Oversigt over undervisningen i matematik - 1x 04/05

Størrelse: px
Starte visningen fra side:

Download "Oversigt over undervisningen i matematik - 1x 04/05"

Transkript

1 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien introduktion og eksempler Ovenstående forkortelser vi fremover blive brugt i noterne. Test i færdighedsregning Resultat: gennemsnit på 17,3 ud af 36 mulige TGF side Introduktion til matematik Sproget Redskabet Objektiv og subjektiv beskrivelse Matematikken som sprog Matematikkens generelle natur Problemløsning - man kan løse forskellige problemer med samme metode. Model - virkelighed Abstraktion - matematikken som hjælp til at skabe overblik. EKS 1 -Intro Introduktion i anvendelse af TI-84 Indtastning af udtryk Bemærk anvendelse af tastesekvensen 2nd ENTRY Brøkregning Bemærk at lommeregneren er i stand til at regne med brøker og omforme et decimaltal til en brøk. Last answer Tasten er især nyttig, hvis der ved beregning af et udtryk ønskes nogle mellemresultater. Eksponentiel notation på TI-84 Bemærk, at hvis du ønsker at alle tal noteres eksponentielt skal du vælge Sci ( Scientific notation ) på lommeregneren ( se side 11 i EKS ) Regningsarternes hierarki: 1) Først udregnes eksponenter i potenser 2) Dernæst udregnes potenser og rødder 3) Så udregnes multiplikation og division I brøker udregnes tæller og nævner, før brøken udregnes 4) Til sidst udregnes addition og subtraktion

2 TGF side Bogstavregningens muligheder side2 Eksempler på anvendelse af bogstavregning ( suppleret med et eksempel på en kortkunst ). Grafiske fremstillinger Eksempler på grafiske fremstillinger Grafer benyttes til at skabe overblik og opdage ( eller forudsige ) tendenser i en udvikling; men kan også bruges til manipulation. EKS 2 side Graftegning ved hjælp af TI - 84 Eksempel på anvendelse : fra hjemmeopgave 1 Fortjeneste funktionen indtastes i Y= - editoren. Fastlæg et vindue (menuen WINDOW )ud fra oplysningerne i opgaven, således at grafen udnytter det meste af displayet. Man kan finde det antal varer der skal produceres for at fortjenesten bliver positiv med menuen CALC ZERO. Man kan i stedet ( som vi gjorde i timen) indtaste både omkostningsfunktionen og salgsfunktionen og finde skæringspunktet ved hjælp af kommandoen CALC INTERSECT TGF side s Geometriske problemstillinger Geometrisk model og virkelighed Abstraktion og forenkling Pythagoras sætning: a 2 + b 2 = c 2 Videofilm med Pythagoras læresætning med flere beviser for sætningen samt nogle anvendelser.

3 side3 Det matematiske bevis. Det matematiske bevis bygger på nogle forudsætninger, som enten er vist tidligere eller er så indlysende sande at de ikke kræver bevis. De indlysende sande påstande kaldes aksiomer. Ud fra aksiomer opbygges matematiske sætninger gennem logiske ræsonnementer. TGF side Tal De hele tal Denne deduktive opbygning af matematikken ses i ren form i Euklids elementer. Brøker Regneregler for multiplikation og division af positive og negative tal Regneregler for parenteser Regneregler for regning med brøker Interaktive øvelser på nettet med brøkregning. Endelige ( og uendelige ) decimaltal De rationale tal ( tal der kan skrives som en brøk mellem to hele tal ) er netop de tal der kan skrives som endelige eller uendelige periodiske decimaltal. De irrationale tal er de tal, der kan skrives som uendelige decimaltal uden en periode. Eksempelvis er tallet 0, irrationalt. Man kan vise at π og 2 er irrationale. Mængden af rationale og irrationale tal udgør de reelle tal. Notation: De naturlige tal : 1,2,3,4,5 N De hele tal Z De rationale tal Q De reelle tal R Reduktion - betyder at gøre et udtryk simplere Formålet med reduktion er bl.a. At udtryk bliver mere nøjagtige ved beregning. At kunne løse ligninger Til dette må man kunne Hæve og sætte parenteser Sætte fælles faktorer uden for en parentes Gange parenteser ud Forkorte og forlænge brøker Sætte på fælles brøkstreg

4 TI-84 I forbindelse med opgavehjørnet er der vist en anvendelse af TI-84 til løsning af n ligninger med n ubekendte side4 Eksempel: Løs ligningssystemet : H + P + J = 134 H = 2P H 2P + 0 J= 0 J 2 = P + H H + P J = 2 1) Definer en 3x4 matrix: Tast : MATRX EDIT 1:[A] 3 ENTER 4 ENTER 2) Forsæt med at indtaste koefficienterne, så matricen får udseende: [ ] [ ] [ ] og afslut med 2nd QUIT 3) Få løsningerne beregnet Tast MATRX MATH ALPHA B MATRX 1 ) Nu viser lommeregneren : rref([a]). Ved tast på ENTER fås følgende på lommeregnerens display: hvor tallene i sidste søjle angiver løsningen (H,P,J) = ( 44,22,68) Isolering af størrelser I forbindelse med opgaver i trekantsberegning kommer I til at skulle isolere størrelser i ligninger. Ligeledes kommer I ofte ud for at skulle isolere størrelser i formler i fagene fysik og kemi. Ekstra træning fås på nettet med træningsprogram i isolering : Potenser Definition af potens n N a n = a a a a n faktorer Regneregler for potenser samlet oversigt på side 54 i TGF Definition af rod n a = b b n = a og 0 b Det udvidede potensbegreb

5 side5 Definition af potens med nul og negativ eksponent n = 0 a 0 = 1 n < 0 1 a n Definition af potens med brøker som eksponent Hvis a > 0 og p/q er en brøk defineres: a p/q = ( q a) p Regneregler for rødder samlet oversigt på side 54 i TGF Bemærk af potensregnereglerne stadig gælder for det udvidede potensbegreb. Kvadratsætningerne: Eksponentiel notation (a+b) 2 = a 2 + b 2 +2ab (a- b) 2 = a 2 + b 2-2ab (a+b)(a-b) = a 2 - b 2 (a + b) 3, (a + b) 4 kan udregnes vha. Pascal s trekant: sum: ( = 2 5 ).... Eks: (a+b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4 Øvelser med regning med små og store tal Udregning af mængden af korn som "opfinderen" af skakspillet udbad sig som belønning. Hertil udregnes først det samlede antal korn: S = S = (I) (II) I - II giver

6 side6 S = = ( hvis kornet skal fordeles jævnt over Danmarks overflade, vil det komme op i en højde af ca meter!) EKS side Eksponentiel notation på TI-84 Bemærk, at hvis du ønsker at alle tal noteres eksponentielt skal du vælge Sci ( Scientific notation ) på lommeregneren ( se side 11 i EKS ) I samarbejde med fysik er der arbejdet med fysiske størrelser og enheder (SI enheder) og præfikser i forbindelse med eksponentiel notation. Noter er udleveret. Den rette linie ( i samarbejde med fysik og kemi ) I kemi er der lavet forsøg med måling saltindhold i sved. Måleresultaterne er indskrevet som tabel i Excel regneark. Regnearket er anvendt til at finde en matematisk model for sammenhængen. Ved at bestemme en tendenslinie er der påvist en lineær sammenhæng. Lineær funktion En funktion, der har en regneforskrift der kan skrives på formen: f(x) = ax + b hvor a og b er reelle tal kaldes en lineær funktion. Disse funktioner har grafer, der ligger på en ret linie. Alle rette linier, undtagen lodrette, kan være graf for en lineær funktion. Betydning af konstanterne a og b: a: kaldes hældningskoefficienten eller stigningstallet og er den tilvækst i y-koordinat der svarer til tilvæksten 1 i x-koordinat. b: angiver liniens skæring med 2. aksen. Eksempel: Sammenhæng mellem temperatur målt i Celsius og Fahrenheit F = 1,8 C + 32 Vi får C = (451-32)/1,8 = 233 C ( papirs antændelses temperatur) Hvis man skal finde den temperatur i C,der svarer til 451 F, skal man netop løse en ligning af form y = a x + b med x som ubekendt. Øvelser med den rette linie i datarummet - bl.a. øvelser i bestemmelse af konstanterne a og b i udsagnet y = ax + b Øvelserne findes på min hjemmeside under klasser 1x interaktive øvelser på nettet

7 Lineære modeller side7 Lineær vækst er karakteriseret ved, at der til lige store tilvækster på den uafhængige variabel svarer lige store tilvækster på den afhængige variabel. Man kan undersøge om der er en lineær sammenhæng mellem to størrelser ved at afsætte sammenhørende værdier i et koordinatsystem. Hvis punkterne tilnærmelsesvis ligger på ret linie, kan vi konstatere en lineær sammenhæng. Forskriften for den lineære funktion bestemmes ved at tegne en ret linie, der " bedst muligt " passer til punkterne. EKS s På TI-84 kan man beregne forskriften for den bedste rette linie. Metoden kaldes lineær regression. Metoden er gennemgået og er beskrevet i detaljer i den udleverede Eksempelsamling til TI-84. Der findes et program på skolens netværk - REGRESS - der gør det samme. Programmet kan downloades fra min hjemmeside. Facilitet er også indbygget i regnearket EXCEL ( tendenslinier). TGF side Talmængder og ligninger Mængder og talmængder Bevis for at 2 er irrational et eksempel på indirekte bevis. Intervaller Mængdeoperationer Udsagn Åbne udsagn og løsningsmængde Ligninger To udsagn der har samme løsningsmængde siges at være ensbetydende og man bruger det logiske symbol imellem sådanne udsagn. Regneregler vedrørende ligninger er omskrivninger af ligninger, der giver uændret løsningsmængde. Nulreglen a b = 0 a = 0 b = 0 a/b = 0 a = 0 ( b 0 ) Interaktiv løsning af ligninger på nettet - adresse:

8 side8 I matematik bruges ofte åbne udsagn, hvortil der er knyttet løsningsmængder. Følgende oversigt over udsagn med logiske symboler og deres løsningsmængde med mængdesymboler kan være nyttig. p q P Q Fællesmængde p q P Q Foreningsmængde p q P Q Delmængde p CP Komplementærmængde Uendelige processer Uendelige decimalbrøker De rationale tal kan repræsenteres som decimalbrøker - enten endelige eller uendelige med en periode i cifrene. Øvelser i at omskrive en brøk til en decimalbrøk (divisionsalgoritmen) og en endelig eller periodisk decimalbrøk til en brøk. Uendelige ikke periodiske decimalbrøker er de irrationale tal. Eksempler på irrationale tal er 2 og π. Zenons paradoks

9 TGF side Trigonometri Trekanter Tre grundlæggende sætninger om trekanter: 1) Vinkelsummen er ) Pythagoras læresætning : c = a + b 3) Trekantens areal : T = ½ h g side9 Gruppearbejde i øvelser med brug af ovenstående formler L igedannede trekanter Sætning om ensvinklede trekanter : Hvis to trekanter er ensvinklede er de ligedannede, og tilsvarende sider i de to trekanter er forbundet med samme skalafaktor. Øvelser med anvendelse ovenstående sætninger. Trekantsberegninger Definition af sinus, cosinus og tangens Sætning: Hvis A er en spids vinkel i en retvinklet trekant gælder: sin(a) = modstående katete divideret med hypotenusen cos(a) = hosliggende katete divideret med hypotenusen tan(a) = modstående katete divideret med den hosliggende katete. Sætningen bør læres udenad!! Lommeregner: Husk at indstille den til gradtal Tast MODE : Øvelser med beregning af sider og vi nkler i en retvinklet trekant. Vedrørende opgaver i trekantsberegning: Tegn en figur med benævnelser for sider og vinkler, der indgår i opgaven. Sæt mål på de opgivne sider. På min hjemmeside ligger et lille program ( som kan downloades ) til beregning af ubekendte størrelser i en vilkårlig trekant.

10 Udvidelse af cosinus, sinus og tangens side10 Indførelse af retningspunkt for en vilkårlig vinkel ( også negative vinkler og vinkler større end 360 ) på en enhedscirkel. Definition af cosinus og sinus: Cosinus og Sinus til en vilkårlig vinkel, v, er koordinaterne til vinklens retningspunkt P v : P v = ( cos v, sin v ) Nedenfor ses grafen for sinus og til venstre herfor ses grafen for cosinus ( drejet 90 ) Ved at følge retningspunktets koordinater, mens vinklen varierer, kan man se, hvorledes cos v og sin v ændrer sig. Definition af tangens: Tangens til en vinkel er defineret ved: tan v = sin v, cos v 0 cos v Tangens kan aflæses på en figur med en enhedscirkel, som y-koordinaten til skæringspunktet mellem linien gennem koordinatsystemets begyndelsespunkt og retningspunktet for vinklen og linien x = 1 ( lodret linie gennem (1;0)) Simple overgangsformler for cosinus Ved hjælp af betragtninger på enhedscirklen kan man nemt vise simple regler for cosinus, sinus og tangens. Her følger de vigtigste:

11 1) cos( v) = cos (v) sin ( v) = sin(v) 2) cos(180 v) = cos(v) sin(180 v) = sin (180 v) 3) cos(90 v) = sin(v) sin(90 v) = cos(v) 4) sin 2 (v) + cos 2 (v) = 1 "idiotfomlen" side11 Bemærk at formlerne 2) og 3) omhandler supplementvinkler og komplementvinkler. u og v kaldes supplementvinkler hvis u + v = 180 u og v kaldes komplementvinkler hvis u + v = 90 Eksakte værdier for cosinus og sinus V cos(v) 1 = 4/2 3/2 2/2 1/2 = 1/2 0 = 0 /2 sin(v) 0 1/2 2/2 3/2 1 Sinus- og cosinusrelationerne Sinus - Relation erne: I en vilkårlig trekant gælder: a sin A = b c = sin B sin C = 2R hvor R er radius for trekantens omskrevne cirkel NB! Bemærk at anvendelse af formlen, hvor en vinkel skal findes, kan give den forkerte vinkel ( supplementvinklen ). Invers sinus giver altid en vinkel mellem 0 og 90 på lommeregneren. Derfor - Tegn altid en figur og brug formlen om supplementvinkler. Arealformel: T = ½ h g " en halv højde gange grundlinie" eller T = ½ ab sin(c) "det halve produkt af to sider og sinus til den mellemliggende vinkel" Cosinus - Relationerne: c 2 = a 2 + b 2 2ab cos(c) a 2 = b 2 + c 2 2bc cos(a) b 2 = a 2 + c 2 2ac cos(b) eller cos(c) = a + b c 2ab cos(a) = b2 + c 2 a 2 2bc cos(b) = a2 + c 2 b 2 2ac Cosinusrelationen kaldes også for den udvidede Pythagoræiske læresætning for vilkårlige trekanter.

12 side12 Øvelser i trekantsberegnin g Jeg har lavet et program til trekantsberegning. Det kan hentes på min hjemmeside under 1x. Et træningsprogram i trekantsberegningen finder i på adressen: Programmet er giver en god træning i at finde den rigtige formel og isolering af den ubekendte fra formlen. I forbindelse med trekantsberegning kan nævnes følgende vigtige geometriske sætninger: Sætninger: Sætning om midtnormalerne i en trekant En trekants 3 midtnormaler skærer hinanden i samme punkt. Skæringspunktet er centrum for trekantens omskrevne cirkel Sætning om vinkelhalverings linierne i en trekant En trekants 3 vinkelhalveringslinier skærer hinanden i samme punkt. Skæringspunktet er centrum for trekantens indskrevne cirkel Sætning om medianerne i en trekant En trekants 3 medianer skærer hinanden i samme punkt. Skæringspunktet kaldes trekantens tyngdepunkt. Skæringspunktet deler hinanden i forholdet 1:2 Et bevis for sætningen findes på adressen: Sætning om højderne i en trekant En trekants 3 højder skærer hinanden i samme punkt. Nogle nyttige formler i forbindelse med trekantsberegning: R = Radius for trekantens omskrevne cirkel r = radius for trekantens indskrevne cirkel s = trekantens halve omkreds T = trekantens areal

13 side13 a sin A b = sin B = c sin C = 2R 4RT = abc T = rs = s(s a)(s b)(s c) Den sidste formel kaldes Herons formel. Konstruktion (med passer og lineal) H U S K! : Nedenfor er en oversigt over de fem trekantstilfælde med forslag til benyttelse af formler til beregning af de ubekendte stykker. 1) at konstruere den givne trekant ( til forklaring og kontrol ) 2) at angive størrelser og betegnelser på figuren 3) at lagre mellemresultater på lommeregneren Figur: Givet: c De tre sider 1) Find den største vinkel (overfor den største side) ved cosinusrelationerne. a b 2) Find en anden vinkel ved sinusrelationerne. 3) Vinkelsummen er 180 b En vinkel og de 1) Find den manglende side ved cosinusrelationerne. A hosliggende 2) Find den mindste vinkel ( overfor den mindste side) ved c sider. sinusrelationerne 3) Vinkelsummen er 180 En vinkel, en 1) Find den af de manglende vinkler, som det er muligt at a hosliggende side finde ved sinusrela tionerne. Der er muligvis 2 løsninger A og en modståen- 2) Vinkelsummen er 180 c de side 3) Find sidste side ved hjælp af sinusrelationerne To vinkler og 1) Vinkelsummen er 180 den mellemliggende 2) De to sider findes ved hjælp af sinusrelationerne A B side c To vinkler og en 1) Vinkelsummen er 180 a ikke-mellemlig- 2) De to sider findes ved hjælp af sinusrelationerne gende side A B

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik C Angela

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

Undervisningsbeskrivelse & Oversigt over projektrapporter

Undervisningsbeskrivelse & Oversigt over projektrapporter Undervisningsbeskrivelse & Oversigt over projektrapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2014, skoleåret 13/14 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2015, skoleåret 14/15 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2013 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

Repetition og eksamensforberedelse.

Repetition og eksamensforberedelse. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) maj-juni 2014 skoleår 13/14 Herning HF og VUC Hf Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik C Michael

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin sommer 15 Institution VUC-vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kofi Mensah 1maC05

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Vestegnens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Jack

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Matematik for hf C-niveau

Matematik for hf C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for hf C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for hf C-niveau

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 15 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kristian Møller

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Suna Vinther

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Vest - Esbjerg Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Peter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby Hf Matematik C Ashuak Jakob France

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Mine matematik noter C

Mine matematik noter C Mine matematik noter C Ib Michelsen mimimi.dk Ikast 2006 Indholdsfortegnelse Indledning...5 Geometri...7 Om geometri...9 Navne...11 Definition: Trekanten...11 Ensvinklede og ligedannede trekanter13 Definition:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg HF

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hf Mat C Viktor Kristensen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer Hold hf Matematik C Dorte Christoffersen

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj-juni 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard Lindeløv mac2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2015 VUC

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B Ashuak Jakob France

Læs mere

Odense Tekniske Skole

Odense Tekniske Skole Odense Tekniske Skole Lokal undervisningsplan for matematik i grundforløbet Læringsaktiviteten matematik på grundforløbet på håndværk og teknik Niveauer: I matematik undervises på niveau F, men tilbydes

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Bemærkninger til den mundtlige årsprøve i matematik

Bemærkninger til den mundtlige årsprøve i matematik Spørgsmål til årsprøve 1v Ma 2008 side 1/5 Steen Toft Jørgensen Bemærkninger til den mundtlige årsprøve i matematik IT-værktøjer Jeg forventer, at I er fortrolige med lommeregner TI-89 og programmerne

Læs mere

Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven):

Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven): Kære matematiklærer Formålet med denne materialekasse er, at eleverne med konkrete materialer og it får mulighed for at gøre sig erfaringer, der kan føre til, at de erkender de sammenhænge, der gør sig

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Matematik. Jonas Albrekt Karmann (JK) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) Mål for undervisningen: Matematik Årgang: Lærer: 9. årgang Jonas Albrekt Karmann (JK) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Spørgsmål Nr. 1. Spørgsmål Nr. 2

Spørgsmål Nr. 1. Spørgsmål Nr. 2 Spørgsmål Nr. 1 TITEL: Statistik Definition af beskrivende statistik Opdeling af beskrivende statistik i grupperede observationer og ikke grupperede observationer Deskriptorerne typetal og middelværdi

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Matematik for C niveau

Matematik for C niveau Matematik for C niveau M. Schmidt 2012 1 Indholdsfortegnelse 1. Tal og bogstavregning... 5 De elementære regnings arter og deres rækkefølge... 5 Brøker... 9 Regning med bogstavudtryk... 12 Talsystemet...

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

Undervisningsplan Side 1 af 11

Undervisningsplan Side 1 af 11 Undervisningsplan Side 1 af 11 Lektionsantal: 12 UV lektioner pr. uge I alt ca. 240 lektioner. Fordelt mellem underviserne således: Erik Kyster (EK) 6 lektioner pr. uge og Esben Stehr (EST) 6 lektioner

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer Hold VUC Skive-Viborg Hfe Matematik C Claus Ryberg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse. Fag:matematik Hold:18 Lærer:ym Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 33-37 Hovedvægten er elevernes forståelse for matematiske begreber.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Alexander

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Side 1/5 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger Eksamensspørgsmål 11q sommer 01. Gør rede for omformningsreglerne for ligninger. Spørgsmål 1: Ligninger Giv eksempler på hvordan forskellige ligninger løses. Du bør her komme ind på flere forskellige ligningstyper,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 VUCHA Hf-Flex Matematik-C Ivan Tønner Jørgensen(itj)

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. FORELØBIGE eksamensspørgsmål mac7100 og mac710 dec 01 og maj/juni 013. Spørgsmål 1: Ligninger Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Giv eksempler

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Matematik C Nst 16A Oversigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Forår 2015 414 Københavns VUC Hf Matematik C Pia Hald ph@kvuc.dk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hf2 Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Trine Eliasen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Lise A.

Læs mere