÆR OPTIMERING

IKKE-LINEÆR OPTIMERING IKKE-LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Konvekse funktioner 1 2 Optimering uden bibetingelser 1 3 Optimering under bibetingelser givet ved ligheder 2 4 Optimering under bibetingelser givet

Læs mere

UGESEDDEL 10 LØSNINGER. = f

UGESEDDEL 10 LØSNINGER. = f UGESEDDEL 10 LØSNINGER Theorem 1. Algoritme for løsning af max f(x, y) når g(x, y) c. Dan Lagrange-funktionen: L (x, y) = f(x, y) λ(g(x, y) c). Beregn de partielle afledte af L og kræv at de begge er nul:

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Statisk Optimering. Jesper Michael Møller

Statisk Optimering. Jesper Michael Møller Statisk Optimering Jesper Michael Møller Matematisk Institut, Universitetsparken 5, DK 2100 København E-mail address: moller@mathkudk URL: http://wwwmathkudk/~moller Indhold Kapitel 1 Ikke-lineær optimering

Læs mere

1 Kapitel 5: Forbrugervalg

1 Kapitel 5: Forbrugervalg 1 Kapitel 5: Forbrugervalg Vi har set på: 1. Budgetbegrænsninger. 2. Præferencer og nyttefunktioner. Nu stykker vi det hele sammen og studerer forbrugerens valg. 1 2 Optimalt forbrug - gra sk fremstilling

Læs mere

Statisk Optimering. Jesper Michael Møller

Statisk Optimering. Jesper Michael Møller Statisk Optimering Jesper Michael Møller Matematisk Institut, Universitetsparken 5, DK2100 København E-mail address: moller@mathkudk URL: http://wwwmathkudk/~moller Indhold Kapitel 1 Ikke-lineær optimering

Læs mere

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer.

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer. LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Introduktion 1 2 Kanoniske programmer 2 3 Standard programmer 2 4 Svag dualitet for standard programmer 3 5 Svag dualitet for generelle lineære programmer

Læs mere

UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0.

UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0. UGESEDDEL 9 LØSNINGER Sydsæter 531 Theorem 1 Sætning om implicitte funktioner for ligningen f(x, y) = 0 Lad f(x, y) være C 1 i mængden A R n og lad (x 0, y 0 ) være et indre punkt i A hvor f(x 0, y 0 )

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner f : R R En funktion f : R R er differentiabel

Læs mere

1 Kapitel 5: Forbrugervalg

1 Kapitel 5: Forbrugervalg 1 Kapitel 5: Forbrugervalg Vi har set på: 1. budgetbegrænsninger 2. præferencer og nyttefunktioner. Nu stykker vi det hele sammen og studerer forbrugerens optimale valg. 2 Optimalt forbrug - grafisk fremstilling

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Statisk Optimering. Jesper Michael Møller

Statisk Optimering. Jesper Michael Møller Statisk Optimering Jesper Michael Møller Matematisk Institut, Universitetsparken 5, DK 2100 København E-mail address: moller@mathkudk URL: http://wwwmathkudk/~moller Indhold Kapitel 1 Ikke-lineær optimering

Læs mere

MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 11 Lineær optimering Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 46, 2010 Formålet med MASO Oversigt 1 Generelle lineære programmer 2 Definition Et generelt lineært

Læs mere

Note om interior point metoder

Note om interior point metoder MØK 2016, Operationsanalyse Interior point algoritmer, side 1 Note om interior point metoder Som det er nævnt i bogen, var simplex-metoden til løsning af LP-algoritmer nærmest enerådende i de første 50

Læs mere

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Opgaven består af et antal delopgaver Disse er af varierende omfang Der er også en

Læs mere

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r))

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r)) GEOMETRI-TØ, UGE 12 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1, [P] 632 Vis at Ennepers flade σ(u, v) = ( u u 3 /3

Læs mere

Forbrugerteori: Optimale valg og efterspørgsel

Forbrugerteori: Optimale valg og efterspørgsel Forbrugerteori: Optimale valg og efterspørgsel Jesper Breinbjerg Department of Business and Economics University of Southern Denmark Akademiet for Talentfulde Unge, 20. marts 2014 Jesper Breinbjerg Optimale

Læs mere

Gamle eksamensopgaver (MASO)

Gamle eksamensopgaver (MASO) EO 1 Gamle eksamensopgaver (MASO) Opgave 1. (Vinteren 1990 91, opgave 1) a) Vis, at rækken er divergent. b) Vis, at rækken er konvergent. Opgave 2. (Vinteren 1990 91, opgave 2) Gør rede for at ligningssystemet

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Gamle eksamensopgaver (DOK)

Gamle eksamensopgaver (DOK) EO 1 Gamle eksamensopgaver ) Opgave 1. sommer 1994, opgave 1) a) Find den fuldstændige løsning til differentialligningen x 6x + 9x =. b) Find den fuldstændige løsning til differentialligningen Opgave 2.

Læs mere

MASO-Eksempler. x n. + 1 = 1 y n

MASO-Eksempler. x n. + 1 = 1 y n 3. oktober EXPL 1 Eksempel 1. Et par talfølger: (1 ( (3 (4 (5 (6 (7 (8 MASO-Eksempler,,,,,,..., n =, 1, 1, 1, 1, 1, 1,..., n = 1 1,, 1,, 1,, 1,..., n = (1 + ( 1 n /,, 1,,,, 3,..., n = n(1 + ( 1 n /4, 1,

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

DOK-facitliste DOK. DOK-facitliste 1

DOK-facitliste DOK. DOK-facitliste 1 -facitliste 1 -facitliste Listens numre refererer til samlingen af supplerede -opgaver (de gamle eksamensopgaver. På listen står næsten kun facitter, og ikke tilstrækkelige svar på opgaverne. [Korrigeret

Læs mere

Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer

Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 12 Matrixmultiplikation Am n = [aij ], Bn

Læs mere

Institut for virksomhedsledelse og økonomi, Syddansk Universitet. Workshop. Opgave 1. = = 3x 2

Institut for virksomhedsledelse og økonomi, Syddansk Universitet. Workshop. Opgave 1. = = 3x 2 Institut for virksomhedsledelse og økonomi, Syddansk Universitet Workshop Opgave 1 Antag at en forbrugers nyttefunktion er givet ved u(, x ) x 3 1 x. Forbrugeren har derudover følgende budgetbetingelse:

Læs mere

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum:

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum: Forslag til hjemmeopgaver, som forbereder arbejdet med de ne emner den pågældende kursusgang, men primært er baseret på gmnasiepensum: Ordinær kursusgang : Introduktion til vektorer og matricer. Regning

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet Forberedelsesmateriale frs-matn/a-270420 Onsdag den 27. april 20 Forberedelsesmateriale til stx-a-net MATEMATIK Der skal afsættes

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Lineær algebra: Egenværdier, egenvektorer, diagonalisering

Lineær algebra: Egenværdier, egenvektorer, diagonalisering Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix

Læs mere

Ekstremumsbestemmelse

Ekstremumsbestemmelse Ekstremumsbestemmelse Preben Alsholm 24. november 2008 1 Ekstremumsbestemmelse 1.1 Ekstremum for funktion af én variabel: Definitioner Ekstremum for funktion af én variabel: Definitioner Punktet a kaldes

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver Optimeringsteori Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver 20/12/2012 Institut for Matematiske Fag Matematik-Økonomi Fredrik Bajers Vej

Læs mere

Implicit givne og inverse funktioner

Implicit givne og inverse funktioner Implicit givne og inverse funktioner Morten Grud Rasmussen 1 11. april 2016 1 Implicit givne funktioner I lineær algebra har vi lært meget om at løse lineære ligningsystemer og om strukturen af løsningsmængden.

Læs mere

Opgaver til Kapitel 6 MatB

Opgaver til Kapitel 6 MatB Opgave 1 En funktion i to variable er givet ved f (, ) = + 5 + 0 Indtegn niveauliner svarende til N(0), N(200) og N(400) og illustrér ved hjælp af en pil på niveaulinjerne den retning, hvori niveauet bliver

Læs mere

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitutionernes fest 53 Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitution en masse Vi vil i denne artikel vise, hvorledes man kan løse den generelle tredjegradsligning

Læs mere

Årsplan i matematik klasse

Årsplan i matematik klasse 32-36 Brøker og Én brøk - forskellige betydninger en helhed ved hjælp af brøker. en helhed ved hjælp af brøker. Eleven kan bruge brøker til at beskrive forholdet mellem to størrelser. Eleven kan argumentere

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

gl-matematik B Studentereksamen

gl-matematik B Studentereksamen gl-matematik B Studentereksamen gl-1stx121-mat/b-25052012 Fredag den 25. maj 2012 kl. 9.00-13.00 Side 1 af 5 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i

Læs mere

Supplement til Matematik 1GB. Jan Philip Solovej

Supplement til Matematik 1GB. Jan Philip Solovej Supplement til Matematik 1GB Jan Philip Solovej ii c 2001 Jan Philip Solovej, Institut for Matematiske Fag, Københavns Universitet. Alle har tilladelse til at reproducere hele eller dele af dette materiale

Læs mere

Regning med funktioner - TAVLENOTER

Regning med funktioner - TAVLENOTER Sammensat funktion [Elevsamtaler] Jens Thostrup, GUX Nuuk 1 FACIT b) 1 og 3 er de eneste løsninger, der optræder i tabellen Jens Thostrup, GUX Nuuk 2 Regningsarter for funktioner Sumfunktion: (f+g)(x)

Læs mere

Ligningssystemer - nogle konklusioner efter miniprojektet

Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax

Læs mere

Optimering i Moderne Portefølje Teori

Optimering i Moderne Portefølje Teori Aalborg universitet P3-3. semestersprojekt Optimering i Moderne Portefølje Teori 15. december 2011 AAUINSTITUT FOR MATEMATISKE FAG TITEL: Optimering - Lineær programmering - Moderne Portefølje Teori PROJEKT

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 7, 2009 Produceret af Hans J Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 Definition kritisk punkt: funktion f(x, y) er et kritisk punkt

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

UGESEDDEL 12 LØSNINGER. x

UGESEDDEL 12 LØSNINGER. x UGESEDDEL 2 LØSNINGER Opgave Betragt ligningssystemet af formen Ax = b: ( ) 2 x ( ) x 2 2 =. 4 x Der eksisterer ingen løsning x = (x, x 2, x ) 0, thi venstresiden i første ligning er da 0, medens højresiden

Læs mere

matematik-økonomi-studerende

matematik-økonomi-studerende matematik-økonomi-studerende Første studieår Introduktion til matematiske metoder i økonomi Skriftlig prøveeksamen december 2012 med korte svar Dato: selvvalgt Tidspunkt: varighed 4 timer Tilladte hjælpemidler:

Læs mere

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Træningsopgaver 1 Indhold Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Ligninger Opgave L0) Opgave L1) Opgave L2) a) 2x 5 5x 7 b) 3x 7 3x 11 c) 3 (2x 3) 2( x 1) d) En funktion

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: 333247 2015 Projekt Matematik B-niveau Differentialregning Anders Jørgensen, Kirstine Irming, Mark Kddafi, Zehra Köse og Tobias Winberg Indledning I dette

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016 Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har

Læs mere

Differentialregning i R k

Differentialregning i R k Differentialregning i R k Lad U R k være åben, og lad h : U R m være differentiabel. Den afledte i et punkt x U er Dh(x) = h 1 (x) x 1 h 2 (x) x 1. h m (x) x 1 h 1 (x) x 2... h 2 (x) x 2.... h m (x) x

Læs mere

Exponentielle familer, ark 2

Exponentielle familer, ark 2 1 Exponentielle familer, ark 2 Eksponentielle familier OPGAVE 21 Beksriv den eksponentielle familie på (R, B) givet ved følgende data: V er R med det sædvanlige indre produkt, den kanoniske stikprøvefunktion

Læs mere

Symmetriske og ortogonale matricer Uge 7

Symmetriske og ortogonale matricer Uge 7 Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji

Læs mere

Antag at. 1) f : R k R m er differentiabel i x, 2) g : R m R p er differentiabel i y = f(x), . p.1/18

Antag at. 1) f : R k R m er differentiabel i x, 2) g : R m R p er differentiabel i y = f(x), . p.1/18 Differentialregning i R k Kæderegel Lad U R k være åben, og lad h : U R m være differentiabel Antag at Den afledte i et punkt x U er Dh(x) = 1) f : R k R m er differentiabel i x, 2) g : R m R p er differentiabel

Læs mere

Forbrug og rente. Danmarks Statistik. Henrik Olesen 29. august 2000 Michael Andersen N. Arne Dam

Forbrug og rente. Danmarks Statistik. Henrik Olesen 29. august 2000 Michael Andersen N. Arne Dam Danmarks Statistik MODELGRUPPEN Arbejdspapir* Henrik Olesen 29. august 2000 Michael Andersen N. Arne Dam Forbrug og rente 5HVXPp Papiret skitserer nogle forskellige metoder, som medfører, at renten vil

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 35-del 1, 2010 Redigeret af Jessica Carter efter udgave af Hans J. Munkholm 1 Nogle talmængder s. 4 N = {1,2,3, } omtales som de naturlige tal eller de positive heltal. Z =

Læs mere

Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )

Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( ) Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh101-mat/a-27052010 Torsdag den 27. maj 2010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

4.1 Lineære Transformationer

4.1 Lineære Transformationer SEKTION 41 LINEÆRE TRANSFORMATIONER 41 Lineære Transformationer Definition 411 ([L], s 175) Lad V, W være F-vektorrum En lineær transformation L : V W er en afbildning, som respekterer lineær struktur,

Læs mere

Pristilpasningen i ADAM, I

Pristilpasningen i ADAM, I Danmarks Statistik MODELGRUPPEN Arbejdspapir* Erik Bjørsted 16. november 1999 Pristilpasningen i ADAM, I Resumé: Papiret søger at erstatte sektorprisligningerne i ADAM, maj98, med estimerede ligninger

Læs mere

Om Inflation and Unemployment : Nærmere detaljer vedr. pris- og lønfastsættelsen og deres relation

Om Inflation and Unemployment : Nærmere detaljer vedr. pris- og lønfastsættelsen og deres relation Makroøkonomi 1, 25/11 2003 Henrik Jensen Om Inflation and Unemployment : Nærmere detaljer vedr. pris- og lønfastsættelsen og deres relation Prisfastsættelsen Modelantagelser: Monopolistisk konkurrence

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Differentiation af sammensatte funktioner

Differentiation af sammensatte funktioner 1/7 Differentiation af sammensatte funktioner - Fra www.borgeleo.dk En sammensat funktion af den variable x er en funktion, vor x først indsættes i den såkaldte indre funktion. Resultatet fra den indre

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2018 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Klaus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Skoleår forår19, eksamen S19 Kolding HF & VUC Hfe Matematik

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

Matematik A Delprøven uden hjælpemidler

Matematik A Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 009 HHX091-MAA Matematik A Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

Varmeligningen og cosinuspolynomier.

Varmeligningen og cosinuspolynomier. Varmeligningen og cosinuspolynomier. Projekt for MM50 Marts 009 Hans J. Munkholm 0. Praktiske oplysninger Dette projekt besvares af de studerende, som er tilmeldt eksamen i MM50 uden at være tilmeldt eksamen

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

12.1 Cayley-Hamilton-Sætningen

12.1 Cayley-Hamilton-Sætningen SEKTION 12.1 CAYLEY-HAMILTON-SÆTNINGEN 12.1 Cayley-Hamilton-Sætningen Sætning 12.1.1 (Cayley-Hamilton) Lad A Mat n,n (C). Så gælder p A (A) =. Sætningen gælder faktisk over et vilkårligt legeme, men vi

Læs mere

Matematik A. Højere handelseksamen. Gammel ordning. Mandag den 17. december 2018 kl gl-hhx183-mat/a

Matematik A. Højere handelseksamen. Gammel ordning. Mandag den 17. december 2018 kl gl-hhx183-mat/a Matematik A Højere handelseksamen Gammel ordning gl-hhx183-mat/a-17122018 Mandag den 17. december 2018 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU Fredag den 12. december 2008 Kl. 09.00 13.00 HFE083-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med

Læs mere