Optimering i Moderne Portefølje Teori

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Optimering i Moderne Portefølje Teori"

Transkript

1 Aalborg universitet P3-3. semestersprojekt Optimering i Moderne Portefølje Teori 15. december 2011

2

3 AAUINSTITUT FOR MATEMATISKE FAG TITEL: Optimering - Lineær programmering - Moderne Portefølje Teori PROJEKT PERIODE: Fra 2. september 2011 til 16. december 2011 PROJEKTGRUPPE: Mie Vestergaard Andersen Marita Stavø Johansen Malene Møller Larsen Jacob Bitsch Nørgaard VEJLEDER: Horia Cornean OPLAGSTAL: 7 ANTAL SIDER: 64 c Gruppe G3-113 MAT-ØK

4

5 Synopsis Dette projekt beskæftiger sig med optimering og i denne forbindelse med matematisk programmering. Projektet er todelt, således den første del er matematisk orienteret, mens den anden del belyser matematisk programmering set fra en økonomisk synsvinkel. Den første del indeholder en introduktion til lineær programmering og her introduceres også to sætninger, som er centrale for lineær programmering. Disse vil senere blive bevist ved hjælp af forskellig teori, herunder for eksempel kontinuitet, differentiabilitet og åbne og lukkede mængder. Efterfølgende beskrives forskellige løsningsmetoder til at løse lineære programmeringsproblemer. Her introduceres blandt andet simplex metoden og den geometriske metode. Anden del af projektet beskæftiger sig med moderne portefølje teori, og hvordan denne teori kan sammenkobles med matematisk programmering. I denne forbindelse beskrives også Harry Markowitz Mean-variance model. Herefter er der en gennemgang af, hvordan man ud fra kursværdier kan finde de konstanter som Harry Markowitz model bygger på. Samtidig indgår der også en diskussion omkring denne model og hvilke problemer, som er forbundet med denne. Aalborg den 15. december 2011 Malene Møller Larsen Mie Vestergaard Andersen Marita Stavø Johansen Jacob Bitsch Nørgaard 1

6

7 Indhold Indhold 3 1 Indledning Problemformulering I Lineær programmering 7 2 Introduktion til lineær programmering Hovedsætningerne Teori Lineære funktioner Funktioner af én variabel Åbne og lukkede intervaller Grænser Kontinuitet Differentiabilitet Ekstremum Funktioner af flere variable Åbne og lukkede mængder Kontinuitet Differentiabilitet Ekstremum Gradient Kritiske punkter

8 INDHOLD 4 Bevis for hovedsætningerne 27 5 Løsningsmetoder til lineære programmeringsproblemer Den geometriske metode Den algebraiske metode Simplex metoden II Portefølje teori 41 6 Introduktion til moderne portefølje teori Moderne portefølje teori Mean-variance modellen Kritik af Mean-variance modellen Databehandling Analyse af datapunkterne Omformulering af Mean-variance modellen Konklusion 57 Litteratur 59 4

9 1 Indledning Når man i matematik snakker optimering, så er det studiet af problemer, hvor et givet problem skal formuleres matematisk og derefter løses ved at finde en optimal værdi. Denne værdi kan derefter fortolkes til at give den bedst mulige løsning til problemet. Det matematiske grundlag for optimering er det, at vi har mulighed for at differentiere og undersøge funktioner for at finde frem til, hvordan de opfører sig over intervaller og domæner. En måde at løse optimeringsproblemer på er ved hjælp af matematisk programmering. Matematisk programmering er en fællesbetegnelse for formuleringer af problemer, hvor en given objektfunktion af flere variable skal optimeres under hensyntagen til en eller flere bibetingelser. I dette projekt lægges der især vægt på lineær programmering. Vi har valgt at give projektet en økonomisk vinkel ved at føre matematisk programmering sammen med moderne portefølje teori. Dette er en teori om diversificering og trade-off mellem risiko og forventet udbytte. Denne model bygger på Mean-variance modellen, som er udviklet af Harry Markowitz. Hvis man skulle lave den perfekte investering ville man søge en model, der giver et højt afkast kombineret med en lav risiko. I virkeligheden er det næsten umuligt at finde sådan en investering. Derfor er det ikke overraskende, at der er mange, som bruger tid på at udvikle metoder og strategier for at komme tættere på denne perfekte investering. Men ingen model er så populær, eller så overbevisende som moderne portefølje teori. Selvom modellen har mødt en del kritik, er den stadig populær, om dog i en forenklet udgave. Den ligger også til grund for mange centrale teorier i finansiel økonomi. I et forsøg på at finde den optimale sammensætning af aktiver, bruger modellen netop matematisk programmering. 5

10 KAPITEL 1. INDLEDNING 1.1 Problemformulering I forhold til matematisk programmering og moderne portefølje teori, ønsker vi at undersøge, om det er muligt at finde en metode, hvorpå Mean-variance modellens konstanter kan bestemmes. Dette leder os frem til følgende problemformulering og problemstillinger. Er det muligt at bestemme Mean-variance modellens konstanter ved hjælp af behandling af statistisk data? Problemstillinger: Hvad er lineær programmering, og hvilke løsningsmetoder kan anvendes til at løse et lineært programmeringsproblem? Hvor findes løsningen til et lineært programmeringsproblem geometrisk set? Hvad er moderne portefølje teori og Mean-variance modellen, og hvordan kan disse relateres til matematisk programmering? 6

11 Del I Lineær programmering 7

12 2 Introduktion til lineær programmering Dette kapitel er baseret på [Lay, 2005] og omhandler en introduktion til lineær programmering. Lineær programmering er en metode, som bruges til at finde den optimale løsning til en given problemstilling. Et eksempel på dette kunne fx være en virksomhed, som ønsker at optimere deres produktionsniveau således, at deres profit bliver maksimal. Virksomhedens arbejdskraft og materialer er imidlertid begrænset, hvilket medfører, at det optimale produktionsniveau skal findes under disse betingelser. Et andet eksempel kunne være et økonomisk problem, hvor man ønsker at maksimere sit afkast i forhold til at investere i aktier - se eksempel 2. Lineær programmering kan mere formelt, defineres som følgende. Et lineært programmeringsproblem består af et antal lineære uligheder 1 med variablene x 1,..., x n og en lineær funktion f(x). f : R n R. Som det tidligere er antydet, består problemet nu i at finde en løsning x, som enten maksimerer eller minimerer f(x). Funktionen f(x) kaldes også for objektfunktionen, og de lineære uligheder betegnes som bibetingelser. Generelt kan det lineære programmeringsproblem opstilles som følgende. Givet c R n, b R m og A R m n. Find x R n så følgende løses Maksimér (Max) under bibetingelserne (u.b.b.) f(x) = c x Ax b x 0. 1 Kan også bestå af ligheder, men disse kan omskrives til uligheder.

13 Her er c, b og x vektorer, hvilket vil sige, at det lineære programmeringsproblem også kan opstilles som følgende. Givet b = b 1., c = c 1. og en matrix A = [ a ij ], b m c n hvor b R m og c R n. Find x = x 1. x n R så følgende løses Max u.b.b. og f(x 1,..., x n ) = c 1 x 1 + c 2 x c n x n a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2. a m1 x 1 + a m2 x a mn x n b m x j 0 for j = 1,..., n. Formelt set betegner man den del af R n, som opfylder bibetingelserne med D, altså D = {x R n Ax b}, A R m n, b R m og F beskriver værdimængden for objektfunktionen defineret over D, F = {e R f(d) = e}. Løsninger x som opfylder Ax b samt x 0 kaldes for brugbare løsninger, som ligger i den brugbare mængde, altså D. Hvis der findes en vektor m D, der opfylder f(m) = maxf(x), x D, så kaldes m for den optimale løsning. Vi gennemgår nu to eksempler på økonomiske problemer, der viser, hvordan det lineære programmeringsproblem kan opstilles. Disse tager udgangspunkt i investeringsproblemer. 9

14 KAPITEL 2. INTRODUKTION TIL LINEÆR PROGRAMMERING Eksempel 1 En investor planlægger at investere kr. i hhv. investeringspuljer, indskudsbeviser og en højrente konto (1). Pga. risikoen der er forbundet med investeringspuljer, vil hun ikke investere mere i dem end summen af indskudsbeviser og højrente kontoen sammenlagt (2). Samtidig skal det, hun investerer i højrentekontoen være mindst halvdelen af beløbet for indskudsbeviser (3). Det forventede afkast af investeringspuljer er 11 procent, indskudsbeviser er 8 procent og højrentekontoen er 6 procent (4). Spørgsmålet er så, hvor meget hun skal investere i de mulige investeringsposter for at få det maksimale udbytte, når man tager hendes kriterier med i beslutningsprocessen. Vi vil dog ikke løse problemet, men kun vise hvordan problemet opstilles. Dette spørgsmål kan matematisk formuleres vha. lineær programmering. Vi starter med at tildele de forskellige investeringsposter variable: Investeringspuljer:= x 1 Indskudsbeviser:= x 2 Højrentekontoen:= x 3 Fra punkt (1) får vi betingelsen, at summen af de tre poster ikke må overstige kr. Dette kan formuleres som ligningen x 1 + x 2 + x Kriteriet fra punkt (2) siger, at investeringspuljer ikke må overstige summen af de to andre poster, hvilket kan skrives som og dette kan formuleres som x 1 x 2 + x 3, x 1 x 2 x 3 0. Det tredje kriterium som opstilles fra punkt (3), kræver at højrentekontoen skal udgøre minimum halvdelen af indskudsbeviser. Dette kriterium beskriver vi med ligningen x 2 2 x 3 som kan omformuleres til 1 2 x 2 x 3 0. Det fjerde og sidste punkt (4) giver objektfunktionen f(x) = 1, 11x 1 + 1, 08x 2 + 1, 06x 3. 10

15 Hvis vi kombinerer disse fire punkter til et lineært programmeringsproblem, hvor f(x) skal maksimeres under bibetingelserne (1), (2) og (3), så kommer det til at se således ud. Max f(x) = 1, 11x 1 + 1, 08x 2 + 1, 06x 3 u.b.b. x 1 x 2 x x 2 x 3 0 x 1 + x 2 + x og x 1, x 2, x 3 0. Eksempel 2 Det antages, at der er kr til rådighed til at investere i aktierne A og B. Køber man aktie A så forventes det, at man får et afkast på 3,5 %. Køber man derimod aktie B så forventes det, at man får et afkast på 4,9 %. Aktie A koster 5 kr pr. stk., mens aktie B koster 20 kr pr. stk. Derudover gælder det, at man kun kan købe en B aktie, hvis man har to A aktier. Dette kan formuleres som et lineært programmeringsproblem. Aktie A betegnes som x 1 og aktie B betegnes som x 2. Max 1, 035x 1 + 1, 049x 2 u.b.b. 5x x x 1 + x 2 0 x 1, x 2 0. Her er vektorerne c, b og x og matricen A givet ved c = [ 1, 035 1, 049 ] [ 10000, b = 0 ] [ x1, x = x 2 ] og A = [ ]. Bibetingelsen 2x 1 + x 2 0 er omskrevet fra ligningen x 2 2x 1, som kommer fra begrænsningen af, at en B aktie kun kan købes, hvis man har to A aktier. Den anden bibetingelse kommer fra, at A aktier koster 5 kr pr. stk., mens B aktier koster 20 kr pr. stk, og at der kan investeres for kr i alt. Objektfunktionen 1, 035x 1 + 1, 049x 2 kommer fra det forventede afkast af aktie A og aktie B. 11

16 KAPITEL 2. INTRODUKTION TIL LINEÆR PROGRAMMERING Hvis man i stedet ønsker at minimere objektfunktionen f(x), så kan det lineære programmeringsproblem omskrives således og bibetingelser som kan omskrives til Max f(x) a i1 x a in x n b i a i1 x 1... a in x n b i. Hvis bibetingelserne består af lineære ligninger, så kan disse omskrives til lineære uligheder således. a i1 x a in x n = b i kan omskrives til og a i1 x a in x n b i a i1 x 1... a in x n b i. 2.1 Hovedsætningerne I forbindelse med det lineære programmeringsproblem kan der opstå to situationer, hvorved det ikke kan lade sig gøre at finde en optimal løsning. Hvis bibetingelserne er uløselige, er D den tomme mængde, hvilket vil sige at problemet ikke kan løses. Hvis objektfunktionen ikke er begrænset opadtil, så har problemet ikke en løsning. Dette leder os frem til hovedsætning 1. Hovedsætning 1 (Eksistens af ekstremum) Hvis den brugbare mængde D, er den ikke-tomme mængde, og hvis objektfunktionen er begrænset på D, så har objektfunktionen mindst én optimal værdi. Denne sætning giver altså retningslinjer for, hvornår objektfunktionen har én optimal værdi og derved om den kan optimeres givet en brugbar mængde, D. Sætningen fortæller dog ikke noget om, hvor den optimale værdi findes. Dette belyses yderligere i hovedsætning 2. Hovedsætning 2 (Placering af ekstremum) Givet D R n, K = {1,..., k} og en funktion f : D R. Hvis der x j D, j K eller så er x M, x m et hjørnepunkt af D. M K således at f(x M ) = max f(x) m K således at f(x m ) = min f(x), 12

17 2.1. HOVEDSÆTNINGERNE Det skal bemærkes at f(x M ), f(x m ) fra hovedsætning 2 ikke nødvendigvis er entydigt bestemt. Der kan altså være flere x j D, der giver den samme funktionsværdi. Hovedsætning 2 siger altså kun, at mindst én af disse værdier tages i et hjørne af D. For at bevise de to foregående hovedsætninger, vil vi nu introducere noget grundlæggende teori og definere nogle centrale begreber. 13

18

19 3Teori For matematisk at kunne formulere hvad det vil sige, at maksimum og/eller minimum af en funktion defineret over et domæne tages i et hjørne af domænet, bruger vi nogle definitioner fra matematisk analyse. Dette kapitel er baseret på [of Maryland, 2011], [Wade, 2010], [Adams, 2010] og [Schilling, 2007]. Vi vil starte med at formulere, hvad der menes med lineære funktioner. 3.1 Lineære funktioner I forbindelse med lineær programmering beskæftiger vi os udelukkende med lineære funktioner. Dvs. funktioner, der opfylder definition Definition Funktionen f : R n R er lineær hvis og kun hvis, den opfylder følgende 1. f(x + y) = f(x) + f(y) x, y R n. 2. f(ax) = af(x) a R, x R n. Det kan vises, at det indre produkt mellem to vektorer, c og x, er en lineær funktion, hvis elementerne i c er konstanter, og elementerne i x er uafhængige variable. Eksempel 3 Vis, at funktionen f, der er givet ved er lineær jf. definition 3.1. f(x) = c x c, x R n, 15

20 KAPITEL 3. TEORI Funktionen f kan skrives på formen f(x 1, x 2,..., x n ) = c 1 x 1 + c 2 x c n x n x, c R n. Derved kan det vises, at f opfylder det første krav. f(x + y) = c (x + y) = c 1 (x 1 + y 1 ) + + c n (x n + y n ) = c 1 x 1 + c 1 y c n x n + c n y n = c 1 x c n x n + c 1 y c n y n = c x + c y = f(x) + f(y). Og funktionen opfylder også det andet krav. f(ax) = c (xa) = c 1 (x 1 a) + + c n (x 1 a) = a(c 1 x c n x n ) = a(c x) = af(x). Tilsvarende gælder det, at en sammensat funktion, der består af to lineære funktioner, også er lineær. Eksempel 4 Antag, at funktionerne f og g er lineære jf. definition 3.1, hvor f : R n R og g : R n R n. Vis, at er lineær. (f g)(x) = f(g(x)) f(g(x)) : R n R Funktionerne f og g er givet ved g(x) := Ax, A = [a jp ] R n n, x R n f(x) := c x x, c R n. Den sammensatte funktion ser dermed således ud n m (f g)(x) = c (Ax) = c j x p a jp. j=1 p=1 16

21 3.2. FUNKTIONER AF ÉN VARIABEL Man kan nu vise, at den sammensatte funktion opfylder det første krav. n m (f g)(x + y) = c j a jp (x p + y p ) = j=1 p=1 n m c j a jp x p + j=1 p=1 j=1 p=1 n m c j a jp y p = (f g)(x) + (f g)(y). Det andet krav er også opfyldt. n m k ((f g)(x)) = k c j a jp x p j=1 p=1 j=1 p=1 n m = c j a jp x p k = (f g)(kx). Dette resultat illustrerer at, hvis en lineær funktion er sammensat med en anden lineær funktion, så er resultatet også en lineær funktion. 3.2 Funktioner af én variabel De funktioner, vi beskæftiger os med i dette afsnit, er funktioner af én variabel. f : R R. Dette gør vi for at give et overblik over, hvad der menes med de forskellige begreber Åbne og lukkede intervaller 3.2 Definition (Åbne og lukkede intervaller) Lad a og b være reelle tal. Et lukket interval er en mængde på formen [a, b] := {x R a x b}. Et åbent interval er en mængde på formen (a, b) := {x R a < x < b}. 17

22 KAPITEL 3. TEORI Et interval kan enten være åbent, lukket eller begge dele. I det sidste tilfælde vil det være en mængde på formen [a, b) := {x R a x < b} eller (a, b] := {x R a < x b}. Et åbent interval er altså et lukket interval i R, hvor endepunkterne ikke hører med til mængden. 3.3 Definition (Begrænset interval) Lad E R og a E. Et interval E er begrænset hvis og kun hvis, M R således, at a M a E Grænser 3.4 Definition (Grænser) For f : R R siges det, at f(x) går mod L, når x går mod a, hvilket skrives som lim f(x) = L, x a hvis der gælder følgende. For ethvert ε > 0 eksisterer der et δ > 0, som afhænger af ε, f og a, sådan at hvis x a < δ medfører at f(x) L < ε. I definition 3.4 siger vi, at f(x) har grænsen L, når x går mod a. Dette betyder egentligt, at vi kan sikre, at fejlen f(x) L er mindre end enhver tilladt tolerance, ligegyldig hvor lille, ved at tage x tæt nok på a, men ikke lig med a. ε repræsenterer altså størrelsen af den tilladte fejl. δ i definition 3.4 repræsenterer differensen x a, som bestemmer, hvor tæt x skal være på a for at sikre, at fejlen er inden for den tilladte tolerance. Hvis ε er et hvilket som helst positivt tal, så skal vi kunne sikre at f(x) L < ε ved at begrænse x således, at x er tæt på, men ikke lig med a. Afstanden x a < δ er altså den afstand, som repræsenterer tæt nok på, men ikke lig med a. Her afhænger δ af ε. Hvis det kan lade sig gøre, at finde sådan et δ for ethvert positivt tal ε, så kan det altså konkluderes, at lim f(x) eksistere og er x a lig med L. I henhold til grænser bør det også nævnes, at eksistensen af en grænse kun afhænger af værdierne af f(x) for x tæt på, men ikke lig med a. Det vil altså sige, at selvom f(x) er defineret i x = a, så eksisterer grænsen for f(x) når x går mod a ikke nødvendigvis og er heller ikke nødvendigvis lig med f(a). For 18

23 3.2. FUNKTIONER AF ÉN VARIABEL at grænsen er lig med f(a), så skal f(x) være defineret på et åbent interval indeholdende x = a, og grafen for f skal gå ubrudt gennem punktet (a, f(a)). 3.5 Definition (Højre grænse) For f : R R siges det, at f(x) har højre grænse L i punktet a, hvilket skrives som lim f(x) = L, x a+ hvis følgende er opfyldt. x tilhører domænet af f og for ethvert ε > 0 eksisterer der et δ > 0, hvor δ afhænger af ε, sådan at hvis x a < δ medfører at f(x) L < ε. Venstre grænse er analog med højre grænse fra definition 3.5. Det vil altså sige, at selvom en grænse ikke kan eksistere i et endepunkt af intervallet, så kan den stadig have en højre eller venstre grænse i punktet. Derudover gælder det, at grænsen af f(x) (når x går mod a) eksisterer, når den højre og venstre grænse af f(x) (når x går mod a) eksisterer og er lig med hinanden. Det vil altså sige, at grænsen i definition 3.4 eksisterer, når den højre og venstre grænse eksisterer og er lig med hinanden Kontinuitet 3.6 Definition (Kontinuitet i et punkt) En funktion f defineret på et åbent interval indeholdende punktet a, siges at være kontinuert i punktet a, hvis lim f(x) = f(a), x a hvilket betyder, hvis der for ethvert ε > 0 eksisterer et δ > 0 sådan, at x a < δ så medfører det, at f(x) f(a) < ε. Det vil altså sige, hvis lim x a f(x) ikke eksisterer eller eksisterer, men ikke er lig med f(a), så er f diskontinuert i punktet a. 3.7 Definition (Kontinuitet på et interval) En funktion f er kontinuert på et interval hvis og kun hvis, f er kontinuert i ethvert punkt på intervallet. Hvis det er tilfældet med et endepunkt i et lukket interval, så behøver f kun at være kontinuert på den ene side. Det vil altså sige, at f er kontinuert på intervallet [a, b], hvis lim f(t) = f(x) t x for alle x som opfylder a < x < b, og hvor lim f(t) = f(a) og lim f(t) = f(b). t a+ t b 19

24 KAPITEL 3. TEORI Her kaldes lim f(t) = f(a) og lim f(t) = f(b) for hhv. højre og venstre t a+ t b kontinuitet. Hvis et punkt a ligger i et åbent interval, som er indeholdt i domænet for funktionen, så kaldes punktet a for et indre punkt af domænet. Hvis dette ikke er tilfældet, så kaldes punktet a for et endepunkt af domænet Differentiabilitet 3.8 Definition (Differentiabilitet i et punkt) Et interval, I R, en funktion f : I R siges at være differentiabel i et punkt a I hvis og kun hvis, f er defineret på et åbent interval I indeholdende a, og hvor f f(a + h) f(a) (a) := lim h 0 h eksisterer. I dette tilfælde kaldes f (a) for den afledte af f i punktet a. En funktion f er ikke differentiabel i et punkt a, hvis grafen for funktionen af f i punktet (a, f(a)) enten har en lodret tangentlinje eller ikke har en entydig tangentlinje. En funktion f er differentiabel på et interval, hvis f er differentiabel i alle punkter på intervallet. Dette er beskrevet i følgende definition. 3.9 Definition (Differentiabilitet på et interval) Lad I R være et ikke-degenereret interval En funktion f : I R er differentiabel på I hvis og kun hvis, f f(a + h) f(a) (a) := x a lim h x I eksisterer og er endelig for alle a I. 2. En funktion f er kontinuert differentiabel på I hvis og kun hvis, f eksisterer og er kontinuert på I. Definition 3.8 medfører, at f kun er differentiabel på et interval I := [a, b], hvis følgende gælder f +(a) = lim h 0+ f(a + h) f(a), f h (b) = lim h 0 f(b + h) f(b), h idet f ikke er differentiabel i endepunkter, da grænsen fra den ene side ikke eksisterer. f er altså kun differentiabel på et interval [a, b], hvis f er differentiabel i alle punkter på det åbne interval og når f +(a) og f (b) begge eksisterer. Det gælder om en funktion, der er differentiabel i et punkt, at den altid er kontinuert i punktet. Det omvendte gælder dog ikke. En funktion kan godt være kontinuert i et punkt, men ikke differentiabel. 1 Jf. s. 13 i [Wade, 2010] 20

25 3.3. FUNKTIONER AF FLERE VARIABLE Ekstremum 3.10 Definition (Ekstremum på R) Lad a R, E R og f : R R. f(a) siges at være et ekstremum for f hvis og kun hvis, et af følgende kriterier er opfyldt. f(a) f(x), x R. f(a) f(x), x R. Hvis det opfylder det første kriterium, siges f(a) at være et maksimum for f. Hvis det opfylder det andet kriterium, siges f(a) at være et minimum for f Definition (Ekstrumumspunkter) Hvis I er lukket og begrænset og f : I R er kontinueret på I og M = sup f(x) og m = inf f(x), x I x I så eksisterer der punkter x M, x m I, hvorom det gælder, at f(x M ) = M og f(x m ) = m. Endvidere kalder vi M og m for hhv. maksimum og minimum for funktionen f. 3.3 Funktioner af flere variable De funktioner vi beskæftiger os med i dette afsnit, er funktioner af flere variable. f : R n R. Dette gør vi, fordi disse er centrale for lineære programmeringsproblemer Åbne og lukkede mængder I dette afsnit defineres åbne og lukkede mængder i R n vha. bolde. En åben og en lukket bold i R n defineres på følgende måde Definition (Bold) Lad a R n. 1. For ethvert r > 0 er den åbne bold, med centrum i a og radius r, punktmængden: B r (a) := {x R n x a < r }. 21

26 KAPITEL 3. TEORI 2. For ethvert r 0 er den lukkede bold med centrum i a og radius r, punktmængden: B r (a) := {x R n x a r }. En åben bold i R, med centrum i a og radius r, er intervallet (a r, a + r), og den tilsvarende lukkede bold er intervallet [a r, a + r]. Den åbne bold med centrum i a og radius r indeholder ingen punkter på randen; {x R n x a = r }. Derimod gælder det, at den lukkede bold med centrum i a og radius r indeholder alle randpunkterne. For at generalisere begreberne åbne og lukkede mængder endnu mere, siger man, at hvert element af en åben mængde, E R n ligger inden i E. Det vil sige, elementet er omgivet af andre elementer i E. Lukkede mængder opfylder ikke dette, men det gør deres komplementær-mængde. Dette fører os videre til følgende definition Definition (Åbne og lukkede mængder) Lad n N og V, E R n. 1. V siges at være åbent (i R n ) hvis og kun hvis, der for alle a V er et ε > 0 sådan at B ε (a) V. 2. E siges at være lukket (i R n ) hvis og kun hvis, E c er åbent Definition (Begrænset mængde) Lad E R n og a E. En mængde E er begrænset hvis og kun hvis, M R så a < M a E Kontinuitet 3.15 Definition (Kontinuitet på en mængde) Lad E, E R n og f : E R. f er kontinuert i a E hvis og kun hvis, der for ethvert ε > 0 findes et δ > 0 således, at x a < δ og x E medfører, at f(a) f(x) < ε. f siges at være kontinuert på E hvis og kun hvis, f er kontinuert i alle x E. 22

27 3.3. FUNKTIONER AF FLERE VARIABLE Vi viser nu, hvordan det kan bestemmes om en funktion f, er kontinuert på en mængde. Dette ses i det følgende eksempel. Eksempel 5 Vis, at den lineære funktion f : R n R, er kontinuert på hele R n. f(x) = c x Givet en funktion f : R n R, f(a) = c x. For et a R n vis, at x a < δ medfører, at f(x) f(a) < ε. Bevis Antag, at c 0, c = den Euklidiske afstand 2. For et givet ε > 0, eksisterer der et δ afhængig af ε således, at f(x) f(a) < ε, når x a < δ. Vha. Cauchy-Schwarz 3 uligheden ved vi, at Tag δ ε := ε 1+ c. Det gælder, at ε, når f(x) f(a) = c (x a) c x a. x a < δ ε f(x) f(a) c δ ε = c 1 + c ε < ε. Dette resultat gælder a R n. Derved kan vi konkludere, at funktionen f(x) = c x, er kontinuert på hele R n Differentiabilitet 3.16 Definition (Differentiabilitet på en mængde) En funktion f : R n R siges at være differentiabel i et punkt a R n, hvis den opfylder følgende. L a (R n, R m ) 23

28 KAPITEL 3. TEORI således, at f(x) f(a) L a (x a) lim = 0. x a x a Vi vil nu vise, at en lineær funktion fra R n til R er differentiabel. Eksempel 6 Vis, at funktionen f(x) = c x er differentiabel i et punkt a R n. Matricen, der er tilknyttet den lineære transformation, som er f, er givet ved L a (x) = c x, som er lig med funktionen selv. Dette medfører således, at som bliver til f(x) f(a) L a (x a) lim = 0, x a x a c x c a c (x a) lim = 0. x a x a Grænsen er altså klart lig med 0. Funktionen f, er derfor differentiabel jf. definition Ekstremum Vi vil her bruge bolde til at definere maksimum af en funktion i et domæne. Det gøres på følgende måde Definition (Maksimum/Minimum) Lad V være åben i R n, a V og antag, at f : V R. 1. f(a) er lokalt minimum for f hvis og kun hvis, der eksisterer et r > 0 sådan at f(a) f(x) for alle x B r (a). 2. f(a) er lokalt maksimum for f hvis og kun hvis, der eksisterer et r > 0 sådan at f(a) f(x) for alle x B r (a). 3. f(a) er et lokalt ekstremum for f hvis og kun hvis, f(a) er lokalt maksimum eller lokalt minimum for f. 24

29 3.3. FUNKTIONER AF FLERE VARIABLE Givet en funktion f : R n R og en bold B r (a) med centrum a og radius r og hvor B r (a) R n. Det lokale maksimum findes i intervallet ( r, r), altså maxf(b r (a)) = a. For at finde det absolutte maksimum udvides bolden og derved øges r, så intervallet ( r, r) dækker hele R n. Derved kan det absolutte maksimum findes Gradient Begrebet gradient beskrives, da dette skal bruges til at definere, hvor der er tale om kritiske punkter for en funktion Definition (Gradient) I ethvert punkt (x 1, x 2,..., x n ) hvor den første partielle afledte af en funktion f(x 1, x 2,..., x n ) eksisterer, kan gradient vektoren f(x 1, x 2,..., x n ) defineres som f(x 1, x 2,..., x n ) = f e 1 + f e f e n, x 1 x 2 x n hvor e j er enhedsvektoren fra origo til enhedspunktet på den j te koordinatakse. Gradienten refererer til de partielle afledte af en funktion f af flere variable. Her er e 1 enhedsvektoren i første-koordinatens retning, e 2 er enhedsvektoren i anden-koordinatens retning osv. Gradienten af en funktion peger i den retning, hvor funktionen øges mest, mens længden af gradienten angiver, hvor kraftigt funktionen ændrer sig i gradientens retning. Det vil altså sige, at gradienten af en funktion er 0, når vi, uanset hvilken vej vi bevæger os, ikke kan øge funktionsværdien yderligere. Derudover gælder det, at gradienten står vinkelret på niveaufladerne for funktionen 4. Gradienten har altså en geometrisk betydning i forhold til at optimere funktioner af flere variabler på en begrænset mængde. Vi viser nu, hvordan gradienten til en funktion f kan bestemmes, hvilket ses i det følgende eksempel. Eksempel 7 Find gradienten til funktionen f, givet ved f(x) = c x, c, x R n, f(x) R. 4 [Adams, 2010] s

30 KAPITEL 3. TEORI Af definition 3.18 ses det, at f(x) = f x 1. f x n = c, x R. Bemærk: f(x) 0, x R n så længe c Kritiske punkter Maksimum og minimum for en funktion er de værdier, vi søger, når vi prøver at hhv. maksimere eller minimere en funktion. Hvordan disse er defineret, vil vi nu komme nærmere ind på. Når man prøver at finde sådanne værdier, vil det være hjælpsomt at kunne opstille en liste med kandidater til et sådan punkt (lokalt maksimum eller minimum) Definition (Kritiske punkter) Givet D R n. Kandidater til kritiske punkter for en funktion, f : D R, skal opfylde en af disse tre betingelser. 1. f(x) = 0 2. f(x) eksisterer ikke (Singulært punkt 5 ). 3. Punktet tilhører randen af D. Mht. ekstremum og lineære funktioner er det værd at bemærke, at for lineære funktioner er et lokalt ekstremum også et globalt ekstremum. Dette skyldes, at lineære funktioner ikke har fortegnsskift over et domæne. selv. 5 Et singulært punkt er et punkt på grafen for f, hvor grafen knækker eller skærer sig 26

31 4 Bevis for hovedsætningerne Vi vil i dette afsnit introducere et par hjælpesætninger samt noget teori og bevise hhv. hovedsætning 1 og hovedsætning 2. D R n, hvor D er lukket og begrænset er, jf. Heine-Borel sætningen fra [Wade, 2010] ækvivalent med, at D er følgekompakt (i R n ). At D er følgekompakt vil sige, at {x n } n 1 D, {x nk } k 1 således at x nk k x n D. Bevis (for Hovedsætning 1) Antag, at sup f(x) = S, S R. x D Dette medfører, at hvis S := S 1 n, 4.1 Lemma n > 0 så er S ikke længere sup x D f(x). {x n } n 1 D således, at f(x n ) n S. Vi definerer, y n := f(x n ). Når S 1 n < S kan S ikke længere være en øvre grænse, da S var den mindste øvre grænse. Der må derfor findes en værdi, som er større. Denne kan skrives på formen f(x n ). Dette medfører, at S 1 n < f(x n) S. Da D er følgekompakt, så x nk k x D. Ud fra at f er kontinuert, ved vi, at y n have samme grænse. Dvs., at f(x ) = S. k f(x ). {y nk } og {y n } skal Hvis x M := x, så vil x M være et maksimum for f. Vi har derved bevist, at f : D R har et maksimum, hvis D er lukket og begrænset. 27

32 KAPITEL 4. BEVIS FOR HOVEDSÆTNINGERNE Det ovenstående bevis er ikke et konstruktivt bevis, hvilket vil sige, at vi altså ikke viser, hvorledes man kan finde et maksimum. Beviset er et eksistens bevis, der viser at under givne omstændigheder, så eksisterer der et maksimum. Hvor dette findes, vil vi beskæftige os med i det næste bevis. Beviset for minimum er analogt, og vi konkluderer derfor, at hovedsætning 1 er gyldig. 4.1 Definition (Indre domæne) En funktion, f : D R, hvor D := {x R n Ax b}. Vi noterer det indre domæne af D med o D, hvor Ax < b betyder, at o D := {x R n Ax < b}, a 1 x < b i,..., a m x < b m. Det kan bevises, at o D er en åben mængde, hvilket kan gøres vha. bolde. Vi vil dog udelade dette bevis fra vores projekt. 4.2 Lemma Antag, at funktionen f fra definition 4.1 er lineær. Så gælder det, at max f(x) max f(x). x D o x D Bevis (for lemma 4.2) Antag, at max f(x) > max f(x). x D o x D Det betyder, at x M således, at f(x M ) = 0. Men ifølge eksempel 7 er f(x) = c, x D. Dette er i strid med antagelsen, hvilket beviser lemma 4.2. Nu har vi introduceret den teori, der ligger til grund for det følgende bevis, og vi vil sammenfatte dette. Bevis (for hovedsætning 2) Givet et lineært programmeringsproblem: Max f(x) = c x u.b.b. Ax b A R m n, b R m, x, c R n, 1 n < m, hvor f er kontinuert (jf. definition 3.7) og differentiabel (jf. definition 3.16). Den brugbare mængde er defineret som punkter, der opfylder D := {x R n Ax b}. 28

33 Det indre domæne af den brugbare mængde er som beskrevet i definition 4.1. Lad også den brugbare mængde være begrænset, da vi således er garanteret, at der eksisterer en optimal værdi for f. Kandidater til en optimal værdi er ekstrema, der opfylder definition Vi vil derfor undersøge den brugbare mængde for punkter, der opfylder disse betingelser. o Vha. af lemma 4.2 kan vi udelukke punkter der ligger i D, da værdier der ligger på randen vil have den samme eller højere værdi. Vi tjekker derfor randen af domænet, givet ved D n 1 = n {x R n a i x = b i, Ax b} i=1 og det indre domæne af dette er givet ved D n 1 = n {x R n a i x = b i, Ax < b}. i=1 Da vi ved, at en lineær funktion, sammensat med en lineær funktion, er lineær fra eksempel 4, kan vi nu anvende lemma 4.2 på disse to mængder. Derved kommer vi frem til, at vi ikke kan finde et ekstremum i det indre domæne. Vi beskæftiger os derefter med randen af D n 1. Disse trin kan gentages, indtil vi har begrænset os til D 1 = n {x R n a i x b i, Ax = b}, i=1 som er linjer i det n-dimensionelle rum. Det indre domæne af dette vil være åbne intervaller og endepunkterne vil være hjørnepunkter af D. Når vi benytter lemma 4.2 kan vi udelukke de åbne intervaller og vi har derved bevist, at kandidater til en optimal værdi skal findes i et hjørne af den brugbare mængde. Beviset for hovedsætning 2 kan også bruges til at illustrere, hvordan man finder en løsning for et lineært programmeringsproblem. Nemlig ved at undersøge alle hjørnepunkterne af den brugbare mængde og så vælge den hvortil den højeste funktionsværdi er tilknyttet i forhold til objektfunktionen. Hvis vi kigger på eksempel 1, så kan denne løses vha. metoden fra bevis 4.3 på følgende måde. List alle hjørnepunkterne i den brugbare mængde. Tabel 4.1 viser hjørnepunkterne af den brugbare mængde. Vi kan se, at punktet med funktionsværdien lig er den højeste værdi. Det er et større arbejde at finde alle hjørnepunkter for et problem og evaluere objektfunktionens værdi i alle disse punkter. Derfor vil vi i det næste kapitel beskæftige os med nogle bedre løsningsmetoder, som alle bygger på beviset for hovedsætning 2. 29

34 KAPITEL 4. BEVIS FOR HOVEDSÆTNINGERNE Punkt Værdi af objektfunktion (6000, 0, 6000) (0, 0, 0) 0 (0, 8000, 4000) (0, 0, 12000) (6000, 4000, 2000) Tabel 4.1: Hjørnepunkter af D for eksempel 1. 30

35 5 Løsningsmetoder til lineære programmeringsproblemer Dette kapitel er baseret på kapitel 9 i [Lay, 2005], [Proffesor G. Srinivasan, 2008] og [Proffesor G. Srinivasan, 2010]. Her beskrives, hvordan det lineære programmeringsproblem kan løses. Vi introducerer først den geometriske løsning, hvorefter den algebraiske løsning beskrives. Derudover forklares sammenhængen mellem disse to løsninger. Til sidst introduceres den løsningsmetode, som kaldes for simplex. I dette kapitel kigger vi på et maksimeringsproblem i forhold til vores lineære programmeringsproblem. 5.1 Den geometriske metode Den geometriske metode går kort sagt ud på, at man tegner bibetingelserne for sit lineære programmeringsproblem ind i et koordinatsystem, hvilket ses i figur 5.1. De blå linjer på grafen repræsenterer bibetingelserne, og den sorte linje repræsenterer objektfunktionen. De røde linjer repræsenterer niveaulinjer, som er parallelle med objektfunktionen. Det blå område på grafen betegnes som den brugbare mængde (D), og ethvert punkt i dette område opfylder alle bibetingelserne. Området, som ikke inkluderer randen, kaldes for det indre domæne. Hvis man vælger et tilfældig punkt i det indre domæne, vil det altid være muligt at finde punkter som er bedre end det valgte punkt, hvilket vil sige at objektfunktionen antager højere værdier. Det vil altså sige, at man enten kan bevæge sig til venstre, højre, opad eller nedad. Hvis objektfunktionens koefficienter er negative, vil man opnå bedre værdier for objektfunktionen ved at bevæge sig til venstre eller nedad. Er koefficienterne derimod positive, vil man opnå bedre værdier for objektfunktionen ved at bevæge sig til højre eller opad. Dette svarer altså til, man bevæger sig i gradientens retning, jf. defintion Når man bevæger sig i gradientens retning vil man på et tidspunkt nå til randen. Dette er vist i figur 5.2. Her er den sorte linje objektfunktion, og de sorte pile repræsenterer gradienten, mens den røde stiplede linje er en niveaulinje. 31

36 KAPITEL 5. LØSNINGSMETODER TIL LINEÆRE PROGRAMMERINGSPROBLEMER Gradienten står vinkelret på niveaulinjerne. For at finde den optimale løsning til det lineære programmeringsproblem, starter man i et tilfældigt punkt, her (0, 0). Derefter bevæger man sig i gradientens retning, indtil man når randen. Herefter bevæger man sig langs niveaulinjen (her til højre), før man igen bevæger sig opad i gradientens retning. Dette princip gentages, indtil man står i et punkt, hvor man ikke kan bevæge sig længere i gradientens retning, og her er så maksimum. Punkter på randen vil altid dominere punkter, som ligger i det indre domæne, hvilket vil sige, at punkter på randen altid vil antage højere værdier med hensyn til objektfunktionen, i forhold til punkter i det indre domæne. Det vil altså sige, at vi kun er interesseret i punkter som ligger på randen, da objektfunktionen er lineær. Vælger man et punkt på randen, vil der altid være et punkt som dominerer i forhold til det valgte punkt, hvis man bevæger sig langs randen - enten opad eller nedad. Det vil altså sige, vi kun kigger på hjørnepunkterne, når vi skal finde en løsning til vores problem, idet det er her objektfunktionen antager de højeste værdier. Vi vælger altså det hjørnepunkt med højest værdi, idet vi derved opnår den optimale løsning til problemet. Dette kan også ses, hvis objektfunktionen maksimeres, således at niveaulinjerne bevæger sig i den retning hvor objektfunktionen øges. Det sidste punkt som niveaulinjerne rammer, inden de forlader den brugbare mængde er altså det hjørnepunkt, hvor den optimale løsning opnås. Figur 5.1: Geometrisk metode (niveau linjer) Det skal dog nævnes, at den geometriske løsningsmetode ikke kan anvendes på lineære programmeringsproblemer af flere dimensioner. Grunden til dette er beskrevet i det følgende. 5.1 Definition (Dimension af et lineært problem) Objektfunktionen definerer dimensionen af det lineære programmeringsproblem, idet den specificerer, hvor mange uafhængige variable, der indgår i problemet. 32

37 5.2. DEN ALGEBRAISKE METODE Figur 5.2: Geometrisk metode (gradient) Den generelle lineære objektfunktion har n uafhængige variable, f(x 1, x 2,, x n ) = c 1 x 1 + c 2 x c n x n. Et sådanne problem har så dimensionen n, da denne funktion er en lineær afbildning fra R n til R. Intuitivt gælder det, når dim(d) 3 kan en grafisk løsningsmetode benyttes. Dette skyldes ganske enkelt, at man ikke vil være i stand til, grafisk at illustrere den brugbare mængde i rum med dimension større end Den algebraiske metode Den algebraiske metode kan, i modsætning til den geometriske metode, anvendes på lineære programmeringsproblemer af flere dimensioner, jf. definition 5.1. Denne metode går ud på at lave bibetingelserne (som er uligheder) om til lineære ligninger. Dette gøres ved at tilføje slackvariable til bibetingelserne som således bliver omdannet til ligninger i stedet for uligheder. Disse slackvariable bidrager dog ikke til objektfunktionen, hvilket vil sige, de ingen indflydelse har på den optimale værdi af objektfunktionen. Vi har n variable og m ligninger. Vores objektfunktion er givet ved f(x) = c x, hvor x D. Antallet af variable i objektfunktionen er så givet ved { x j x x j 0, j = 1,..., n} = n, 33

38 KAPITEL 5. LØSNINGSMETODER TIL LINEÆRE PROGRAMMERINGSPROBLEMER svarende til antallet af variable i bibetingelserne. Ved at tilføje slackvariable får vi følgende system af ligninger a 1 x b 1 a 1 x + y 1 = b 1 a 2 x b 2 a 2 x + y 2 = b 2. a m x b m. a m x + y m = b m, hvor y 1, y 2,..., y m 0 repræsenterer slackvariable, vektorerne a 1, a 2,..., a m er søjlevektorer i matricen A. Ved indførelse af slackvariablene får vi altså nu n+m variable. For at løse ligningerne er vi nødt til at holde nogen af variablene faste, fordi vi har flere variable end ligninger. Vi har m ligninger og n + m variable. Kombinationer for den algebraiske løsningsmetode noteres (n + m)c m. 5.2 Definition Lad (n + m)c m være antallet af kombinationer man kan vælge m ud af (n + m) elementer, så er (n + m)c m := (n + m)! n!m! ( ) n + m = m Det er altså antallet af kombinationer for, hvor mange forskellige måder man kan vælge m variable ud fra de (n + m), der er til rådighed efter, at slackvariablene er tilført. Det bliver med denne formel gjort uden gentagelser, altså det der hedder Counting Combinations 1. Der er altså ikke nogen kombinationer, der står anført i modsat rækkefølge (x 1 x 2 og x 2 x 1 ), da dette ville være det samme punkt i domænet. Vi vælger altid at sætte de faste variable til 0. Man kunne også at have valgt et arbitrært ikke-negativt tal (ikke-negativ, da x 0). Variable fastsat til 0 kaldes også for ikke-basis variable. Antallet af variable, som skal fastsættes, er så givet ved (n + m) m = n. Vi kigger nu på de tilbageværende m variable, som kaldes for basis variable. Vi vurderer objektfunktionen, hvis vi får en basis brugbar løsning, hvilket vil sige en løsning inden for den brugbare mængde, hvor de faste værdier er sat til 0. Ikke-basis løsninger er løsninger, hvor de faste værdier er sat til ikkenegative værdier. Vi er imidlertid ikke interesseret i disse løsninger, da disse løsninger svarer til punkter i det indre domæne. Som vi så fra den geometriske metode, så vil det altid være muligt at finde bedre punkter med hensyn til objektfunktionen i forhold til det valgte punkt. Sættes de faste værdier til 0, får vi netop de punkter, som svarer til hjørnepunkterne i den geometriske metode. Dette vil sige, vi her opnår de højeste værdier for vores objektfunktion. Antallet af løsninger til vores problem er så givet ved (n+m)c m, jf. definition 5.2. Vi vurderer objektfunktionen for alle disse løsninger, hvis det er brugbare 1 På side 171 i [Ullman, 1992] 34

39 5.2. DEN ALGEBRAISKE METODE løsninger og vælger så den løsning med højest værdi, hvilket svarer til vores optimale løsning til vores lineære programmeringsproblem. Vi vil nu gennemgå et eksempel på et lineært programmeringsproblem, som bliver løst vha. den algebraiske løsningsmetode. Eksempel 8 Løs eksempel 1 vha. den algebraiske løsningsmetode. Først konverterer vi ulighederne, fra bibetingelserne, til ligheder. Fra eksemplet ved vi, at bibetingelserne er givet ved Disse bliver så til x 1 x 2 x x 2 x 3 0 x 1 + x 2 + x x 1 x 2 x 3 + x 4 = x 2 x 3 + x 5 = 0 x 1 + x 2 + x 3 + x 6 = Der er nu tre variable, tre slackvariable og tre ligninger. Vi skal holde tre variable konstante (=0), og løse ligningerne for de resterende tre variable. Dette kan jf. definition 5.2 gøres på (3 + 3)C 3 := (3 + 3)! 3!3! ( ) = = 20 3 forskellige måder. Dette er illustreret i tabel 5.1. Ud af de 20 løsninger er der kun 13, der opfylder ikke-negativitets-kravet. Ud af de 13 er der en løsning, der giver en højere funktionsværdi end de andre. Dette er den optimale løsning med x 1 = 6000, x 2 = 4000, x 3 = 2000 og en funktionsværdi på Dette er altså den optimale løsning til eksempel 1. Der er dog nogle problemer med den algebraiske metode. Et af disse problemer er at metoden også medtager ikke-brugbare løsninger. Problemet med dette er, at man bruger tid på at udregne løsninger som man alligevel ikke kan bruge. Derudover så medtager metoden alle brugbare løsninger, hvilket ikke er optimalt, da man egentlig kun ønsker at få bedre og bedre værdier i forhold til objektfunktionen. Det sidste problem er, at metoden ikke fortæller, hvilken 35

40 KAPITEL 5. LØSNINGSMETODER TIL LINEÆRE PROGRAMMERINGSPROBLEMER Variable Faste ( =0 ) Løsning Funktionsværdi Brugbare x 4, x 5, x 6 x 1, x 2, x 3 x 6 = 12000, x 4 = x 5 0 x 1, x 2, x 3 x 4, x 5, x 6 x 1 = 6000, x 2 = 4000, x 3 = x 1, x 2, x 4 x 3, x 5, x 6 x 1 = 12000, x 2 = 0, x 4 = x 1, x 2, x 5 x 3, x 4, x 6 x 1 = x 2 = 6000, x 5 = x 1, x 2, x 6 x 3, x 4, x 5 x 1 = x 2 = 0, x 6 = x 1, x 3, x 4 x 2, x 5, x 6 x 1 = x 4 = 12000, x 3 = x 1, x 3, x 5 x 2, x 4, x 6 x 1 = x 3 = x 5 = x 1, x 3, x 6 x 2, x 4, x 5 x 1 = x 3 = 0, x 6 = x 1, x 4, x 5 x 2, x 3, x 6 x 1 = x 4 = 12000, x 5 = x 1, x 4, x 6 x 2, x 3, x 5 x 1 = x 4 = 12000, x 6 = x 1, x 5, x 6 x 2, x 3, x 4 x 1 = x 5 = x 6 = 0 0 x 2, x 3, x 4 x 1, x 5, x 6 x 2 = 8000, x 3 = 4000, x 4 = x 2, x 3, x 5 x 1, x 4, x 6 - x 2, x 3, x 6 x 1, x 4, x 5 x 2 = x 3 = 0, x 6 = x 2, x 4, x 5 x 1, x 3, x 6 x 2 = x 4 = 12000, x 5 = x 2, x 4, x 6 x 1, x 3, x 5 x 2 = x 4 = 0, x 6 = x 2, x 5, x 6 x 1, x 3, x 4 x 2 = x 5 = 0, x 6 = x 3, x 4, x 5 x 1, x 2, x 6 x 4 = x 5 = 12000, x 3 = x 3, x 4, x 6 x 1, x 2, x 5 x 3 = x 4 = 0, x 6 = x 3, x 5, x 6 x 1, x 2, x 4 x 3 = x 5 = 0, x 6 = Tabel 5.1: Den algebraiske løsningsmetode på eksempel 1. løsning der er den optimale. Man kan altså i princippet få den optimale løsning ved første udregning, men man kan ikke afgøre, om det er den optimale løsning, før man har udregnet alle løsningerne. En metode som ikke har disse ulemper, er altså en bedre metode. Simplex metoden, som er en videreudvikling af den algebraiske metode, har ikke disse ulemper. Vi gennemgår derfor simplex metoden i næste afsnit. 5.3 Simplex metoden Simplex metoden benytter en algoritme til at løse det lineære programmeringsproblem. Helt generelt går simplex metoden ud på følgende. 1. Vælg et ekstremumspunkt (et hjørnepunkt) x i den brugbare mængde. 2. Undersøg alle kanter af D, der mødes i x. Hvis ikke objektfunktionen f kan øges ved at bevæge sig langs en af disse kanter, så er x den optimale løsning. 3. Hvis f kan øges ved at bevæge sig langs en eller flere af disse kanter, så følges den kant, hvor f øges mest, og man flytter til ekstremumspunktet af D i den modsatte ende. 4. Gentag fra skridt 2. 36

41 5.3. SIMPLEX METODEN Da værdien af f altid øges, vil man aldrig komme igennem det samme ekstremumspunkt flere gange, og man vil altid ende med den optimale løsning (hvis der er en) inden for et endeligt antal skridt, da der er et endeligt antal ekstremumspunkter. Hvis problemet er ubegrænset, vil man før eller siden ende på den grænseløse kant i skridt 3, hvor f så vil øges uden grænse. Simplex algoritmen fungerer på følgende måde. Simplex algoritmen 1. Omskriv bibetingelserne fra uligheder til ligninger ved at tilføje slack variable. Lad M være en variabel svarende til objektfunktionen, og skriv følgende ligning under bibetingelserne. (Objektfunktion) M = 0 2. Opskriv simplex tabellen. Slack variablene (og M) danner første basis brugbare løsning. 3. Tjek den nederste række af tabellen. Hvis alle indgangene til venstre for den lodrette linje er ikke-negative, så er løsningen optimal. Hvis nogle er negative, så vælges den variabel x k, hvor indgangen i den nederste række er mest negativ. 4. Tilføj x k til løsningen. Dette gøres ved, at pivotere på den positive indgang a pk, som har det mindste forhold b i. Den nye basis brugbare løsning a ik inkluderer og indsnævrer værdien af M. 5. Gentag processen, startende med trin 3, indtil alle indgangene i den nederste række er ikke-negative. I denne algoritme er der to ting, der kan gå galt: I trin 4 kan der komme en negativ indgang i den nederste række i kolonne x k, men ingen positiv indgang a ik i søjlen over den. Hvis dette er tilfældet, vil det ikke være muligt at finde et pivot element, der kan bringe x k ind i løsningen. Dette svarer til tilfældet, hvor objektfunktionen er ubegrænset og ikke har en optimal løsning. Den anden ting, der kan gå galt opstår også i trin 4. Det mindste forhold b i a ik kan forekomme i mere end en række. Når det sker, vil den næste tabel have mindst en basis variabel der er lig med 0, og i de følgende tabeller vil værdien af M måske være konstant. Vi benytter simplex algoritmen på et eksempel. 37

42 KAPITEL 5. LØSNINGSMETODER TIL LINEÆRE PROGRAMMERINGSPROBLEMER Vi har følgende maksimeringsproblem Max 2x 1 + 3x 2 + 4x 3 u.b.b. 30x x x x x x 1 + 2x 3 50 x 1, x 2, x 3 0. x 1 x 2 x 3 x 4 x 5 x 6 M Tabel 5.2: Simplex: tabel 1 x 1 x 2 x 3 x 4 x 5 x 6 M Tabel 5.3: Simplex: tabel 2 x 1 x 2 x 3 x 4 x 5 x 6 M Tabel 5.4: Simplex: tabel 3 x 1 x 2 x 3 x 4 x 5 x 6 M Tabel 5.5: Simplex: tabel 4 I tabel 5.2 er den første simplex tabel stillet op, hvor der er indført slackvariable. Disse er x 4, x 5, x 6 og det første pivot element er markeret med en firkant. Dette optræder i søjlen x 3, hvilket skyldes at den mest negative værdi i den nederste række befinder sig i denne søjle. Vi finder nu det mindste forhold: = 20, = 10 og 50 2 = 25. Det vil altså sige, at vi skal pivotere omkring I tabel 5.3 og tabel 5.4 ses det, at der er nuller både under og over pivotelementet. Vi finder derfor det næste pivotelement, hvilket gøres på samme måde 38

43 5.3. SIMPLEX METODEN som før. På denne måde fås, at vi skal pivotere omkring 30, hvilket er markeret med en firkant. I tabel 5.5 fås den basis brugbare løsning. x 1 = 10 3, x 3 = 10 og x 6 = 50 3 x 2 = x 4 = x 5 = 0 M = Det vil altså sige, at den optimale løsning fås når x 1 = 10 3, x 2 = 0 og x 3 = 10, hvilket giver en funktionsværdi på 140 3, hvilket er den optimale værdi for vores maksimeringsproblem. 39

44

45 Del II Portefølje teori 41

46 6 Introduktion til moderne portefølje teori De følgende kapitler om moderne portefølje teori kapitel bygger på [Christensen, 2009] kapitel 3 m.fl., [Wikipedia, 2011a], [Wikipedia, 2011b], [Krotscheck, 2011], [Institut, 2011] og [Konno, 1991]. 6.1 Moderne portefølje teori I dette afsnit gennemgås det, der kaldes for den moderne portefølje teori. Denne teori bygger primært på den portefølje teori som Harry M. Markowitz og William F. Sharpe grundlagde, og som de modtog nobelprisen i økonomi for i En af grundene til, at man er interesseret i moderne portefølje teori, er at man ønsker en måde, hvorpå man kan investere sine penge bedst muligt i forhold til afkast og risiko. Det ideelle ville altså være en portefølje, som med sikkerhed ville give et højt afkast uden, at der var nogen risiko forbundet med det. Sådan forholder det sig imidlertid ikke i praksis. Moderne portefølje teori belyser blandt andet denne problemstilling. Når vi snakker om en portefølje så kan denne bestå af aktiver som obligationer, aktier og råvarer. Et af hovedprincipperne i portefølje teorien er, at de aktiver man kan investere i er forbundet med en risiko af større eller mindre grad. Dette betyder altså, at det ikke er muligt at vide, hvad det forventede afkast af aktivet bliver. Det forventede afkast opgøres i det følgende som procent. Moderne portefølje teori går som tidligere antydet ud på at minimere risikoen for et givet forventet afkast. Man kan alternativt maksimere det forventede afkast for en given risiko. Hele konceptet bag moderne portefølje teori er diversificering. Dette går groft sagt ud på at fordele sine penge på aktiver i forskellige grupper således, at hvis aktiverne i en gruppe mister værdi, så øges værdien af aktiverne i den anden gruppe. Dette er for eksempel tilfældet med aktier og obligationer. En af grundene til dette er, at obligationer påvirkes negativt af høj inflation, mens aktier er stabile, hvis ikke stigende, under høj inflation. 1 Dette 1 [Invest, 2011]

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver Optimeringsteori Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver 20/12/2012 Institut for Matematiske Fag Matematik-Økonomi Fredrik Bajers Vej

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer.

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer. LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Introduktion 1 2 Kanoniske programmer 2 3 Standard programmer 2 4 Svag dualitet for standard programmer 3 5 Svag dualitet for generelle lineære programmer

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Optimering af New Zealands økonomi. Gruppe G3-115

Optimering af New Zealands økonomi. Gruppe G3-115 Optimering af New Zealands økonomi Gruppe G3-115 Det Teknisk-Naturvidenskabelige Fakultet Matematik og Matematik-Økonomi Frederik bajersvej 7G Telefon 99409940 http://math.aau.dk Titel: Tema: Optimering

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

G r u p p e G

G r u p p e G M a t e m a t i s k o p t i m e r i n g ( E k s t r e m a, t e o r i o g p r a k s i s ) P 3 p r o j e k t G r u p p e G 3-1 1 7 V e j l e d e r : N i k o l a j H e s s - N i e l s e n 1 4. d e c e m b

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Største- og mindsteværdi Uge 11

Største- og mindsteværdi Uge 11 Uge 11 : Definitioner Efterår 2009 : Definitioner Lad A R n og f : A R en reel funktion af n. : Definitioner : Definitioner Lad A R n og f : A R en reel funktion af n. Punktet a = (a 1, a 2,..., a n )

Læs mere

Lineær programmering. Maksimer c T u.b.b. A b hvor > 0. Vores metode er også nytteløs her. Ekstrema- teori og praksis

Lineær programmering. Maksimer c T u.b.b. A b hvor > 0. Vores metode er også nytteløs her. Ekstrema- teori og praksis Lineær programmering Ekstrema- teori og praksis Maksimer c T u.b.b. A b hvor > 0 Vores metode er også nytteløs her MAT3, EFTERÅR 2011 GROUP G3-112 INSTITUT FOR MATEMATISKE FAG AALBORG UNIVERSITET 16. DECEMBER

Læs mere

MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 11 Lineær optimering Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 46, 2010 Formålet med MASO Oversigt 1 Generelle lineære programmer 2 Definition Et generelt lineært

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Noter til kursusgang 8, IMAT og IMATØ

Noter til kursusgang 8, IMAT og IMATØ Noter til kursusgang 8, IMAT og IMATØ matematik og matematik-økonomi studierne 1. basissemester Esben Høg 25. oktober 2013 Institut for Matematiske Fag Aalborg Universitet Esben Høg Noter til kursusgang

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

Note om interior point metoder

Note om interior point metoder MØK 2016, Operationsanalyse Interior point algoritmer, side 1 Note om interior point metoder Som det er nævnt i bogen, var simplex-metoden til løsning af LP-algoritmer nærmest enerådende i de første 50

Læs mere

Ekstrema: Teori og praksis Ubegrænset, ikke-lineær optimering

Ekstrema: Teori og praksis Ubegrænset, ikke-lineær optimering Ekstrema: Teori og praksis Ubegrænset, ikke-lineær optimering Gruppe G3-106 Aalborg Universitet Institut for Matematiske Fag 20. december 2012 Institut for Matematiske Fag Fredrik Bajers Vej 7G 9220 Aalborg

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 2 Juni 2008, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y). Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)

Læs mere

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

matematik-økonomi-studerende

matematik-økonomi-studerende matematik-økonomi-studerende Første studieår Introduktion til matematiske metoder i økonomi Skriftlig prøveeksamen december 2012 med korte svar Dato: selvvalgt Tidspunkt: varighed 4 timer Tilladte hjælpemidler:

Læs mere

Funktionsterminologi

Funktionsterminologi Funktionsterminologi Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

Operationsanalyse 1 Obligatorisk opgave 2

Operationsanalyse 1 Obligatorisk opgave 2 Operationsanalyse Obligatorisk opgave Anders Bongo Bjerg Pedersen. juni Opgave (i) Vi tilføjer først slack-variable til (P ): Minimize Z = x + x + x subject to x + x + x x 4 = x x + x x 5 = x + x x x =

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Chapter 5: Simplex metoden til løsning af LP. -> max problem alle uligheder af typen ì alle højresider ikke-negative alle variable ikke-negative

Chapter 5: Simplex metoden til løsning af LP. -> max problem alle uligheder af typen ì alle højresider ikke-negative alle variable ikke-negative Chapter 5: Simplex metoden til løsning af LP Formål: Udvikling af generel metode til løsning af enhver type LP. Metoden udvikles først for LP i standard form -> max problem alle uligheder af typen ì alle

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 5. november 2016 1 Partielle differentialligninger 1.1 Udledning af varmeligningen Vi vil nu på samme måde som med bølgeligningen

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Funktioner af to variable

Funktioner af to variable enote 15 1 enote 15 Funktioner af to variable I denne og i de efterfølgende enoter vil vi udvide funktionsbegrebet til at omfatte reelle funktioner af flere variable; vi starter udvidelsen med 2 variable,

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Lineær programmering. med Derive. Børge Jørgensen

Lineær programmering. med Derive. Børge Jørgensen Lineær programmering med Derive Børge Jørgensen 1 Indholdsfortegnelse. Forord ---------------------------------------------------------------------------------- 2 Introduktion til lineær programmering

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Maj 2013 (alle opgaver og alle spørgsmål)

Maj 2013 (alle opgaver og alle spørgsmål) Maj 2013 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Jeg gider ikke håndregne i de simple spørgsmål! Her

Læs mere

Grafmanipulation. Frank Nasser. 14. april 2011

Grafmanipulation. Frank Nasser. 14. april 2011 Grafmanipulation Frank Nasser 14. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007 Funktionalligninger Anders Schack-Nielsen 5. februar 007 Disse noter er en introduktion til funktionalligninger. En funktionalligning er en ligning (eller et ligningssystem) hvor den ubekendte er en funktion.

Læs mere

Matlab script - placering af kran

Matlab script - placering af kran Matlab script - placering af kran 1 Til at beregne den ideelle placering af kranen hos MSK, er der gjort brug af et matlab script. Igennem dette kapitel vil opbygningen af dette script blive gennemgået.

Læs mere

Planen idag. Fin1 (mandag 16/2 2009) 1

Planen idag. Fin1 (mandag 16/2 2009) 1 Planen idag Porteføljeteori; kapitel 9 Noterne Moralen: Diversificer! Algebra: Portefølje- og lineær. Nogenlunde konsistens med forventet nyttemaksimering Middelværdi/varians-analyse Fin1 (mandag 16/2

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 7, 2009 Produceret af Hans J Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 Definition kritisk punkt: funktion f(x, y) er et kritisk punkt

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

Simplex metoden til løsning af LP

Simplex metoden til løsning af LP Chapter : Simplex metoden til løsning af LP Formål: Udvikling af generel metode til løsning af enhver type LP. Metoden udvikles først for LP i standard form -> max problem alle uligheder af typen Ÿ alle

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

P2-gruppedannelsen for Mat og MatØk

P2-gruppedannelsen for Mat og MatØk Institut for Matematiske Fag Aalborg Universitet Danmark 1-02-2012 Vejledere Bo Hove E-mail: bh@thisted-gymnasium.dk 3 Mat grupper (semesterkoordinator) E-mail: diego@math.aau.dk. Web page: http://people.math.aau.dk/~diego/

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Differentialkvotient af cosinus og sinus

Differentialkvotient af cosinus og sinus Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 10/11 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Hasse Rasmussen

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere