Oversigt over undervisningen i matematik 1y 07/08

Størrelse: px
Starte visningen fra side:

Download "Oversigt over undervisningen i matematik 1y 07/08"

Transkript

1 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående forkortelser vil fremover blive brugt i noterne. Introduktion til matematik.tal og grundlæggende regneteknik (MatC side 7 15) 1. Tal Oversigt over talmængder: N = { 1,2,3,..} Naturlige tal Z = {.-3,-2,-1,0,1,2,3 } Hele tal Q = mængden af rationale tal - tal der kan skrives som en kvotient mellem to hele tal. R = mængden af reelle tal rationale og irrationale tal C = mængden af komplekse tal En ny teori inden for matematikken fraktalgeometri anvender komplekse tal. Et freewareprogram til fremstilling af fraktaler findes på min hjemmeside under matematiklinks (Fractint homepage ) Intervaller en sammenhængende mængde af tal på de reele tals akse kaldes et interval. Oversigt over intervaller på side 10 i MatC Koordinatsystem Oversigt side 10 i MatC Oversigt over forskellige talsystemer: grundtal: Indisk positionssystem 10 Babylonsk positionssystem 60 Græsk ikke positionssystem Ægyptisk ikke positionssystem Romersk ikke positionssystem Nora Malkeko s positionssystem 8 Binært positionssystem 2 Bemærk at der på dansk er rest af tallet 20 som basis for talordene. Arbejde med "tydning" af babylonske lertavler. 9 - tabel, der viser hvordan man har brugt kileskrift til angivelse af tal et positionssystem med grundtallet 60. Lertave " med 2 ", der tyder på at babylonierne har haft kendskab til Pythagoras sætning ca år før Pythagoras levede. Et moderne bevis for Pythagoras sætning se noter.

2 side2 Det binære talsystem Eksempler og øvelser i det binære talsystem Bemærk at multiplikationsalgoritmen virker fuldstændigt som i 10-talsystemet. Talsystemer med grundtal 8 og 16 anvendes ligesom det binære talsystem i EDB. Enkelte eksempler på regning i 8-talsystemet ( Nora Malkeko) afsluttet med Tom Lehrers parodi på den moderne matematik. 2. De fire regningsarter En anvendelse i spil : Nimspil Man lægger tændstikker op som vist på figuren. Spillerne skiftes til at fjerne et antal tændstikker fra én række. Den spiller der tager den sidste brik har tabt. Oversigt på side 12 Introduktion til TI-82 STAT ( EKS side 4 12 ) Aktivitet : Aritmetiske udtryk. Eksponentiel notation Øvelser med regning med små og store tal Udregning af mængden af korn som "opfinderen" af skakspillet udbad sig som belønning. Hertil udregnes først det samlede antal korn: S = S = (I) (II) I - II giver S = = ( hvis kornet skal fordeles jævnt over Danmarks overflade, vil det komme op i en højde af ca meter!) EKS side 12 Eksponentiel notation på TI-STAT Bemærk, at hvis du ønsker at alle decimaltal noteres eksponentielt skal du vælge Scientific notation på lommeregneren ( se side 19 i MatC )

3 Potenser og rødder side3 Definition af potens n N a n = a a a a n faktorer Definition af rod n a = b b n = a og 0 b Det udvidede potensbegreb Definition af potens med nul og negativ eksponent n = 0 a 0 = 1 n > 0 a n = 1 a n Definition af potens med brøker som eksponent Hvis a > 0 og p/q er en brøk defineres: a p/q = ( q a) p ( = q p a ) Bemærk af potensregnereglerne stadig gælder for det udvidede potensbegreb. Bemærk også, at vi med rødder har eksempler på tal, der ikke kan skrives som en brøk. Tal, der ikke kan skrives som en brøk kaldes irrationale tal. Eksempler på irrationale tal er π og 2 I kan finde et bevis for, at 2 er irrational i noten Tal på under 1y. Oversigt over regneregler for potenser: Regneregler for potenser 1) a 0 = 1 2) a n+m = a n a m 3) a n m = an a m specielt er a m = 1 a m 4) a n m = (a n ) m 5) a m/n m = n a specielt er a 1/n = n a a>0 n, m Z Sådan beregnes rodstørrelser på TI-82 STATS 7 5 : 7 MATH ( 5 ) ENTER eller 5^ 7 x -1 ENTER

4 Kvadratsætningerne: side4 (a+b) 2 = a 2 + b 2 +2ab (a- b) 2 = a 2 + b 2-2ab (a+b)(a-b) = a 2 - b 2 (a + b) 3, (a + b) 4 kan udregnes vha. Pascal s trekant: sum: ( = 2 5 ).... Eks: (a+b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4 En oversigt over regneregler for potenser, rødder, parentesregning og brøkregning kan i finde på Regningsarternes hierarki Vigtige regneregler 1) Først udregnes eksponenter i potenser 2) Dernæst udregnes potenser og rødder 3) Så udregnes multiplikation og division. I brøker udregnes tæller og nævner, før brøken udregnes 4) Til sidst udregnes addition og subtraktion. a b = b a Den kommutative regel ( faktorernes orden er ligegyldig ) a (b c) = (a b) c Den associative regel a (b + c) = a b + a c Den distributive regel a p a q = a p+q a p a q = a p q a 0 = 1 a b = a b a b = a b Potensregneregler Regneregler for kvadratrødder der er tilsvarende regneregler for rødder med vilkårlig rodeeksponent

5 a a c c = b b a b c d = a c b d a b :c = a a c a b :c d = a d b c Brøkregneregler side5 Regnereglerne bruges ved reduktion og løsning af ligninger. Reduktion - betyder at gøre et udtryk simplere Formålet med reduktion er bl.a. At udtryk bliver mere nøjagtige ved beregning. At kunne løse ligninger Til dette må man kunne Hæve og sætte parenteser Sætte fælles faktorer uden for en parentes Gange parenteser ud Forkorte og forlænge brøker Sætte på fælles brøkstreg Brøkregning Det er nyttigt at have kendskab til regning med brøker. Vi har arbejdet med interaktive øvelser i brøkregning på Internettet. Øvelserne kan findes på min hjemmeside. Hvis man f.eks. skal lægge to brøker sammen eller trække dem fra hinanden må man først sørge for at brøkerne har samme nævner: 2/3 4/7 = 14/21 12/21 = 2/21 Med TI-82 kan man udregne resultatet ved at bruge faciliteten Frac i Mathbiblioteket: Endelige decimalbrøker Alle rationale tal er de tal, der kan skrives som en brøk. Dvs. at alle hele tal og blandede tal er rationale tal. Alle rationale tal kan omskrives til en endelig eller uendelig decimalbrøk - og omvendt. Eks. 2/5 = 0,4 22/7 = 3, ( er perioden, og man skriver 22/7 = 3, ) Eksempler på irrationale tal er 2 og π Man kan vise at de irrationale tal er det samme som ikke periodiske decimaltal. π = 3,

6 side6 Interaktive øvelser i brøkregning på nettet På min hjemmeside kan I finde nogle java-appletter ( af Preben Møller Henriksen ) i brøkregning. Det drejer sig om følgende øvelser: Brøkregning Reduktion af brøkudtryk Et brøkspil C-niveau - brøkregning og regnetest Løsning af ligninger. Mat C s Løsning af ligninger. Udsagn Et udsagn er en sætning som har præcis en af værdierne sand eller falsk Åbne udsagn er en sætning, der indeholder en variabel størrelse som for enhver værdi af den variable har værdien sand eller falsk. Sandhedsmængden for et åbent udsagn kaldes også for løsningsmængden. Beregning af løsningsmængden til en ligning foretages ved at omforme ligningen, så den ubekendte isoleres på den ene side af lighedstegnet. Om disse omformninger gælder følgende regler: Regneregler for omformning af ligninger 1) Man må trække det samme tal fra eller lægge det samme tal til på begge sider af et lighedstegn 2) Man må gange og dividere med samme tal på begge sider af et lighedstegn, undtagen med nul. Når ovenstående regneregler anvendes, får man en ligning hvor løsningsmængden er den samme som den oprindelige. Man siger at udsagnene er ensbetydende. Man bruger symbolet imellem ensbetydende udsagn. Metode til at beregne løsningsmængden til simple ligninger og uligheder: 1) gang parenteser ud. 2) fjern brøker ved at gange med fællesnævneren for brøkerne i udsagnet. 3) saml alle x ' erne på den ene side af lighedstegnet og alle tallene på den anden. 4) divider på begge sider af lighedstegnet med det tal,der står foran x. 5) opskriv løsningsmængden. Husk! Nulreglen a b = 0 a = 0 b = 0 a/b = 0 a = 0 ( b 0 ) Interaktiv løsning af ligninger på nettet - adresse:

7 side7 3 eksempler: 1) 2(x - 1) + 3 = 5 -(x-1) 2) 3(x+2) = x + 2(1+x) 3) 5x - 2(x+3) = 3x - 6 1) 2(x - 1) + 3 = 5 -(x-1) 2x = 5 x + 1 3x = 5 x = 5/3 L = {5/3} 2) 3(x+2) = x + 2(1+x) 3x + 6 = x x 3x + 6 = 3x = 2 L = Ø Formeleditor 3) 5x - 2(x+3) = 3x 6 5x 2x 6 = 3x 6 3x 6 = 3x 6 0 = 0 L = R Hvis udsagnet er ensbetydende med et udsagn der er falsk ( for alle x ) er der ingen løsninger og vi siger at løsningsmængden er tom og skriver L = Ø Hvis udsagnet er ensbetydende med et udsagn der er sandt ( for alle x ) er alle tal løsninger og vi skriver L = R ( mængden af alle tal ) Løsning af ligninger på grafregneren TI-82 Stats ( eller TI-83) Metoden er beskrevet i 9 i lærebogen. I TI-82Stats - Introduktion og eksempler er metoden beskrevet i 2 og 3 s I forbindelse med udarbejdelse af rapporter skrevet i et tekstbehandlingsprogram(word, Works m.fl.) er det vigtigt at kunne skrive de matematiske tegn rigtigt. I Word er der Equatin Editor. I menubjælken vises den med ikonet α. Hvis det mangler kan man finde det som en kommando i tilpasning af værktøjslinier, som man så trækker op på menubjælken. På min hjemmeside er der et link til et freeware program Amath96, som installerer en formeleditor som en værktøjslinie. En vejledning i installation af Amath96 og eksempler på brugen af den finder I på min hjemmeside under 1y.

8 Sammenhænge side8 I sammenhæng mellem variable størrelser indføres følgende notationer og benævnelser: Uafhængig variabel Afhængig variabel ofte betegnet med x ofte betegnet med y En størrelse der ikke varierer kaldes konstant. Sammenhæng mellem størrelser kan beskrives på forskellige måder. På grundlag af: Proportionalitet En regneudtryk Eksempel : y = 2x y-værdien kaldes også funktionsværdien En tabel En graf En sproglig beskrivelse Ved grafen for en sammenhæng mellem to variabler forstås mængden af sammenhørende værdier afsat i et koordinatsystem med den uafhængige variabel (x) som 1.koordinat og den afhængige variabel (y) som 2.koordinat. Definition af proportionalitet y er proportional med x når x y = k dvs. y = k x k kaldes proportionalitetsfaktoren Definition af omvendt proportionalitet y er omvendt proportional med x når x y = k dvs. y = k x

9 side9 Lineære sammenhænge Lineær sammenhæng Ved en lineær sammenhæng forstås en sammenhæng, hvor grafen er en ret linie eller dele af en ret linie. Alle rette linier, undtagen lodrette, kan være graf for en lineær funktion. Sætning: Enhver lineær sammenhæng har en graf hvis ligning der kan skrives på formen: Forskriften y = ax + b hvor a og b er reelle tal. Eksempler: y = 2x 3 (2 x + ( 3)) a = 2 b = 3 y = x +1 ( 1 x + 1) a = 1 b = 1 y = x ( 1 x + 0 ) a = 1 b = 0 y = 5 ( 0 x + 5 ) a = 0 b = 5 Betydning af konstanterne a og b: a: kaldes hældningskoefficienten eller stigningstallet og er den tilvækst i y-koordinat der svarer til tilvæksten 1 i x-koordinat. b: angiver liniens skæring med 2. aksen. Der er arbejdet med interaktive øvelser i liniens ligning på nettet klasser 1y mac interaktive øvelser på Internettet Linien Beregning af a og b i ligningen y = ax + b Hvis der er givet to punkter A= (x 1, y 1 ) og B = (x 2, y 2 ) er hældningskoefficienten givet ved : a = y 2 y 1 x 2 x 1 b beregnes ved at indsætte et af punkterne A eller B og den beregnede værdi for a i ligning y = ax + b b = y 1 ax 1

10 Skæring mellem linier (løsning af to ligninger med to ubekendte) side10 Eksempel: Find skæringspunktet mellem linierne y = 1 3 x + 2 og y = 5 2 x 1 Skæring mellem linierne er hvor y-værdierne ( og x-værdierne) er ens, så vi sætter y- værdierne i de to ligninger lig med hinanden: 1 3 x + 2 = 5 2 x 1 2x + 12 = 15x 6 17x = 18 x = 18 1,06 y = = 2 6/17 = 28/17 1, Skæringen kan findes vha. TI-82: Linierne indtastes som Y1 og Y2 og graferne tegnes. I Calc vælges Intersect x og y bliver automatisk gemt i lagrene x og y den eksakte løsning med brøker kan findes ved kommandoen MATH Frac

11 At afsløre en lineær sammenhæng side11 Lineær vækst er karakteriseret ved, at der til lige store tilvækster på den uafhængige variabel svarer lige store tilvækster på den afhængige variabel. Man kan undersøge om der er en lineær sammenhæng mellem to størrelser ved at afsætte sammenhørende værdier i et koordinatsystem. Hvis punkterne tilnærmelsesvis ligger på ret linie, kan vi konstatere en lineær sammenhæng. Forskriften for den lineære sammenhæng bestemmes ved at tegne en ret linie, der " bedst muligt " passer til punkterne. METODE til tegning af den " bedste rette linie ": Ved brug af millimeterpapir: 1) Vælg en enhed på akserne, så figuren bliver så stor som muligt. 2) Afsæt punkterne og vurder om der "tilnærmelsesvis er lineær sammenhæng". Husk at respektere de enheder, der er valgt på akserne! 3) Placer linien sådan at punkternes samlede afvigelse fra linien er mindst mulig, og så afvigelsen er ligelig fordelt på begge sider af linien. 4) Bestem forskriften ud fra to punkter på grafen. Punkterne skal vælges langt fra hinanden. Husk at der ofte er valgt forskellig enheder på akserne! Ved hjælp af grafisk lommeregner ( TI-82 Stat, TI-83 eller TI-84 ) : På den grafiske lommeregner kan man beregne forskriften for den bedste rette linie. Metoden kaldes lineær regression. Metoden er gennemgået ( Aktiviteten Dataanalyse med grafregner i Matematik C ) og er beskrevet i detaljer i den udleverede Eksempelsamling til TI-82, 83. Nedenfor er et skærmbillede fra TI-82 fra undersøgelsen af talmaterialet fra Matematik C side 57: Hvis man brugeren grafisk lommeregner til at beregne modellen, skal der foreligge en grafisk dokumentation på, at modellen med rimelighed kan anvendes, evt. en skitse af skærmbilledet. ( dvs. at punkterne skal tilnærmelsesvis ligge på en ret linie ).

12 Ved hjælp af regneark Excel. side12 Også på Excel regneark kan man udregne forskriften for den lineære sammenhæng. Metoden er anvendt i aktiviteten Dataanalyse med regneark i datalokalet. Figuren nedenfor viser diagrammet fra regnearket: Fødevareproduktion i Tanzania y = 0,0967x + 0,4518 R 2 = 0,9882 Mill. Ton 4,5 4 3,5 3 2,5 2 1,5 1 0, = Lineær (=) År efter 1960 Anvendelse af regneark er specielt en fordel, når der skal fremstilles en skriftlig rapport i f.eks. Word. Figuren ovenfor er kopieret fra Excel regneark. Anvendelse af forskriften for den lineære sammenhæng Ved hjælp af forskriften, kan der laves prognose over udviklingen. x er kendt : y udregnes ved y = ax + b y er kendt : x udregnes ved x = y b a Hvordan man bruger den grafiske lommeregner til at udregne ovenstående er beskrevet i Introduktion og eksempler. Bemærk, at man skal være kritisk indstillet ved anvendelse af sådanne prognoser. Den lineære model gælder oftest kun i et begrænset interval. ( jf. Kritik af modellen s. 64 i Matematik C ) Eksperiment med brændetid for et fyrfadslys Eksperimentet resulterede i en påvisning, at vægten i et tændt fyrfadslys afhænger lineært med tiden, og at brændetiden for lysene ligger mellem 6 og 7 timer. Der er skrevet rapport over forsøget

13 Geometri Trekanter Tre grundlæggende sætninger om trekanter: side13 1) Vinkelsummen er 180 Vinkler mellem 0 og 90 kaldes spidse Vinkler over 90 kaldes stumpe En vinkel på 90 kaldes ret. 2) Pythagoras læresætning : c 2 = a 2 + b 2 Summen af kateternes kvadrat er lig med kvadratet på hypotenusen. 3) Trekantens areal : T = ½ h g ( en halv højde gange grundlinie ) Videofilm med Pythagoras læresætning med flere beviser for sætningen samt nogle anvendelser. Ligedannede trekanter Sætning om ensvinklede trekanter : Hvis to trekanter er ensvinklede er de ligedannede, og tilsvarende sider i de to trekanter er forbundet med samme skalafaktor. Øvelser med anvendelse ovenstående sætninger. Trekantsberegninger Definition af sinus, cosinus og tangens Sinus til en vinkel er andenkoordinaten til vinklens retningspunkt på en enhedscirkel Cosinus til en vinkel er førstekoordinaten til vinklens retningspunkt på en enhedscirkel Ved tangens til en vinkel v forstås : tan(v) = sin(v) cos(v) cos(v) 0 Sætning Hvis A er en spids vinkel i en retvinklet trekant gælder: sin(a) = cos(a) = tan(a) = modstående katete hypotenusen hosliggende katete hypotenusen modstående katete hosliggende katete Sætningen bør læres udenad!!

14 Lommeregner: Husk at indstille den til gradtal Øvelser med beregning af sider og vinkler i en retvinklet trekant. side14 Vedrørende opgaver i trekantsberegning: Tegn en figur med benævnelser for sider og vinkler, der indgår i opgaven. Sæt mål på de opgivne sider. På min hjemmeside ligger et lille program ( som kan downloades ) til beregning af ubekendte størrelser i en vilkårlig trekant.

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Matematik for hf C-niveau

Matematik for hf C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for hf C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for hf C-niveau

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Repetition og eksamensforberedelse.

Repetition og eksamensforberedelse. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) maj-juni 2014 skoleår 13/14 Herning HF og VUC Hf Matematik C

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2014, skoleåret 13/14 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Matematik for C niveau

Matematik for C niveau Matematik for C niveau M. Schmidt 2012 1 Indholdsfortegnelse 1. Tal og bogstavregning... 5 De elementære regnings arter og deres rækkefølge... 5 Brøker... 9 Regning med bogstavudtryk... 12 Talsystemet...

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer Hold hf Matematik C Dorte Christoffersen

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin sommer 15 Institution VUC-vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kofi Mensah 1maC05

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Undervisningsbeskrivelse & Oversigt over projektrapporter

Undervisningsbeskrivelse & Oversigt over projektrapporter Undervisningsbeskrivelse & Oversigt over projektrapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Suna Vinther

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

Matematik. Jonas Albrekt Karmann (JK) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) Mål for undervisningen: Matematik Årgang: Lærer: 9. årgang Jonas Albrekt Karmann (JK) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Side 1/5 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Vestegnens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Jack

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer Hold VUC Skive-Viborg Hfe Matematik C Claus Ryberg

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2015, skoleåret 14/15 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Matematik C Nst 16A Oversigt

Læs mere

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 stx MAT A1 stx 005-007 Jens Carstensen, Jesper Frandsen, Jens Studsgaard og Systime A/S Kopiering fra denne bog må kun finde sted i overensstemmelse

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015, skoleåret 14/15 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC hf enkeltfag

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 15 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kristian Møller

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik C Michael

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hf Mat C Viktor Kristensen

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 VUCHA Hf-Flex Matematik-C Ivan Tønner Jørgensen(itj)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2015 VUC

Læs mere

Undervisningsbeskrivelse for matematik C

Undervisningsbeskrivelse for matematik C Termin Termin hvor undervisnings afsluttes: maj-juni skoleåret 12/13 Institution Thisted Gymnasium og HF-kursus Uddannelse STX Fag og niveau Matematik C Lære Mads Lundbak Severinsen Hold 1.d Oversigt over

Læs mere

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Lise A.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Alexander

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2013 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik C Angela

Læs mere

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger Eksamensspørgsmål 11q sommer 01. Gør rede for omformningsreglerne for ligninger. Spørgsmål 1: Ligninger Giv eksempler på hvordan forskellige ligninger løses. Du bør her komme ind på flere forskellige ligningstyper,

Læs mere

Lærervejledning Matematik 1-2-3 på Smartboard

Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning til Matematik 1-2-3 på Smartboard Materialet består af 33 færdige undervisningsforløb til brug i matematikundervisningen i overbygningen. Undervisningsforløbene

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. FORELØBIGE eksamensspørgsmål mac7100 og mac710 dec 01 og maj/juni 013. Spørgsmål 1: Ligninger Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Giv eksempler

Læs mere

ÅRSPLAN MATEMATIK 5.KLASSE

ÅRSPLAN MATEMATIK 5.KLASSE ÅRSPLAN MATEMATIK 5.KLASSE Matematiklærerens tænkebobler illustrerer, at matematikundervisning ikke udelukkende handler om opgaver, men om en (lige!) blanding af: Kompetencer Indhold Arbejdsmåder CENTRALE

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby Hf Matematik C Ashuak Jakob France

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Vest - Esbjerg Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Peter

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau)

En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Matematik i WordMat En lille vejledning til lærere og elever i at bruge matematikprogrammet WordMat (begynderniveau) Indholdsfortegnelse 1. Introduktion... 3 2. Beregning... 4 3. Beregning med brøker...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Henrik S. Hansen, version 1.5

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Henrik S. Hansen, version 1.5 SCT. KNUDS GYMNASIUM KOMPLEKSE TAL Henrik S. Hansen, version 1.5 Indhold Tallenes udvikling... 2 De naturlige tal... 2 De hele tal... 2 De rationale tal... 3 De reelle tal... 3 De komplekse tal... 4 Indledning...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg HF

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33 Indhold Bind 1 del I: Eksperimenterende geometri og måling 1 Eksperimentel geometri 3 Hvorfor eksperimenterende undersøgelse? 4 Eksperimentel undersøgelse: På opdagelse med sømbrættet 6 Geometriske konstruktioner

Læs mere

>> Analyse af et rektangels dimensioner

>> Analyse af et rektangels dimensioner >> Analyse af et rektangels dimensioner Kommensurabilitet Tag et stykke kvadreret papir og klip ud langs stregerne et rektangel så nogenlunde stort og tilfældigt. Nu vil vi finde forholdet mellem længde

Læs mere

FlexMatematik B. Introduktion

FlexMatematik B. Introduktion Introduktion TI-89 er fra start indstillet til at åbne skrivebordet med de forskellige applikationer, når man taster. Almindelige regneoperationer foregår på hovedskærmen som fås ved at vælge applikationen

Læs mere